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Summary

The supplementary material includes the Appendix of the paper. It includes

I. the conditions for theoretical analysis,
II. some notation used in the proofs,
IIT. proofs of Lemmas 1-9,

IV. proofs of the main theoretical results (Theorems 1 and 2, Propositions 1-4) in the
paper.
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Appendix: Conditions and Proofs

In this part, we will give the conditions and proofs of the main results in this paper.

Condition A.

Al.

A2.

A3.

Ad.

A5,
A6.

o0

In model (2.1), €(t;) = ijfoo ¢n:jwi—j, where ¢pn.0 = 1; for any n > 1, there
exists 1 < g, < n—1 and «, > 4, such that |¢,,;| < C for |j| < g¢,/2 and
|pnsi| < C|24]7* for |j] > gn/2, with a constant C' > 0; {w;} is a sequence of
independent white noises with E(w;) = 0, E(w?) = 02, and sup; E(w}) < cc.

Suppose Amin(X1) > C > 0, where ¥; is an mf x mf matrix consisting of £ x £
blocks, i.e., 31 = (Zi’j)féj:l. Y;; is an m X m matrix defined as 3; ;(u,v) =
cov{zfjn_l(Dlsi)zl,m,zan_l(DlSj)zl,m}, for 1 <u,v <m,1 <145 <¥ and
Zp,q is the pth column of the ¢ x ¢ identity matrix.

The second derivative of the drift function d(t) is continuous and bounded, i.e.,

|d"(t)| < C.

In model (2.1), {s;(")}, i =1,...,¢, are independent of {e(-)}. For each 1 <i < ¢,
{si()} is a stationary gs-dependent time series, where g5 > 0 is a fixed integer,
and E{s}(t)} < C < co. Furthermore, {s1(ty),...,se(ts)} and {s1(ty), ..., se(ty)}
are independent if |u — v| > gs. When |u — v| < g5, E{s;(t,)s;(t,)} depends on u
and v only through v — v, for any 1 <1,5 < £.

Suppose t; =i/n, i =1,...,n.

Assume 0 < ¢ < A\pin(R) < Anax(R) < C, where ¢ and C' are constants.

Condition B.

B1.

In model (2.1), € is a stationary g,-dependent process with E{e(t;)} = 0, ¢ <
var{e(t;)} < Cg,, and [E{e(t;)*}]*/? = O(7.(0)), where 1 < g, <n — 1.

Notation. Now, we will give some notation that will be used in the proofs.

1.

2.

3.

Define €1 = Dld + D16. Then, El(ti) = E(tl) — G(ti_l) + d(tl) — d(ti_l), where
er(ti) =z, e, fori=2,...,n

Define eg = Dge, dg = Daod and § = DoS(h — EDBE). Then, e = eg + dg and
e=e+d. Also, eo(ti) = G(ti) —2€(ti_1)+€(ti_2), do(ti) = d(tl) —Qd(ti_l)‘f‘d(ti_g)
and e(ti) = 60('&') + do(ti), where eo(ti) = zszZ,n72eov do(ti) = Zg;z’n72d0 and
6(t;) = 2[5, 90, fori=3,... n.

For a matrix Z, denote by Z(i,j) the entry of Z in the ith row and jth column.
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Proof. We will present and prove Lemmas 1-9, which will be needed in the proofs of
the main results.

Lemma 1 For the (k+ 1) x (k+ 1) matriz A, and (k+ 1) x 2 matriz By, in (2.5) with
k>,

i) AL <Ok
(ii) ”zl,k—i-lA};l”oo < Ck‘37
(iii)  [|A; ' Bills < CF?, |27 41145 ' Billoo < CE,

where zp, 4 15 the pth column of the q X q identity matriz.

Proof: Let G, E, H and K be (k+ 1) x (k + 1) matrices defined as follows:

6 —4 1 o 0 --- 0 O 0 0
-4 6 -4 1 0 --- 0 O 0 0
1 -4 6 -4 1 --- 0 0 0 0
G: . . . . . . ’
0 0 0 0 0 1 -4 6 —4
0 0 0 0 0 0 1 —4 6/, e
000 --- 0 -3 00 --- 0 2 00 0
o1 0 --- 0 0o 00 --- 0 01 0 0
E=|000 - 0| g_[0 00 - 0] g_|0 01 0
0 0 O 0 0 0 O 0 0 0 O 1

Then, Ay = K(G + E + H). To prove part (i), it suffices to show that G + E + H
is positive definite for any k& > 1, and ||(G + E + H)7!|1 = O(k*), since |4} ']1 <
(G +E+H) LK = (G + E+H) .

First, we will show that G+ E + H is positive definite for any k > 2, as the result is
obvious for k = 1. From Theorem 2 of Hoskins and Ponzo (1972), G is positive definite.
Since F is positive semidefinite, G + E is positive definite. By the particular form of
matrix H, det(G+ F + H) > 0 is a necessary and sufficient condition for G+ FE + H to
be positive definite. We can express G+ E + H as a block matrix in the following way:

(N
G+E+H_<J2T Jg),

where

3 4 1 000 -~ 00
e G A )
-4 7 4 100 - 00/,
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6 —4 1 0 0 0 0 0 0

-4 6 -4 1 0 0 O 0 0

1 -4 6 -4 1 0 O 0 0
Js = .

0 0 0 o 0 .- 1 -4 6 -4

0 0 0 o 0 -~ 0 1 -4 6

(k—1)x (k—1)

Then,

Toxo Jz) (J1 — L Jy P IE Oa o) )
G+FE+H-= _ ,
(O(k—l)x2 J3 T Lik—1)x(k—1)

so det(G + E + H) = det(J3)det(J, — JoJ5 *JJ). Due to Theorem 2 in Hoskins and
Ponzo (1972), det(.J3) > 0. Now, we only need to show det(.J; — JoJ5 ' JT) > 0.

