Estimation of the Error Autocorrelation Matrix in Semiparametric Model for fMRI Data

Xiao Guo Chunming Zhang

Department of Statistics, University of Wisconsin-Madison

Supplementary Material

Summary

The supplementary material includes the Appendix of the paper. It includes

- I. the conditions for theoretical analysis,
- II. some notation used in the proofs,
- III. proofs of Lemmas 1–9,
- IV. proofs of the main theoretical results (Theorems 1 and 2, Propositions 1–4) in the paper.

Appendix: Conditions and Proofs

In this part, we will give the conditions and proofs of the main results in this paper.

Condition A.

- A1. In model (2.1), $\epsilon(t_i) = \sum_{j=-\infty}^{\infty} \phi_{n;j} w_{i-j}$, where $\phi_{n;0} = 1$; for any $n \geq 1$, there exists $1 \leq g_n \leq n-1$ and $\alpha_n > 4$, such that $|\phi_{n;j}| \leq C$ for $|j| \leq g_n/2$ and $|\phi_{n;j}| \leq C|2j|^{-\alpha_n}$ for $|j| > g_n/2$, with a constant C > 0; $\{w_i\}$ is a sequence of independent white noises with $E(w_i) = 0$, $E(w_i^2) = \sigma_w^2$, and $\sup_i E(w_i^4) < \infty$.
- A2. Suppose $\lambda_{\min}(\Sigma_1) > C > 0$, where Σ_1 is an $m\ell \times m\ell$ matrix consisting of $\ell \times \ell$ blocks, i.e., $\Sigma_1 = (\Sigma_{i,j})_{i,j=1}^{\ell}$. $\Sigma_{i,j}$ is an $m \times m$ matrix defined as $\Sigma_{i,j}(u,v) = \operatorname{cov}\{\boldsymbol{z}_{v,n-1}^T(\mathbf{D}_1\mathbf{S}_i)\boldsymbol{z}_{1,m},\boldsymbol{z}_{u,n-1}^T(\mathbf{D}_1\mathbf{S}_j)\boldsymbol{z}_{1,m}\}$, for $1 \leq u,v \leq m,\ 1 \leq i,j \leq \ell$, and $\boldsymbol{z}_{p,q}$ is the pth column of the $q \times q$ identity matrix.
- A3. The second derivative of the drift function d(t) is continuous and bounded, i.e., $|d''(t)| \leq C$.
- A4. In model (2.1), $\{s_i(\cdot)\}$, $i=1,\ldots,\ell$, are independent of $\{\epsilon(\cdot)\}$. For each $1 \leq i \leq \ell$, $\{s_i(\cdot)\}$ is a stationary g_s -dependent time series, where $g_s > 0$ is a fixed integer, and $E\{s_i^4(t)\} \leq C < \infty$. Furthermore, $\{s_1(t_u),\ldots,s_\ell(t_u)\}$ and $\{s_1(t_v),\ldots,s_\ell(t_v)\}$ are independent if $|u-v| > g_s$. When $|u-v| \leq g_s$, $E\{s_i(t_u)s_j(t_v)\}$ depends on u and v only through u-v, for any $1 \leq i,j \leq \ell$.
- A5. Suppose $t_i = i/n, i = 1, ..., n$.
- A6. Assume $0 < c \le \lambda_{\min}(\mathbf{R}) \le \lambda_{\max}(\mathbf{R}) \le C$, where c and C are constants.

Condition B.

B1. In model (2.1), ϵ is a stationary g_n -dependent process with $E\{\epsilon(t_i)\} = 0$, $c \le \text{var}\{\epsilon(t_i)\} \le Cg_n$ and $[E\{\epsilon(t_i)^4\}]^{1/2} = O(\gamma_e(0))$, where $1 \le g_n \le n-1$.

Notation. Now, we will give some notation that will be used in the proofs.

- 1. Define $\epsilon_1 = \mathbf{D}_1 \mathbf{d} + \mathbf{D}_1 \epsilon$. Then, $\epsilon_1(t_i) = \epsilon(t_i) \epsilon(t_{i-1}) + d(t_i) d(t_{i-1})$, where $\epsilon_1(t_i) = \mathbf{z}_{i-1,n-1}^T \epsilon_1$, for $i = 2, \ldots, n$.
- 2. Define $\mathbf{e}_0 = \mathbf{D}_2 \boldsymbol{\epsilon}$, $\mathbf{d}_0 = \mathbf{D}_2 \mathbf{d}$ and $\boldsymbol{\delta} = \mathbf{D}_2 \mathbf{S} (\mathbf{h} \widehat{\mathbf{h}}_{DBE})$. Then, $\mathbf{e} = \mathbf{e}_0 + \mathbf{d}_0$ and $\widehat{\mathbf{e}} = \mathbf{e} + \boldsymbol{\delta}$. Also, $e_0(t_i) = \epsilon(t_i) 2\epsilon(t_{i-1}) + \epsilon(t_{i-2})$, $d_0(t_i) = d(t_i) 2d(t_{i-1}) + d(t_{i-2})$ and $e(t_i) = e_0(t_i) + d_0(t_i)$, where $e_0(t_i) = \boldsymbol{z}_{i-2,n-2}^T \mathbf{e}_0$, $d_0(t_i) = \boldsymbol{z}_{i-2,n-2}^T \mathbf{d}_0$ and $\delta(t_i) = \boldsymbol{z}_{i-2,n-2}^T \boldsymbol{\delta}$, for $i = 3, \ldots, n$.
- 3. For a matrix Z, denote by Z(i,j) the entry of Z in the ith row and jth column.