Let x; ; = zgk71J§12j7k_1. From Theorem 5 of Hoskins and Ponzo (1972), z11 =
(k—=1Dk/{(k+1)(k+2)}, 2201 =212 =2(k—1)(k—2)/{(k +1)(k+ 2)} and x5 =
(k—1)(k —2)(5k —6)/{k(k+ 1)(k + 2)}. By direct calculation,

g gyl 3—(k—Dk/{(k+1)(k+2)} —44+2k-1)/(k+1)
17293 <2 442k —-1)/(k+1) 7— (5k+6)(k—1)/{k(k+1)})"

Thus, det(J; — JoJ; ' JT) = 12(2k + 3)/{k(k + 1)2(k + 2)} > 0, which implies that
det(G + E + H) > 0 and hence G + E + H is positive definite.

Next, we will show ||[(G+ E + H)7 |1 = O(k*) as k — .

Since the ranks of E and H are both 1, from Miller (1981), (G + E)~! = G~ —
G 'EG™ and (G+ E+ H)™' = (G+ E)™' — (G + E)'H(G + E)™', where
v1 = {1+tr(G1E)} 7! and vp = [1 + tr{(G + E)~'H}]~!. Therefore,

211 (G+ B) ' zjpi = aij — 11052025, (5.1)
21 (G+ E+ H) 'z 01 = (ai; — via2a2,)
+3va(ai1 — 11a;2021)(a1,; — 1101 2a2,5), (S.2)

where a; ; = szHG’lzj,kH, for1 <i,j<k+1.
From Theorem 5 of Hoskins and Ponzo (1972), fori=1,... . k+ 1,

(k42— i) (k+3— i)

LT T 3 (k4 (8:3)
oo (k2 i) (k43— ){i(3k +4) — (k+4)} (S.4)
b2 (k+2)(k+3)(k+4) ' '
Direct calculation leads to
v = {14+t(G B} = (14 a20)"" 222 1/6, (S.5)

1+ o{(G+E) " HY =1 —3{a11 —af /(1 +az2)}] ™"
O(k?/4). (S.6)

Vo
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From (S.3) and (S.4), for any i =1,...,k + 1, we have 0 < a; 1, a;2 = O(k) and

(k+2 —i)(k+ 3 —14) 4k%i + 22ki + 244 + 2k3 + 10k* + 8k
(k+3)(k+4) 6k3 + 18k2 4 30k + 24
< 2 (5.7)

a;1 — V1442021

Since G~! is symmetric, we can immediately get 0 < ai; — via12a2,; < 2 for any
ji=1,...,k+1.

By Theorem 3 of Hoskins and Ponzo (1972),

k+1 k+1

E+1)(k+2
;ai,l = Zl |a¢,1| = %»
k1 k1

k(k+1
Zai’Q = Z |ai,2| = % (88)
i=1 =1

Theorem 4 of Hoskins and Ponzo (1972) indicates that ||G71[|; = O(k*), which
together with (S.1)—(S.8) implies,

I(G+E+H)"

k41
= 131}131(4_1 z; \(az’,j - Vlai,2az,j) + 31/2(&1:,1 - Vlai,2a2,1)(a1,j - Vlal,zaz,j)|
1=
k+1
< |Gt 1D las
< NG o, g loagl 3 Josa
i=
k+1
+319 151;12?4_1 |a1,j - V16l1,2112,j| Z; |ai,1 — 1a;2021
1=

= O(K") +0(1)O(k)O(K*) + O(k*)O(1)O(k) = O(k*).

For part (ii), by (S.1)—(S.8),

127 k145 oo <1121 541 (G + E+ H) ool K oo = (G + E+ H) 21 41|00
max |(ai,1 - Vlai,zaz,l) + 31/2(612',1 - V1a1,2a2,1)(a1,1 - V1a1,2a2,1)\

1<i<k-+1
< max |a;1|+vilagi| max |a; 9| +3valar — viar2as1| max |a;n — viai20a2;|
1<i<k-+1 1<i<k+1 1<i<k+1

O(k) + O(1)O(1)O(k) + O(K*)O(1)O(1) = O(k®).

For part (iii), we only consider k > 3, as the result for k¥ < 3 is obvious.

Since A,;lzkH,kH =(G+E+H) 'K 2411441 = (G+E+H) 211 41, from
(5.2),

1A Zksr k1l = (G + E+ H) ' 2kq1 04111
k+1 k+1 k+1

< Z |az‘,k+1\ + V1|a2,k+1| Z |ai,2| + 31/2|a1,k+1 - V1a1,2az,k+1| Z \ai,l — 1a;2021
i=1 i=1 =1
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= T+4+I1+TIL (S.9)

Theorem 3 in Hoskins and Ponzo (1972) implies that I = O(k?).
From Theorem 5 in Hoskins and Ponzo (1972), for i = 1,...,k + 1,
i1 =1t +1)(k—i+2)/{(k+3)(k+4)}, (S5.10)
which together with (S.5) and (S.8) implies that II = O(1)O(k~1)O(k?) = O(k).
By (S.3), (S.4), (S.5) and (S.10),

2(k + 1) _ a2 6k
(k+3)(k+4) 1+az(k+3)(k+4)
From (S.6), (S.7) and (S.11), III = O(k*)O(k=2)O(k) = O(k?). Therefore, by (S.9),
| A} 2k41,641][1 = O(k?). Similar arguments reveal that ||A; ' 2k x41][1 = O(k?). Since,
for k > 3, By = [Zk k41 — 42kt 1,k+1 Zht1,k4+1)5

=0(k™?). (S.11)

a1, k+1 — V101,202 k+1 =

||A1§13k||1 < ||A;lek,kl+1 - 4A;lek+1,k+11H1 + |43 Zrr1 ksl
< A zrgalls + 4IAL Zegr el + 1AL Zerrig1 = O(K?).