Proof. We will present and prove Lemmas 1–9, which will be needed in the proofs of the main results.

Lemma 1 For the $(k+1) \times (k+1)$ matrix A_k and $(k+1) \times 2$ matrix B_k in (2.5) with $k \geq 1$,

- $\begin{array}{ll} \text{(i)} & \|A_k^{-1}\|_1 \leq Ck^4, \\ \text{(ii)} & \|\boldsymbol{z}_{1,k+1}^T A_k^{-1}\|_\infty \leq Ck^3, \\ \text{(iii)} & \|A_k^{-1} B_k\|_1 \leq Ck^2, \ \|\boldsymbol{z}_{1,k+1}^T A_k^{-1} B_k\|_\infty \leq Ck, \end{array}$

where $\mathbf{z}_{p,q}$ is the pth column of the $q \times q$ identity matrix.

Proof: Let G, E, H and K be $(k+1) \times (k+1)$ matrices defined as follows:

Then, $A_k = K(G + E + H)$. To prove part (i), it suffices to show that G + E + His positive definite for any $k \geq 1$, and $\|(G+E+H)^{-1}\|_1 = O(k^4)$, since $\|A_k^{-1}\|_1 \leq O(k^4)$ $\|(G+E+H)^{-1}\|_1\|K^{-1}\|_1 = \|(G+E+H)^{-1}\|_1.$

First, we will show that G + E + H is positive definite for any $k \geq 2$, as the result is obvious for k = 1. From Theorem 2 of Hoskins and Ponzo (1972), G is positive definite. Since E is positive semidefinite, G + E is positive definite. By the particular form of matrix H, det(G+E+H)>0 is a necessary and sufficient condition for G+E+H to be positive definite. We can express G + E + H as a block matrix in the following way:

$$G + E + H = \begin{pmatrix} J_1 & J_2 \\ J_2^T & J_3 \end{pmatrix},$$

where

$$J_1 = \begin{pmatrix} 3 & -4 \\ -4 & 7 \end{pmatrix}, \quad J_2 = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ -4 & 1 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}_{2 \times (k-1)},$$

Then,

$$G + E + H = \begin{pmatrix} \mathbf{I}_{2 \times 2} & J_2 \\ \mathbf{0}_{(k-1) \times 2} & J_3 \end{pmatrix} \begin{pmatrix} J_1 - J_2 J_3^{-1} J_2^T & \mathbf{0}_{2 \times (k-1)} \\ J_3^{-1} J_2^T & \mathbf{I}_{(k-1) \times (k-1)} \end{pmatrix},$$

so $\det(G+E+H) = \det(J_3)\det(J_1-J_2J_3^{-1}J_2^T)$. Due to Theorem 2 in Hoskins and Ponzo (1972), $det(J_3) > 0$. Now, we only need to show $det(J_1 - J_2J_3^{-1}J_2^T) > 0$.

Let $x_{i,j} = \mathbf{z}_{i,k-1}^T J_3^{-1} \mathbf{z}_{j,k-1}$. From Theorem 5 of Hoskins and Ponzo (1972), $x_{1,1} = (k-1)k/\{(k+1)(k+2)\}$, $x_{2,1} = x_{1,2} = 2(k-1)(k-2)/\{(k+1)(k+2)\}$ and $x_{2,2} = (k-1)(k-2)(5k-6)/\{k(k+1)(k+2)\}$. By direct calculation,

$$J_1 - J_2 J_3^{-1} J_2^T = \begin{pmatrix} 3 - (k-1)k/\{(k+1)(k+2)\} & -4 + 2(k-1)/(k+1) \\ -4 + 2(k-1)/(k+1) & 7 - (5k+6)(k-1)/\{k(k+1)\} \end{pmatrix}.$$

Thus, $\det(J_1 - J_2 J_3^{-1} J_2^T) = 12(2k+3)/\{k(k+1)^2(k+2)\} > 0$, which implies that $\det(G + E + H) > 0$ and hence G + E + H is positive definite.

Next, we will show $\|(G+E+H)^{-1}\|_1 = O(k^4)$ as $k \to \infty$.

Since the ranks of E and H are both 1, from Miller (1981), $(G + E)^{-1} = G^{-1}$ $\nu_1 G^{-1} E G^{-1}$ and $(G + E + H)^{-1} = (G + E)^{-1} - \nu_2 (G + E)^{-1} H (G + E)^{-1}$, where $\nu_1 = \{1 + \operatorname{tr}(G^{-1}E)\}^{-1}$ and $\nu_2 = [1 + \operatorname{tr}\{(G + E)^{-1}H\}]^{-1}$. Therefore,

$$\mathbf{z}_{i,k+1}^{T}(G+E)^{-1}\mathbf{z}_{j,k+1} = a_{i,j} - \nu_1 a_{i,2} a_{2,j},$$
(S.1)

$$\mathbf{z}_{i,k+1}^{T}(G+E+H)^{-1}\mathbf{z}_{j,k+1} = (a_{i,j} - \nu_{1}a_{i,2}a_{2,j})
+3\nu_{2}(a_{i,1} - \nu_{1}a_{i,2}a_{2,1})(a_{1,j} - \nu_{1}a_{1,2}a_{2,j}),$$
(S.2)

where $a_{i,j} = \boldsymbol{z}_{i,k+1}^T G^{-1} \boldsymbol{z}_{j,k+1}$, for $1 \leq i, j \leq k+1$.