From (S.2), (S.7) and (S.11),
2] i1 Ay Zh k|
= |(a1,k+1 - V1a1,202,k+1) + 31/2(@1,1 - V101,2a2,1)(a1,k+1 - V1a1,2a2,k+1)|
= Ok 2)+0(k*)O(k™?) = O(k).

Similarly, we can show |z{k+1A;1zk7,€+1| = O(k). Therefore,

T -1 T -1 T ~1 T -1
121 k4145 Brlloo <121 k414, Zkk+1 — 421 g1 Ap Zhtt k1| + 121 k1 Ay 21641
T -1 T -1 T —1 _
< zies1 A Zekst] 4210 AL Zrret] 12014y et = O(K).
Now we complete the proof. l

Lemma 2 Under Condition Al (or Bl), for any k € {0,1,...,9,} and 1o, > 0 that
satisfies TO_”%‘ =o(n/g?) asn — oo,

ol Z{eo Jeoltisi)} ()] = 7o) < €L

nTg.,
where eo(t;) = e(t;) — 2e(ti—1) + €(ti—2) as in Notation 2.
Proof: First, we will give the proof under Condition A1l. Since e(t;) = Z;‘;_m Gz Wi j,

we have eo(ti) = Z]oi_oo iji,j, where djj = ’ll)nj = ¢nj — 2¢ng 1+ an;j,Q. Define

eo(ti) = ?f_zgn_z Yjw;—j and Y. (k) = cov{€o(t;), €o(ti+x)}. Then,

n—k
\f {eo Jeoltisi)} =7 ()] < =] S {eoltideotiss) = 7 (k)Y + (b + Dbl /m
=3
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IN

n—k
| S teolten(tinn) — (k) ~ Eo(to)zotirs) +7.(K)}
=3

+] Z{eo eoltirn) = Fe(R)}| + (& + Dlre(k)] /n
= I+11+ III (S.12)
Since TOT,EL =o0(n/g?) asn — oo and |7.(k)| < 7.(0) = O(g,), there exists a constant L,

such that, for any n > L, and k € {0,1,...,g,}, III < 79,,,/3. From (S.12), for n > L,

n—k
P(‘% ;{eo(ti)eo(ti+k)} - ’)’e(k)‘ > TO;n) <Pl >7,,/3) + P(I1 > 70,0/3).  (S.13)

From Lemma 3,
P(IL > 70;0/3) = O(g,/ (n75,,.))- (S.14)
Therefore, we only need to consider term I. By Markov inequality,

P(I Z T0: n/g)

< (=) [\Z{eo Jeoltis) = (k) = Fo(t)eoltisn) + 7 (W} ] (8.15)

NnTo;n

For any fixed n > L, and k € {0,1,...,gn}, let Q; = eo(t:)eo(ti+r) — €o(ti)eo(titr). De-
fine D; o, = E(Q; | Wi—u, Wi—yt1,---)—E(Qi | Wimut1, Wi—yt2,...), foru=0,£1,£2,....
It holds that 3207 D;. = Qi — E(Q:) = eo(ti)eo(titn) —ve(k) —€o(ti)eo(t z+/c) +’Ye(k‘)
almost surely. For any u, {Dw}fznf,C is a martingale difference sequence w.r.t. F;, =
o{Wi—, Wi—yt1, ...}, 16, E(Djy | Fix1,4) = 0 for i = n—k,...,3. In the following,
define ¢} = ¢; for [j| < g, + 2 and 9] = 0 for [j| > g, + 2. Direct calculation leads to,

E(D},)
k+u—1
= {(qursz u Z w]wz J+wuwz u Z "/}sz+k¢ j +wu+k'¢}uwz u wu+kwu
= L 2
_¢u+sz u Z ¢ Wi—j w Wi —y Z '¢ Wi+k—j ¢Z+k¢2wz'27u+wz+szo—12u> }
j=—o0 j=—o0
= O(gn(¥ +¥i 1)),
which together with Lemma 7 of Xiao and Wu (2012) implies
n—k 2
B{(> Diu) } < ZE O(nga (W + w7 14). (.16)
=3

By Minkowski inequality and (S.16), for the expectation term in (S.15),

E H g{eo(ti)eo(twk) — Ye(k) — €o(ti)eo(tivr) + %(k)}r]
i=3
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') n—k

SRS 2 2\ 1/272
dl Z::ZOOD E [M_ZOO{E(! gD )] =omad
From (S.15),
P(I> 79,n/3) = O(g5/(n73,))- (S.17)

Combining (S.13), (S.14) and (S.17), we finish the proof for n > L,. It is easy to see
that the result is true for n < L.

Next, we will prove the Lemma under Condition B1. For any k =0,1,..., g,

P

/N

*Z{eo Jeo(tisn)} = 7(k)]| = 70

4n[z{€0 +eoltivn)}’ —Z{eo —60(ti+k)}2]

3 1{2:(0) + 2. (0)} — {20.(0 >—2%<k>}1\ > T )

Il
Ee)
)—l/'\

< Pf ljzf{eo )+ eoftien)} = {20(0) + 29 (R)}| 2 270,
+P((_t§_j:{eo<t>—eo<ti+k>} ~ {29:(0) = 270} | = 20
< P(\;jz_fe( )= (L pe)] 2 55
+P(‘Tll7:_:e( ) {1—pe(k)}‘277:)(;8)>EIV+V,

where e1(t;) = {eo(ti) + eo(ti+r)}//27(0) and e2(t:) = {eo(t:) — eo(titr)}/\/27(0).

Then, {e;1(t;)} and {e2(t;)} are (2g, + 2)- dependent tlme series with mean zero.