From Theorem 5 of Hoskins and Ponzo (1972), for i = 1, ..., k + 1,

$$a_{i,1} = \frac{i(k+2-i)(k+3-i)}{(k+3)(k+4)},$$

$$a_{i,2} = \frac{(k+2-i)(k+3-i)\{i(3k+4)-(k+4)\}}{(k+2)(k+3)(k+4)}.$$
(S.3)

$$a_{i,2} = \frac{(k+2-i)(k+3-i)\{i(3k+4)-(k+4)\}}{(k+2)(k+3)(k+4)}.$$
 (S.4)

Direct calculation leads to

$$\nu_1 = \{1 + \operatorname{tr}(G^{-1}E)\}^{-1} = (1 + a_{2,2})^{-1} \xrightarrow{k \to \infty} 1/6,$$
 (S.5)

$$\nu_2 = [1 + \text{tr}\{(G+E)^{-1}H\}]^{-1} = [1 - 3\{a_{1,1} - a_{1,2}^2/(1 + a_{2,2})\}]^{-1}
= O(k^3/4).$$
(S.6)

From (S.3) and (S.4), for any i = 1, ..., k + 1, we have $0 < a_{i,1}, a_{i,2} = O(k)$ and

$$a_{i,1} - \nu_1 a_{i,2} a_{2,1} = \frac{(k+2-i)(k+3-i)}{(k+3)(k+4)} \frac{4k^2i + 22ki + 24i + 2k^3 + 10k^2 + 8k}{6k^3 + 18k^2 + 30k + 24}$$

$$< 2. (S.7)$$

Since G^{-1} is symmetric, we can immediately get $0 < a_{1,j} - \nu_1 a_{1,2} a_{2,j} < 2$ for any $j = 1, \ldots, k+1$.

By Theorem 3 of Hoskins and Ponzo (1972),

$$\sum_{i=1}^{k+1} a_{i,1} = \sum_{i=1}^{k+1} |a_{i,1}| = \frac{(k+1)(k+2)}{12},$$

$$\sum_{i=1}^{k+1} a_{i,2} = \sum_{i=1}^{k+1} |a_{i,2}| = \frac{k(k+1)}{4}.$$
(S.8)

Theorem 4 of Hoskins and Ponzo (1972) indicates that $||G^{-1}||_1 = O(k^4)$, which together with (S.1)–(S.8) implies,

$$\begin{aligned} & \| (G+E+H)^{-1} \|_1 \\ &= \max_{1 \le j \le k+1} \sum_{i=1}^{k+1} |(a_{i,j} - \nu_1 a_{i,2} a_{2,j}) + 3\nu_2 (a_{i,1} - \nu_1 a_{i,2} a_{2,1}) (a_{1,j} - \nu_1 a_{1,2} a_{2,j}) | \\ & \le \| G^{-1} \|_1 + \nu_1 \max_{1 \le j \le k+1} |a_{2,j}| \sum_{i=1}^{k+1} |a_{i,2}| \\ & + 3\nu_2 \max_{1 \le j \le k+1} |a_{1,j} - \nu_1 a_{1,2} a_{2,j}| \sum_{i=1}^{k+1} |a_{i,1} - \nu_1 a_{i,2} a_{2,1}| \\ &= O(k^4) + O(1)O(k)O(k^2) + O(k^3)O(1)O(k) = O(k^4). \end{aligned}$$

For part (ii), by (S.1)-(S.8),

$$\begin{split} & \|\boldsymbol{z}_{1,k+1}^T A_k^{-1}\|_{\infty} \leq \|\boldsymbol{z}_{1,k+1}^T (G+E+H)^{-1}\|_{\infty} \|K^{-1}\|_{\infty} = \|(G+E+H)^{-1}\boldsymbol{z}_{1,k+1}\|_{\infty} \\ &= \max_{1 \leq i \leq k+1} |(a_{i,1} - \nu_1 a_{i,2} a_{2,1}) + 3\nu_2 (a_{i,1} - \nu_1 a_{i,2} a_{2,1}) (a_{1,1} - \nu_1 a_{1,2} a_{2,1})| \\ &\leq \max_{1 \leq i \leq k+1} |a_{i,1}| + \nu_1 |a_{2,1}| \max_{1 \leq i \leq k+1} |a_{i,2}| + 3\nu_2 |a_{1,1} - \nu_1 a_{1,2} a_{2,1}| \max_{1 \leq i \leq k+1} |a_{i,1} - \nu_1 a_{i,2} a_{2,1}| \\ &= O(k) + O(1)O(1)O(k) + O(k^3)O(1)O(1) = O(k^3). \end{split}$$

For part (iii), we only consider k > 3, as the result for $k \leq 3$ is obvious.

Since $A_k^{-1} \boldsymbol{z}_{k+1,k+1} = (G+E+H)^{-1} K^{-1} \boldsymbol{z}_{k+1,k+1} = (G+E+H)^{-1} \boldsymbol{z}_{k+1,k+1}$, from (S.2),

$$\begin{split} & \|A_k^{-1} \boldsymbol{z}_{k+1,k+1}\|_1 = \|(G+E+H)^{-1} \boldsymbol{z}_{k+1,k+1}\|_1 \\ \leq & \sum_{i=1}^{k+1} |a_{i,k+1}| + \nu_1 |a_{2,k+1}| \sum_{i=1}^{k+1} |a_{i,2}| + 3\nu_2 |a_{1,k+1} - \nu_1 a_{1,2} a_{2,k+1}| \sum_{i=1}^{k+1} |a_{i,1} - \nu_1 a_{i,2} a_{2,1}| \end{split}$$

$$\equiv I + II + III. \tag{S.9}$$

Theorem 3 in Hoskins and Ponzo (1972) implies that $I = O(k^2)$.