We divide {e;(t;)}7=F into consecutive blocks with length 2g,+2, i.e. {e1(t3),...,e1(t2g,14)},
{e1(t2g,+5); - - .,el(t4gn+6)} . So, there are ¢, = [(n—k—2)/(2g, +2)] blocks, where
[] denotes the ceiling function. The length of the last block is less than 2g,, +2, if 2g,, +2
is not a divisor of n — k — 2. Denote the sum of [e?(t;) — {1+ p.(k)}] within these blocks
by b1,...,b,,. For example, by = Z?i§+4[e%(ti) — {1+ pe(k)}]. Then, E(b;) = 0 for
j=1,...,qn. {b1,b3,b5,...} are independent, so are {by, by, bg, .. .}. By Cauchy-Schwarz
inequality and Condition B1, we have

2gn+4

E(®]) < (29, +2) Y Bl{ei(t:) — (1+ pe(k)}?] < C(290 +2)°.

i=3
Similarly, we can show that

E(b;) < C(2g, +2)°  forany j=1,....q..
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Since TO_;:L = o(n/g2), there exists a constant L; > 0, such that for any n > L; and
k e {07"'7.9”}7

(k + 2L+ pel)) < (g0 + D1+ ek} <200 +2) < 100
Then, due to Markov inequality, for n > L, we have
IV < P( jz_j[el( i) — {1 +Pe(/€)}]‘ + (k+2){1 4 pe(k)} > ::(0(,;)
n—k
< P( ;[61( i) — {1+Pe(k)}]‘ > 2%(’8)>
- P( J:;‘S’E’ ~bj‘+’J—2,4,6, |2 2'760(8))
= P< Z bj‘24eo(;g))+P(‘ b‘ ))
47,

IA

} {_qg } O(g5/(n73,.))-

Similarly we can show, V = O(g; /(n73.,)). Hence, we finish the proof. B

Lemma 3 Under Condition Al, for any positive sequence To., and k € {0,1,...,g,},

3

HZ{eO oltik) = Fe(k)}| 2 rom ) < C-22

’nTOn

w’w{re ?0() i) (= Z)?}"Hgnz jwij, i = Yy = Gy = 20ng1 + Gny—2 and (k) =
covieo(t t

Proof: Since €y(t;) = ?l-?gnd ijwi—j, {€o(t:)} is (2gn + 4)-dependent. For any
k:O’17""gn’

P(:| Sttt - Tk} = 7o)
1=3
n—k

P(| Do (t:) + @oltira)} = {25:(0) + 25e()}]

i= 3

- Z {eO — €0 z-‘rk)} - {276( ) Q?C(k)}]‘ 2 4717'0;n)

(] ;re‘%m) - {1+ 2 2765

IA

S9
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Ead

n—

+P(| @B - 1 -l 2 22, (.18)

2| = 5.00)
where f (k) = Fe(k)/3e(0), €1(t:) = {€o(t:)+€0(tisr)}/{27:(0)}!/? and &(t;) = {eo(t:)—
Co(tivk)}/{27(0)}/2. Then, {€1(t;)} and {€s(t;)} are (3g, + 4)-dependent with mean

Divide {é; (ti)}?:_?)k into non-overlapped consecutive blocks with length 3g,, +4, i.e.,
{gl (tg), e ,gl (t39n+6)}a {51 (t39n+7), N ,51 (tngJrlo)}, .... There are qn = ((TL — k-
2)/(3gn + 4)] blocks, where [-] denotes the ceiling function. The length of the last
block is less than 3g, + 4, if 3g, + 4 is not a divisor of n — k — 2. Denote by b; the
sum of [e2(t;) — {1 + pe(k)}] within the jth block, for j = 1,...,q,. For example,
by = E?ingG[E%(ti) — {14 pe(k)}]. Then, E(b;j) =0for j =1,...,q,. We can show that
{b1,b3,bs5, ...} are independent, and so are {bs, by, b, ...}

Since 7.(0) = o2, Zg"w 9 1/J]2' = O(gn) and

J=—9n
gnt2 gn+2 5
Bt = Y wiBwi)+ Y Y wiiah=o(( Y ),
Jj=—gn—2 —gn—257#) <gn+2 J=—gn—2

we have
E[Iéf(tgz;{l + Pe(K)}?] = Eg[ﬁ)(ti) +eo(tivn) }1/{432(0)} — {1 + pe(k)}?
= o(( X ) el X ) )) - amy =on).
J=—gn—2 J=—9gn—2

By Cauchy-Schwarz inequality, E(b3) < (3g, + 4) 0900 B|&3(t:) — {1 + pe(k)}?) =
O(g2). Similarly, we can show that E(b3) = O(g;) for j = 1,..., gy, which together with
Markov inequality implies

P(‘g[gf(tﬂ (L a2 £
i=3

A A
o
—~
| +
33
o |3
SE M
\_/:
+'Q@
oS
~
E
o
25
N————
MQ‘
WV
[\

3
3z
3|3

N———

IN

§j=1,3,5,...

(
6
{ie-(i?}?{iﬂb?)}:@ 7129733%93):0( ). (S.19)

j=1 n O0;n

(O (5 )} {20y
(

Similar arguments lead to

P(E[éﬁ(m)—{l—ﬁe(k)}]h o) =00s) (3.20)
1=3
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By (S.18), (S.19) and (S.20), we complete the proof. W

Lemma 4 Under Conditions A2, Ad and A5, for any constant 71 >0 and 1 <1i,j < ¢,
P(IZis ~ Sijlloe > 71) < C/n,

where iw = (D;S:)T(D1S;)/n and %, ; is defined in Condition A2.

Proof: For notational simplicity, define s,.; = s;(r/n), for r =0,...,n — 1.
Let J be an m x m matrix defined as
_ —vtu—2 :
I(u,v) = n~t Z?:g ! (8r+1;5 = 8ri5) (Srtv—ut15i — Srv—ui)y I 1 <u<v<m,
=9 _ —utv—2 .
’ n ! Z?ZSH_U (ST+1;i - sr;i)(5r+u—v+1;j - 5T+u—1);j)7 if 1 S v S U S m.
For 1 <u<wv<m,

12,5 (u,v) — J(u,0)]

n—v—1

1
= ‘g Z (S’r‘+1;j - S"’?j)(S’I‘Jr’Ufu«}l;i — ST+’U7u;i)

r=—1
1 n—v+u—2
_g Z (Sr+1;j - Sr;j)(3r+v7u+1;i - Sr+v7u;i)
r=0

n—uv+u—2

1
ﬁ{|50;j(5v—u;i —Souti)l D [(Sri1y = Seg) (ot — 5r+v—u;z’)|}
r=n—v—1

K(u,v), (S5.21)

IN

where s_1;; = s_1;; = 0 and K is an m x m matrix. Similarly, for 1 <v <u <m,

12,5 (u,v) — J(u,0)]

n—ut+v—2

1
< E{|50;i(3u7v;j = Su—v—135)| + Z [(Sr41:6 = Sy ) (Srtu—vt135 — 3r+u7v;j)|}
r=n—u—1

= K(u,v). (5.22)

By Markov inequality and Cauchy-Schwarz inequality,

P( ZZ K(u,v) > %) %E([ ZZ {\So;j(sv—u;i — Sy—u—1;i)]

1<u<v<m 1<u<v<m

IN

n—v+u—2

2
+ Z |(Sr41;5 = Srij) (Srv—ut 15 — Srﬂ)ﬂi;l‘)‘” )

r=n—v—1

= o@1/n?),

and similarly, we can show P( S>> K(u,v) > 71/4) = O(1/n?).
1<v<u<sm
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Since, by Condition A4, ¥; ; is a Toeplitz matrix and so is J, we have ||[J—X%; j|locc <
120, (T = i)l + 125 (F = Bij)lh = 3205 [3(1,v) = B (Lo)] + 3205 [I(m,v) —
Z”(m v)|. From (S.21) and (S.22),

(HZM - ,J”oo > Tl) < P(”J X JHOO + HZZJ JHOO > 71)

< P(J- E”Hoo > 1/2) +P(||E”- o > 71/2)
< P(Z| |+Z|va (mv)\>121)
+P(ZZK u,v) > —)
1<u,v<m
< Z ([J(1,0) = % (1, v)| > 71/(4m))
v=1

+ ZP(\J(m,v) — % ;(m,v)| > 71/(4m)) + O(1/n?). (5.23)

Following basically the same method in the proof of Lemma 3, we can show P(]J(1,v) —
;1 0)| > 71 /(4m)) = O(1/n) and P(|J(m,v) — 2, j(m,v)| > 1 /(4m)) = O(1/n). By
(S5.23) we complete the proof. B
Lemma 5 Under Conditions A2, A4 and A5, for any constant T, > 0,

P(|1 — 1] > ) < C/n,
where 21 = (D1S)T(D8S)/n and %y is defined in Condition A2.

Proof: 1 could be expressed as a block matrix, i.e., S = (f] )fj 1, where E” =
(Dlsi)T(Dlsj)/n. Since il and ¥; are symmetric matrices,

P(|) = 81 > 1) S P51 — Biflee > 1) < P(Z D IS — Bl > Tl)
1<i,j<f
< DY PR = Zigllee > 1 /6?) = O(1/n).
1<i,j<t

The last inequality is derived from Lemma 4. B

Lemma 6 Under Conditions Al (or B1) and A2-A5, for any 7o = 2., > 0,
P(|(D1S)"er||* > m) < Cngy /72,
where €, = D1d + D1€ as in Notation 1.
Proof: First, we will show the result under Conditions A1-A5. Let (11, ...,7m)" =

(D1S)%e; and ¥;; = 2f,_ 1(Dls)z] . For j =1,...0m, n; = Z?:_ll €1(tit1)9;
= S e(tin) — e(ta) i + 200 {d(tien) — d(t:) 1.

P(|(D1S) €1 > ) = (Z% >n) < ZP 2 > 1/(¢m))
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om o1 1/2
< Z:Pd;{e(ml)dti)}ﬁi,j >W)
S1/2
+Z (’;{d i+1) — d(t:) 10,5 @;7)1/2)
_ LI (8.24)

For term I, define ¢} = ¢k — dnii—1, 50 €(tiv1) —€(ti) = > pe o Ofwit1—k. Then,

n—1 oo n-—1
> feltivr) —e(ti)}i; = Z Z Grwir1—kij = Y > drwir1xVij. (S.25)
=1

i=1 k=—o0 k=—o00 i=1

For each k and j, define B ; = (¢Zw2,k191’j7...,gb;;wn,kz?n,l’j)T. Divide 3 ; into
blocks with length gs + 1, and hence there are ¢, = [(n—1)/(gs +1)] blocks. The

sum of the elements of B, ; within the uth block is denoted by kg ju, for u=1,...,q,.
For example, kj ;1 = gs“ diwip1-kY; . Then, E(ky ;) = 0, E(Iiiju) < (gs +
1) gg+1 E[{¢twisr— Mg”} ] O((gs + 1)%¢32), {Kk,j.1,Kk,j3,- -+ are independent and

50 are {I{k’],g, Kk j4,- .-} Then,
n—l 2 2 2 )
(S stmmin <26 5w pra{( )’} —owi
i=1 u=1,3,5,... u=2,4,6,...
which together with (S.25) and Minkowski inequality implies

HZ{E i+1) — €(ti)}i 5 }: H Z Z PrWiy1— k797j>‘}

k=—o00 i=1

<[5 (S e ) oo s

k——o00

By Markov inequality and (S.26),

I<4€—mZEHZ{e (tix1) —€(ti)}Vi 5 ] (ngn/7'2)

Similar arguments can be applied to show that IT = O(ng2 /72). From (S.24), we complete
the proof.