From Theorem 5 in Hoskins and Ponzo (1972), for i = 1, ..., k + 1,

$$a_{i,k+1} = i(i+1)(k-i+2)/\{(k+3)(k+4)\},$$
 (S.10)

which together with (S.5) and (S.8) implies that $II = O(1)O(k^{-1})O(k^2) = O(k)$.

By (S.3), (S.4), (S.5) and (S.10),

$$a_{1,k+1} - \nu_1 a_{1,2} a_{2,k+1} = \frac{2(k+1)}{(k+3)(k+4)} - \frac{a_{1,2}}{1 + a_{2,2}} \frac{6k}{(k+3)(k+4)} = O(k^{-2}).$$
 (S.11)

From (S.6), (S.7) and (S.11), III = $O(k^3)O(k^{-2})O(k) = O(k^2)$. Therefore, by (S.9), $\|A_k^{-1}\boldsymbol{z}_{k+1,k+1}\|_1 = O(k^2)$. Similar arguments reveal that $\|A_k^{-1}\boldsymbol{z}_{k,k+1}\|_1 = O(k^2)$. Since, for k > 3, $B_k = [\boldsymbol{z}_{k,k+1} - 4\boldsymbol{z}_{k+1,k+1}]$,

$$\begin{aligned} & \|A_k^{-1}B_k\|_1 \leq \|A_k^{-1}\boldsymbol{z}_{k,k+1} - 4A_k^{-1}\boldsymbol{z}_{k+1,k+1}\|_1 + \|A_k^{-1}\boldsymbol{z}_{k+1,k+1}\|_1 \\ & \leq & \|A_k^{-1}\boldsymbol{z}_{k,k+1}\|_1 + 4\|A_k^{-1}\boldsymbol{z}_{k+1,k+1}\|_1 + \|A_k^{-1}\boldsymbol{z}_{k+1,k+1}\|_1 = O(k^2). \end{aligned}$$

From (S.2), (S.7) and (S.11),

$$\begin{aligned} &|\boldsymbol{z}_{1,k+1}^T \boldsymbol{A}_k^{-1} \boldsymbol{z}_{k+1,k+1}| \\ &= |(a_{1,k+1} - \nu_1 a_{1,2} a_{2,k+1}) + 3\nu_2 (a_{1,1} - \nu_1 a_{1,2} a_{2,1}) (a_{1,k+1} - \nu_1 a_{1,2} a_{2,k+1})| \\ &= O(k^{-2}) + O(k^3) O(k^{-2}) = O(k). \end{aligned}$$

Similarly, we can show $|\boldsymbol{z}_{1,k+1}^T A_k^{-1} \boldsymbol{z}_{k,k+1}| = O(k)$. Therefore,

$$\begin{split} & \|\boldsymbol{z}_{1,k+1}^T \boldsymbol{A}_k^{-1} \boldsymbol{B}_k\|_{\infty} \leq |\boldsymbol{z}_{1,k+1}^T \boldsymbol{A}_k^{-1} \boldsymbol{z}_{k,k+1} - 4 \boldsymbol{z}_{1,k+1}^T \boldsymbol{A}_k^{-1} \boldsymbol{z}_{k+1,k+1}| + |\boldsymbol{z}_{1,k+1}^T \boldsymbol{A}_k^{-1} \boldsymbol{z}_{k+1,k+1}| \\ & \leq & |\boldsymbol{z}_{1,k+1}^T \boldsymbol{A}_k^{-1} \boldsymbol{z}_{k,k+1}| + 4 |\boldsymbol{z}_{1,k+1}^T \boldsymbol{A}_k^{-1} \boldsymbol{z}_{k+1,k+1}| + |\boldsymbol{z}_{1,k+1}^T \boldsymbol{A}_k^{-1} \boldsymbol{z}_{k+1,k+1}| = O(k). \end{split}$$

Now we complete the proof. \blacksquare

Lemma 2 Under Condition A1 (or B1), for any $k \in \{0, 1, ..., g_n\}$ and $\tau_{0;n} > 0$ that satisfies $\tau_{0;n}^{-1} = o(n/g_n^2)$ as $n \to \infty$,

$$P\left(\left|\frac{1}{n}\sum_{i=3}^{n-k} \{e_0(t_i)e_0(t_{i+k})\} - \gamma_e(k)\right| \ge \tau_{0;n}\right) \le C \frac{g_n^3}{n\tau_{0;n}^2},$$

where $e_0(t_i) = \epsilon(t_i) - 2\epsilon(t_{i-1}) + \epsilon(t_{i-2})$ as in Notation 2.