Next, we will provide the proof under Conditions B1 and A2-A5. Since {e(t;41) —
€(t;)} is (gn + 1)-dependent and any column of DS is (gs + 1)-dependent, the vector
aj = ({e(ta) —e(t1) V1,5, ..., {e(tn) — €(tn_1)}9n—1,)T is (gn + gs + 1)-dependent, j =
1,...,m. We divide ; into blocks with length g, + g, + 1 as we did before. So, there
are [(n —1)/(gn + gs + 1)] blocks. The sum of elements in a; within the wth block is
denoted by fj., forw=1,...,[(n—1)/(gn + gs +1)]. By Conditions Bl and A4, it is



S14 Xiao Guo and Chunming Zhang

easy to see that E(f7,) < Cgp. Hence,

P(‘ nz_:l{e(tiﬂ) — e(ti) iz = 2(;;2:)21/2)
i=1
1/2 1/2
= P<‘w—§5 | 2 sm5778) +P<‘w_§6 S| 2 g257)
160m (/| N

AE( 2 nel)er( 3 naf)} o0

Since (S.24) still holds under Condition B1, similar arguments can be applied to show
that I = O(ng?/m) and II = O(ng? /7). From (S.24), we complete the proof. B

Lemma 7 Under Conditions Al (or B1) and A2-A5, for any 73 = 73,5, > 0,

n 2
P(i;mti) > 1) < G, ©

“mnon’

where §(t;) is the (i — 2)th element of § = D2S(h — EDBE) as defined in Notation 2.

Proof: The proof is the same under either Condition Al or BI.
Since €; = D1d + Dy, from model (2.1),

hppe = {(D1S)7(D1S)} "1(D1S)T(D1y) = h+ {(D1S)7(D1S)} "1(D1S) .
Thus,

> 8(t:) = [D2S(h — hpg)||* = [Do(DiS){(D1S)" (D18)}(D1S) e |
=3

IIEDOIIQH(Dls){(Dls)T(Dls)}_lHQII(Dls)TﬁlAH2
4{(D:8)"(D18)}!|[(D18) " ex[|* = dn ™[] > [|(D1S) e %,

ININA

(8.27)
where 5, = (D1S)7(D;S)/n and Dy is an (n — 2) x (n — 1) matrix defined as

-1 1 0 0
0o -1 1 0

Dy = ) ,
0 o o0 --- 1

(n—2)x(n—1)
such that Dy = DoD;. By Condition A2, when 27 Ay (31) > || — %4,

<

Slhe!

1 ~ ~ ~
§>\min(21) < Amin(Z1) = 21 = 21| £ Anin(Z1) + Amin(B1 — 1) < Amin (1),
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and thus, ||E Y = 1/)\mm( 1) < 2/C, which together with (S.27) implies

P 252 )2 75) <P I(DiS) e = 7an?/4)

(||21A1||||(D18>T<-:1H2 > 75n?/4, |E1 = S| < Amin(%1)/2)
FP(IETHIDS) T erl” > mn® /4, [[E1 = 1]l > Amin(21)/2)
P(|[(D1S)"e1||* > Cm3n?/8) + P(||E1 — 1| > C/2)

I+1L (S.28)

A

By Lemma 6, if we take 7o,, = C13n%/8, 1= O(g2/(m3n)). From Lemma 5, by choosing
71 =C/2,11 =O(1/n). From (S.28), we complete the proof. W

Lemma 8 Under Conditions Al (or B1) and A2-A5, for eg = €0, > 0 that satisfies
g0 = 0(g8), eon/glt — oo and e3n?/glt — oo, and for any k € {0,..., 9.},

P([7e(k) = ve(k)| > e0/g,) < Cg,’ [ (nep).

Proof: The proof is the same under either Condition Al or Bl.

Since e(t;) = e(t;) + d(t;), we have

- Z i)e(tivr) Z{e ti) He(tivr) +0(tivr)}
1 n— k 1 — 1 n—~k
= - Z (tivr) + = e(t)d(tirn) + Z tivn)d(ti) + D 8(t)8(tisr)-
=3 =3 =3

By Cauchy-Schwarz inequality,

Pt~ ()] > 2) = (| Z{e eltirn)} = (k)] > =)

9
< 2(|L ettt -t >\+Z{ie%toiﬂti)}”ﬁjlz”;mi)z;g)
i=3 =3 s n
< (‘ Z{e e(tik)} —Ye(k )‘2%)+P<i{§e2(ti)ééz‘(ti) mz%)
P(ﬁ 252(@) > ﬁ)
1 (S.29)

From Conditions A3 and A5, we have |do(t;)] < 2C/n?, where do(t;) = d(t;) —
2d(t;—1) + d(ti—2). Since e(t;) = eo(t;) + do(t;), by Cauchy-Schwarz inequality, for large
n,

(‘ Z{eo Jeo(tirk)} — ve(k)| = 605)

~ 4g;
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(G dw g} e Ty ke = 5

< P(‘;S{eo(ti)eo(tiJrk)} —Ye(k)| > 45705)
i=3 "
P(2{Y gy dw) 2 )
I i=3 =3 (S.30)

The last inequality in (S.30) is true, when n is large enough, such that n*/g> > 96C? /¢,
which implies n ™! "% 2 d3(t;) < €0/(24g3).

For term Iy in (S.30), when n is large enough,

S0 S a0) " s -r(Ss0 S a0 i)

Iz

< P(zn: 2(t)>537”5) <P(‘lzn: 2(t;) — 7(0) >i)
= \Z 360 = 921607g0) =\ £ 0 I = Tga390210
€0

The last two inequalities in (S.31) are true, when n is large enough for the following
inequalities to hold, n*/gl? > 18432C27,.(0)/e2 and n*/g> > 4608C? /e, which imply
7e(0) < £0n4/(18432029n ) and €¢/(4g3) < e3n*/(18432C?¢19) respectively.

From the assumptions that egn/g:! — oo and eZn?/gl! — oo, we can always choose
a constant Lp, such that, for any n > Li, the following inequalities hold: n*/g> >
96C? /eg, n*/gl0 > 1843202 (0)/e2 and n'/g> > 4608C?/eq, which imply that (S.30)
and (S.31) hold. Therefore, for n > Ly, from (S.30), (S.31), by choosing 7o., = £0/(492)
in Lemma, 2,

I < (‘ Z{eo Jeo(tivk)} — 'Ye(k)‘ > 72) +P(‘i§;6(2)(ti) _%(O)’ > %0?)
= OUl/nsh) (S.32)
For term II,
I = P(%{%zﬂ:@(ti) —7.(0) +7€(0)}i52(ti) > 3;5)10)
=3 i=3 n

INA
)—U
~
S|
3|~
ilng
o
l\J
>,
l\')
I
-3
[N}
b
5
~—

AN
g
Z
S|
@
[\v]
—~
S
N~—
I
=2
o
—
o
~—
v
‘m
=)
N———
+
las)
N
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S
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\
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N
Q o
at
N———
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n 2

1 2 €0
— ) >
+P( “”;;5(“)—'m%p)
= IIl + 112 + IIg (833)

From the assumption 0 < g9 = O(g8), we can first choose 3., = €3/{727.(0)g.°} in
Lemma 7 and get 113 = O(g3/(ned)) + O(1/n) = O(g3/(ned)). Then, from Lemma 7,
by taking 3., = €0/(2495), Ilo = O(g! /(neo)) + O(1/n) = O(g" /(neo)). Based on the
proof for term I, Il; = O(g3/(ned)). By (S.33) and the assumption that 9 = O(g%),

1= 0(g,’°/(ne5)) + O(g,/ (neo)) + Olgy’/ (neg)) = Olg,,* /().
It’s easy to see that
I < 1T, = O(g),/(ne0)) = O(g,,>/ (nep)). (S.34)

From (S.29) and (S.32)—(S.34), we complete the proof for n > L;. The result for n < L
is straightforward. W

Lemma 9 Assume Conditions A2-A5 and that there exists € = €, > 0 such that ¢ =
O(1), e'/?n/glt = oo, en?/g:t — co. Under either of the following two assumptions:

e Condition A1 holds and (g, +2)3~ %" = o(!/?),

e Condition Bl holds,

we have

P(|R — M,, (R)||%, =€) < Cgy*/(en).

Proof: The proof is the same under either Condition Al or BI.

Since R and R are Toeplitz matrices,

P(IR - M,, ()% > ) < P({2 Z\p YCIED

gn

= P(X 10 ol > £1%/2) = (Hw - mHl 2e12)2)
< P(H@ - W)Hl > 212 /2, [3(0) ~ 1(0)] < 1(0)/2) +P(5(0) ~4(0)] = 4(0)/2)
= I+1L (S.35)
Since
- = G5 ) G @) G-
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then,

55— =5l < 15—z - 5|+ M| — ]+ 15 = s

which implies that

1< P -lh|xg — o] = /6. 5O = 0)] < +(0)/2)
+P (Il |55 — 5] 2 £/2/6.13(0) = 1(0)] <1(0)2)

+P (17 =1l =57 = /2/6. 3(0) = (0] < 7(0)/2)
= II+1IV+V. (S.36)

Let g9 = £'/24(0)/96. By Lemma 1, Remark 1 and the assumption that (g, + 2)3~% =
o(e'/?), we have || A; By, [[1{17(gn + )| + [7(gn + 2)[} = O(g7(gn +2)' ") = O((gn +
2)37%) = o(gg). There exists a constant Ly > 0, such that for n > Ly, [|A; ' By, [l1{|7(gn+
D]+ |v(gn + 2)|} < 2¢¢. For n > Ly, from Lemma 1,

P( = ]l = £'9(0)/6)
P([[Ag, e = ve)lh + 14y, By, [li{l7(gn + V)| + 7(gn + 2)[} = 4e0)
P([Ag 1 l¥e = el 2 220) < P([Fe = el = 220/(Cgp))- (S.37)

\%

ININIA

Similarly, we can show that, for n > L,
L < P(|5 =7l > £'/*4(0)/6).

By Lemma 1, Remark 1 and the assumption that (g, 4 2)3~%" = o(g!/?), there exists a
constant Ly > 0, such that, for n > Lo,

127 5. 1145, Bg, lloo {17 (gn + | + [1(gn + 21} < €'/27(0)/{24(gn + 1)}
For n > Lo, from Lemma 1,

1 1 1o N
P(|50) ~ 5| 2 <610 + D1 AO) = 1(0)] <1(0)/2)

P([7(0) = y(0)] > '/%4(0)/{12(gn + 1)})

P21 5, 1145 Fe =Yl + 121 4, 4145 B, lloo {[7(9n + DI + (90 + 2)[}
> et/25(0)/{12(gn + 1)})

P(|l2],, 1145 lsolFe — ellt > €/27(0)/{24(gn + 1)})

P(|A. — velli > 220/(Cgit)).

By (S.36) and Lemma 8, for n > max{L;, Lo},

v

IA

ININA

INIA

[< 3271:P(|%(k) —e(k)| > €0/(Cgp)) = O(gy"/(e5n)) = O(gy" /().
k=0
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From the assumption that e = O(1), we have Cey < +(0)/2 for some positive
constant C'. Following basically the same procedure in (S.37), there exists a constant
L3 > 0, such that, for n > Lg,

<P =7l = 7(0)/2) < P([F = 7l = Ceo) = O(g,"/(en)).