Proof: First, we will give the proof under Condition A1. Since $\epsilon(t_i) = \sum_{j=-\infty}^{\infty} \phi_{n;j} w_{i-j}$, we have $e_0(t_i) = \sum_{j=-\infty}^{\infty} \psi_j w_{i-j}$, where $\psi_j \equiv \psi_{n;j} = \phi_{n;j} - 2\phi_{n;j-1} + \phi_{n;j-2}$. Define $\widetilde{e}_0(t_i) = \sum_{j=-g_n-2}^{g_n+2} \psi_j w_{i-j}$ and $\widetilde{\gamma}_e(k) = \text{cov}\{\widetilde{e}_0(t_i), \widetilde{e}_0(t_{i+k})\}$. Then,

$$\left| \frac{1}{n} \sum_{i=3}^{n-k} \{e_0(t_i) e_0(t_{i+k})\} - \gamma_e(k) \right| \le \frac{1}{n} \left| \sum_{i=3}^{n-k} \{e_0(t_i) e_0(t_{i+k}) - \gamma_e(k)\} \right| + (k+2) |\gamma_e(k)| / n$$

$$\leq \frac{1}{n} \Big| \sum_{i=3}^{n-k} \{e_0(t_i)e_0(t_{i+k}) - \gamma_e(k) - \tilde{e}_0(t_i)\tilde{e}_0(t_{i+k}) + \tilde{\gamma}_e(k)\} \Big|
+ \frac{1}{n} \Big| \sum_{i=3}^{n-k} \{\tilde{e}_0(t_i)\tilde{e}_0(t_{i+k}) - \tilde{\gamma}_e(k)\} \Big| + (k+2)|\gamma_e(k)|/n
\equiv I + II + III.$$
(S.12)

Since $\tau_{0;n}^{-1} = o(n/g_n^2)$ as $n \to \infty$ and $|\gamma_e(k)| \le \gamma_e(0) = O(g_n)$, there exists a constant L_0 , such that, for any $n > L_0$ and $k \in \{0, 1, \dots, g_n\}$, III $< \tau_{0;n}/3$. From (S.12), for $n > L_0$,

$$P\left(\left|\frac{1}{n}\sum_{i=3}^{n-k} \{e_0(t_i)e_0(t_{i+k})\} - \gamma_e(k)\right| \ge \tau_{0;n}\right) \le P(I \ge \tau_{0;n}/3) + P(II \ge \tau_{0;n}/3). \quad (S.13)$$

From Lemma 3,

$$P(II \ge \tau_{0:n}/3) = O(g_n^3/(n\tau_{0:n}^2)).$$
(S.14)

Therefore, we only need to consider term I. By Markov inequality,

$$P(I \ge \tau_{0;n}/3)$$

$$\le \left(\frac{3}{n\tau_{0;n}} \right)^{2} E \left[\left| \sum_{i=3}^{n-k} \{e_{0}(t_{i})e_{0}(t_{i+k}) - \gamma_{e}(k) - \widetilde{e}_{0}(t_{i})\widetilde{e}_{0}(t_{i+k}) + \widetilde{\gamma}_{e}(k) \} \right|^{2} \right].$$
 (S.15)

For any fixed $n>L_0$ and $k\in\{0,1,\ldots,g_n\}$, let $Q_i=e_0(t_i)e_0(t_{i+k})-\widetilde{e}_0(t_i)\widetilde{e}_0(t_{i+k})$. Define $D_{i,u}=E(Q_i\mid w_{i-u},w_{i-u+1},\ldots)-E(Q_i\mid w_{i-u+1},w_{i-u+2},\ldots)$, for $u=0,\pm 1,\pm 2,\ldots$. It holds that $\sum_{u=-\infty}^{\infty}D_{i,u}=Q_i-E(Q_i)=e_0(t_i)e_0(t_{i+k})-\gamma_e(k)-\widetilde{e}_0(t_i)\widetilde{e}_0(t_{i+k})+\widetilde{\gamma}_e(k)$ almost surely. For any $u,\{D_{i,u}\}_{i=n-k}^3$ is a martingale difference sequence w.r.t. $\mathcal{F}_{i,u}=\sigma\{w_{i-u},w_{i-u+1},\ldots\}$, i.e., $E(D_{i,u}\mid \mathcal{F}_{i+1,u})=0$ for $i=n-k,\ldots,3$. In the following, define $\psi_j^*=\psi_j$ for $|j|\leq g_n+2$ and $\psi_j^*=0$ for $|j|>g_n+2$. Direct calculation leads to,

$$\begin{split} &E(D_{i,u}^2) \\ &= E\Big\{\Big(\psi_{u+k}w_{i-u}\sum_{j=-\infty}^{u-1}\psi_jw_{i-j} + \psi_uw_{i-u}\sum_{j=-\infty}^{k+u-1}\psi_jw_{i+k-j} + \psi_{u+k}\psi_uw_{i-u}^2 - \psi_{u+k}\psi_u\sigma_w^2 \\ &-\psi_{u+k}^*w_{i-u}\sum_{j=-\infty}^{u-1}\psi_j^*w_{i-j} - \psi_u^*w_{i-u}\sum_{j=-\infty}^{k+u-1}\psi_j^*w_{i+k-j} - \psi_{u+k}^*\psi_u^*w_{i-u}^2 + \psi_{u+k}^*\psi_u^*\sigma_w^2\Big)^2\Big\} \\ &= O(g_n(\psi_u^2 + \psi_{u+k}^2)), \end{split}$$

which together with Lemma 7 of Xiao and Wu (2012) implies

$$E\left\{\left(\sum_{i=3}^{n-k} D_{i,u}\right)^{2}\right\} \leq \sum_{i=3}^{n-k} E(D_{i,u}^{2}) = O(ng_{n}(\psi_{u}^{2} + \psi_{u+k}^{2})). \tag{S.16}$$

By Minkowski inequality and (S.16), for the expectation term in (S.15),

$$E\left[\left|\sum_{i=3}^{n-k} \left\{e_0(t_i)e_0(t_{i+k}) - \gamma_e(k) - \widetilde{e}_0(t_i)\widetilde{e}_0(t_{i+k}) + \widetilde{\gamma}_e(k)\right\}\right|^2\right]$$

$$= E\left[\left|\sum_{i=3}^{n-k} \sum_{u=-\infty}^{\infty} D_{i,u}\right|^{2}\right] \le \left[\sum_{u=-\infty}^{\infty} \left\{E\left(\left|\sum_{i=3}^{n-k} D_{i,u}\right|^{2}\right)\right\}^{1/2}\right]^{2} = O(ng_{n}^{3}).$$

From (S.15),

$$P(I \ge \tau_{0,n}/3) = O(g_n^3/(n\tau_{0,n}^2)). \tag{S.17}$$

Combining (S.13), (S.14) and (S.17), we finish the proof for $n > L_0$. It is easy to see that the result is true for $n \le L_0$.

Next, we will prove the Lemma under Condition B1. For any $k = 0, 1, \dots, g_n$,

$$P\left(\left|\frac{1}{n}\sum_{i=3}^{n-k}\left\{e_{0}(t_{i})e_{0}(t_{i+k})\right\}-\gamma_{e}(k)\right| \geq \tau_{0;n}\right)$$

$$= P\left(\left|\frac{1}{4n}\left[\sum_{i=3}^{n-k}\left\{e_{0}(t_{i})+e_{0}(t_{i+k})\right\}^{2}-\sum_{i=3}^{n-k}\left\{e_{0}(t_{i})-e_{0}(t_{i+k})\right\}^{2}\right]\right]$$

$$-\frac{1}{4}\left[\left\{2\gamma_{e}(0)+2\gamma_{e}(k)\right\}-\left\{2\gamma_{e}(0)-2\gamma_{e}(k)\right\}\right]\right| \geq \tau_{0;n}\right)$$

$$\leq P\left(\left|\frac{1}{n}\sum_{i=3}^{n-k}\left\{e_{0}(t_{i})+e_{0}(t_{i+k})\right\}^{2}-\left\{2\gamma_{e}(0)+2\gamma_{e}(k)\right\}\right| \geq 2\tau_{0;n}\right)$$

$$+P\left(\left|\frac{1}{n}\sum_{i=3}^{n-k}\left\{e_{0}(t_{i})-e_{0}(t_{i+k})\right\}^{2}-\left\{2\gamma_{e}(0)-2\gamma_{e}(k)\right\}\right| \geq 2\tau_{0;n}\right)$$

$$\leq P\left(\left|\frac{1}{n}\sum_{i=3}^{n-k}\left\{e_{0}(t_{i})-\left\{1+\rho_{e}(k)\right\}\right| \geq \frac{\tau_{0;n}}{\gamma_{e}(0)}\right)$$

$$+P\left(\left|\frac{1}{n}\sum_{i=3}^{n-k}\left\{e_{0}(t_{i})-\left\{1-\rho_{e}(k)\right\}\right| \geq \frac{\tau_{0;n}}{\gamma_{e}(0)}\right) \equiv IV + V,$$

where $e_1(t_i) = \{e_0(t_i) + e_0(t_{i+k})\}/\sqrt{2\gamma_e(0)}$ and $e_2(t_i) = \{e_0(t_i) - e_0(t_{i+k})\}/\sqrt{2\gamma_e(0)}$. Then, $\{e_1(t_i)\}$ and $\{e_2(t_i)\}$ are $(2g_n + 2)$ -dependent time series with mean zero.

We divide $\{e_1(t_i)\}_{i=3}^{n-k}$ into consecutive blocks with length $2g_n+2$, i.e. $\{e_1(t_3),\ldots,e_1(t_{2g_n+4})\}$, $\{e_1(t_{2g_n+5}),\ldots,e_1(t_{4g_n+6})\}$, So, there are $q_n=\lceil (n-k-2)/(2g_n+2)\rceil$ blocks, where $\lceil \cdot \rceil$ denotes the ceiling function. The length of the last block is less than $2g_n+2$, if $2g_n+2$ is not a divisor of n-k-2. Denote the sum of $[e_1^2(t_i)-\{1+\rho_e(k)\}]$ within these blocks by b_1,\ldots,b_{q_n} . For example, $b_1=\sum_{i=3}^{2g_n+4}[e_1^2(t_i)-\{1+\rho_e(k)\}]$. Then, $E(b_j)=0$ for $j=1,\ldots,q_n$. $\{b_1,b_3,b_5,\ldots\}$ are independent, so are $\{b_2,b_4,b_6,\ldots\}$. By Cauchy-Schwarz inequality and Condition B1, we have

$$E(b_1^2) \le (2g_n + 2) \sum_{i=3}^{2g_n + 4} E[\{e_1^2(t_i) - (1 + \rho_e(k))\}^2] \le C(2g_n + 2)^2.$$

Similarly, we can show that

$$E(b_j^2) \le C(2g_n + 2)^2$$
 for any $j = 1, ..., q_n$.