Now by (S.35), we complete the proof for n > max{Ly, L2, Ls}. The result for
n < max{Li, Lo, L3} could be easily derived. B

Proof of Theorem 1. It is easy to see that
IR - R|% < 2|R - M, (R)|% +2|M,, (R) - R|% =1+]1L

For term II, from Remark 1, under Condition A1,

M (R)- Rl <2 S ROWROI=0( 5 @k g.') = O((ga + 27
k=gn+1 k=gn,+1

Therefore,
II = Op((gn +2)*72*).

From (g, + 2)8t2% /n — oo and g1*/n = o(1), (gn + 2)472% = o(gl*/n), and hence,
II = op(g:*/n). Under Condition B1, IT = 0.

Take €, = C*gt /n where C* > 0 is a constant. From Lemma 9, under either
Condition Al or B, P(|R — M,, (R)||2, > C*g'*/n) < C/C*. Thus,

1= 0p(g,"/n).

We complete the proof. B

Proof of Proposition 1.  From the proof of Theorem 1, |R—RJ/%, < 2||ﬁ—Mgn (R)||%+
2||M,, (R)—RJ2,, and ||M,, (R) —R||s = o(1). From Lemma 9, for any constant & > 0
and n large enough such that 2|M,, (R) — R|%, < ¢/2,

P(|R - R|% >¢) < PR - M, (R)[|% >¢/2) < Cglt/n = o(1), (S-38)

because o, g, — oo implies that (g, +2)3~ %" = o(1). So, we complete the proof. B

Proof of Proposition 2. The proof is the same under either Condition Al or B1. We
can show that

Amin(R) = Amin (R) 4 Amin(R = R) > Amin(R) — |[R = R|| > Auin(R) — |R — R/ oo

From Condition A6 and Proposition 1, we can show that with probability tending to
one, Amin(R) > 0. Thus, we complete the proof. B
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Proof of Proposition 3. The proof is the same under either Condition A1l or B1. The
proof is similar for f{AZ and ﬁi\ In the following, we will only give the proof for R.. Since
R.—R=(R-R)I(R > 0, ||R71||oo < Dn®)+(L,—R){1- (R > 0, ||R71||oo < Dn“)},
IR, = Rlloc < |R = Rljoc + |In — Rf|oc{l — I(R = 0, |[R"oc < Dn®)}. From the

result of Theorem 1, it suffices to show lim,_,oc P(R = 0, |[R™!||sc < Dn®) = 1.

By Condition A6, we can verify that there is a constant M; > 0, such that
IR71|o < Mj. Define the event Q = {||R—Rl|o < &}, for some 0 < € < min{1/M;,c,1/C},
where ¢ and C are constants in Condition A6. From Theorem 1, lim,,_,, P(Q) = 1. Fol-
lowing the proof of Theorem 6 in Cai and Zhou (2012), |R~!||s is bounded on Q.
Hence, lim, o0 PR |oc < Dn®) > limyeo PR < Dn®, Q) = 1. Togeth-
er with lim,, . P(f{ > 0) = 1 from Proposition 2, we can conclude lim,, P(ﬁ >~
0, [R" oo <Dn®)=1. W

Proof of Theorem 2. The proof is the same under either Condition Al or B1. By
Condition A6, we can verify that there is a constant M; > 0, such that R[] < Mj.
Define the event Q = {||[R — Rl|s0 < &}, for some 0 < & < min{1/M;, ¢, 1/C}. Following
the proof of Theorem 6 in Cai and Zhou (2012), we can show that, for n large enough,
IR;1=R oo < Co|R=R|oe on Q and |[R;1 =R oo < Con® on Q°, where Cy > 0
is a constant. Thus, from similar arguments in (S.38), for n large enough,

B{IR:" - R 1Q)) + E{IR: " - R 1(Q°)}
CE{|R — RIZ I(Q)} + C3n*P(Q°)
CZE{|R — RIZ (Q)} + O(gl /n'=2). (5.39)

E(JR;" - R

VAN

Since by (S.38), for any constant € > 0, P(||f{ —R|% >¢) = O0(gt*/n) — 0, we
have ||ﬁ - RJ|% 5 0, which implies ||f{ - R|21(Q) 5o. Then,

E{|R - R|Z Q) I(IR - R|% 1(Q) > £)}
[B{IR - RIS IQ)IP(|R - R|Z > ¢)]"/2
{¢'P(IR - R|%, > )}'/? = O(g/n'/?) > 0.

ININA

By asymptotically uniform integrability, we have E{ ||:FA{—R||gO I(Q)} — 0, which together
with (S.39) implies E(|R; —R7!2) — 0. &

Proof of Proposition 4. The proof is the same under either Condition Al or B1.
Following the proof in Proposition 3, |[R™!| s is bounded, and |R~!||s is bounded on
Q (defined in Proposition 3). Since R"! R ! =R }R-R)R™!, [R"! =R !, <
IR™|oo|R — Rl[sc|R[|oc on @, and hence, [R™" — R < C|R — R||w. From
the result in Theorem 1 and P(Q¢) = o(1), [R™! — R™Y||oc = Op(g7 /n}/?).

From the result in Proposition 2 that lim,, . P(ﬁ = 0) = 1, it is easy to prove
that [[R;" —R™'[[ec = Op(gy,/n'/?).



Error Autocorrelation Matrix Estimation for TMRI S21

From lim,, s P(f{ > 0) = 1 and that ||f{_1||<x> is bounded on Q, it’s easy to show
IR =R M|oo = Op(g)/n'/?). W