Since $\tau_{0;n}^{-1} = o(n/g_n^2)$, there exists a constant $L_1 > 0$, such that for any $n > L_1$ and $k \in \{0, \ldots, g_n\}$,

$$(k+2)\{1+\rho_e(k)\} \le (g_n+2)\{1+\rho_e(k)\} \le 2(g_n+2) \le \frac{n\tau_{0,n}}{2\gamma_e(0)}$$

Then, due to Markov inequality, for $n > L_1$, we have

$$IV \leq P\left(\left|\sum_{i=3}^{n-k} [e_1^2(t_i) - \{1 + \rho_e(k)\}]\right| + (k+2)\{1 + \rho_e(k)\} \geq \frac{n\tau_{0;n}}{\gamma_e(0)}\right)$$

$$\leq P\left(\left|\sum_{i=3}^{n-k} [e_1^2(t_i) - \{1 + \rho_e(k)\}]\right| \geq \frac{n\tau_{0;n}}{2\gamma_e(0)}\right)$$

$$\leq P\left(\left|\sum_{j=1,3,5,\dots} b_j\right| + \left|\sum_{j=2,4,6,\dots} b_j\right| \geq \frac{n\tau_{0;n}}{2\gamma_e(0)}\right)$$

$$\leq P\left(\left|\sum_{j=1,3,5,\dots} b_j\right| \geq \frac{n\tau_{0;n}}{4\gamma_e(0)}\right) + P\left(\left|\sum_{j=2,4,6,\dots} b_j\right| \geq \frac{n\tau_{0;n}}{4\gamma_e(0)}\right)$$

$$\leq \left\{\frac{4\gamma_e(0)}{n\tau_{0;n}}\right\}^2 E\left\{\left(\sum_{j=1,3,5,\dots} b_j\right)^2\right\} + \left\{\frac{4\gamma_e(0)}{n\tau_{0;n}}\right\}^2 E\left\{\left(\sum_{j=2,4,6,\dots} b_j\right)^2\right\}$$

$$= \left\{\frac{4\gamma_e(0)}{n\tau_{0;n}}\right\}^2 \left\{\sum_{j=1}^{q_n} E(b_j^2)\right\} = O(g_n^3/(n\tau_{0;n}^2)).$$

Similarly we can show, $V = O(g_n^3/(n\tau_{0,n}^2))$. Hence, we finish the proof. \blacksquare

Lemma 3 Under Condition A1, for any positive sequence $\tau_{0;n}$ and $k \in \{0, 1, ..., g_n\}$,

$$P\left(\frac{1}{n} \left| \sum_{i=3}^{n-k} \{\widetilde{e}_0(t_i)\widetilde{e}_0(t_{i+k}) - \widetilde{\gamma}_e(k)\} \right| \ge \tau_{0;n} \right) \le C \frac{g_n^3}{n\tau_{0;n}^2},$$

where $\widetilde{e}_0(t_i) = \sum_{j=-g_n-2}^{g_n+2} \psi_j w_{i-j}$, $\psi_j \equiv \psi_{n;j} = \phi_{n;j} - 2\phi_{n;j-1} + \phi_{n;j-2}$ and $\widetilde{\gamma}_e(k) = \cos\{\widetilde{e}_0(t_i), \widetilde{e}_0(t_{i+k})\}$.

Proof: Since $\widetilde{e}_0(t_i) = \sum_{j=-g_n-2}^{g_n+2} \psi_j w_{i-j}$, $\{\widetilde{e}_0(t_i)\}$ is $(2g_n+4)$ -dependent. For any $k=0,1,\ldots,g_n$,

$$P\left(\frac{1}{n} \left| \sum_{i=3}^{n-k} \{\widetilde{e}_{0}(t_{i})\widetilde{e}_{0}(t_{i+k}) - \widetilde{\gamma}_{e}(k)\} \right| \geq \tau_{0;n} \right)$$

$$= P\left(\left| \sum_{i=3}^{n-k} [\{\widetilde{e}_{0}(t_{i}) + \widetilde{e}_{0}(t_{i+k})\}^{2} - \{2\widetilde{\gamma}_{e}(0) + 2\widetilde{\gamma}_{e}(k)\} \right| - \sum_{i=3}^{n-k} [\{\widetilde{e}_{0}(t_{i}) - \widetilde{e}_{0}(t_{i+k})\}^{2} - \{2\widetilde{\gamma}_{e}(0) - 2\widetilde{\gamma}_{e}(k)\} \right] \right| \geq 4n\tau_{0;n} \right)$$

$$\leq P\left(\left| \sum_{i=3}^{n-k} [\widetilde{e}_{1}^{2}(t_{i}) - \{1 + \widetilde{\rho}_{e}(k)\} \right] \right| \geq \frac{n\tau_{0;n}}{\widetilde{\gamma}_{e}(0)} \right)$$

$$+P\left(\left|\sum_{i=3}^{n-k} \left[\widetilde{e}_2^2(t_i) - \left\{1 - \widetilde{\rho}_e(k)\right\}\right]\right| \ge \frac{n\tau_{0;n}}{\widetilde{\gamma}_e(0)}\right),\tag{S.18}$$

where $\widetilde{\rho}_e(k) = \widetilde{\gamma}_e(k)/\widetilde{\gamma}_e(0)$, $\widetilde{e}_1(t_i) = \{\widetilde{e}_0(t_i) + \widetilde{e}_0(t_{i+k})\}/\{2\widetilde{\gamma}_e(0)\}^{1/2}$ and $\widetilde{e}_2(t_i) = \{\widetilde{e}_0(t_i) - \widetilde{e}_0(t_{i+k})\}/\{2\widetilde{\gamma}_e(0)\}^{1/2}$. Then, $\{\widetilde{e}_1(t_i)\}$ and $\{\widetilde{e}_2(t_i)\}$ are $(3g_n + 4)$ -dependent with mean zero.

Divide $\{\widetilde{e}_1(t_i)\}_{i=3}^{n-k}$ into non-overlapped consecutive blocks with length $3g_n+4$, i.e., $\{\widetilde{e}_1(t_3),\ldots,\widetilde{e}_1(t_{3g_n+6})\}$, $\{\widetilde{e}_1(t_{3g_n+7}),\ldots,\widetilde{e}_1(t_{6g_n+10})\}$,.... There are $q_n=\lceil (n-k-2)/(3g_n+4)\rceil$ blocks, where $\lceil \cdot \rceil$ denotes the ceiling function. The length of the last block is less than $3g_n+4$, if $3g_n+4$ is not a divisor of n-k-2. Denote by b_j the sum of $[\widetilde{e}_1^2(t_i)-\{1+\widetilde{\rho}_e(k)\}]$ within the jth block, for $j=1,\ldots,q_n$. For example, $b_1=\sum_{i=3}^{3g_n+6}[\widetilde{e}_1^2(t_i)-\{1+\widetilde{\rho}_e(k)\}]$. Then, $E(b_j)=0$ for $j=1,\ldots,q_n$. We can show that $\{b_1,b_3,b_5,\ldots\}$ are independent, and so are $\{b_2,b_4,b_6,\ldots\}$.

Since
$$\widetilde{\gamma}_e(0) = \sigma_w^2 \sum_{j=-g_n-2}^{g_n+2} \psi_j^2 = O(g_n)$$
 and

$$E\{\widetilde{e}_0^4(t_i)\} = \sum_{j=-g_n-2}^{g_n+2} \psi_j^4 E(w_{i-j}^4) + \sum_{-g_n-2 \le j \ne j' \le g_n+2} \psi_j^2 \psi_{j'}^2 \sigma_w^4 = O\left(\left(\sum_{j=-g_n-2}^{g_n+2} \psi_j^2\right)^2\right),$$

we have

$$E[|\widetilde{e}_{1}^{2}(t_{i}) - \{1 + \widetilde{\rho}_{e}(k)\}|^{2}] = E[\{\widetilde{e}_{0}(t_{i}) + \widetilde{e}_{0}(t_{i+k})\}^{4}]/\{4\widetilde{\gamma}_{e}^{2}(0)\} - \{1 + \widetilde{\rho}_{e}(k)\}^{2}$$

$$= O\left(\left(\sum_{j=-g_{n}-2}^{g_{n}+2} \psi_{j}^{2}\right)^{2} / \left\{4\sigma_{w}^{4}\left(\sum_{j=-g_{n}-2}^{g_{n}+2} \psi_{j}^{2}\right)^{2}\right\}\right) - \{1 + \widetilde{\rho}_{e}(k)\}^{2} = O(1).$$

By Cauchy-Schwarz inequality, $E(b_1^2) \leq (3g_n+4)\sum_{i=3}^{3g_n+6} E[|\widetilde{e}_1^2(t_i) - \{1+\widetilde{\rho}_e(k)\}|^2] = O(g_n^2)$. Similarly, we can show that $E(b_j^2) = O(g_n^2)$ for $j=1,\ldots,q_n$, which together with Markov inequality implies

$$P\left(\left|\sum_{i=3}^{n-k} [\widetilde{e}_{1}^{2}(t_{i}) - \{1 + \widetilde{\rho}_{e}(k)\}]\right| \ge \frac{n\tau_{0;n}}{\widetilde{\gamma}_{e}(0)}\right)$$

$$\leq P\left(\left|\sum_{j=1,3,5,\dots} b_{j}\right| + \left|\sum_{j=2,4,6,\dots} b_{j}\right| \ge \frac{n\tau_{0;n}}{\widetilde{\gamma}_{e}(0)}\right)$$

$$\leq P\left(\left|\sum_{j=1,3,5,\dots} b_{j}\right| \ge \frac{n\tau_{0;n}}{2\widetilde{\gamma}_{e}(0)}\right) + P\left(\left|\sum_{j=2,4,6,\dots} b_{j}\right| \ge \frac{n\tau_{0;n}}{2\widetilde{\gamma}_{e}(0)}\right)$$

$$\leq \left\{\frac{2\widetilde{\gamma}_{e}(0)}{n\tau_{0;n}}\right\}^{2} E\left\{\left(\sum_{j=1,3,5,\dots} b_{j}\right)^{2}\right\} + \left\{\frac{2\widetilde{\gamma}_{e}(0)}{n\tau_{0;n}}\right\}^{2} E\left\{\left(\sum_{j=2,4,6,\dots} b_{j}\right)^{2}\right\}$$

$$= \left\{\frac{2\widetilde{\gamma}_{e}(0)}{n\tau_{0;n}}\right\}^{2} \left\{\sum_{j=1}^{q_{n}} E(b_{j}^{2})\right\} = O\left(\frac{g_{n}^{2}}{n^{2}\tau_{0;n}^{2}}q_{n}g_{n}^{2}\right) = O\left(\frac{g_{n}^{3}}{n\tau_{0;n}^{2}}\right). \tag{S.19}$$

Similar arguments lead to

$$P\left(\left|\sum_{i=3}^{n-k} \left[\widetilde{e}_2^2(t_i) - \left\{1 - \widetilde{\rho}_e(k)\right\}\right]\right| \ge \frac{n\tau_{0,n}}{\widetilde{\gamma}_e(0)}\right) = O\left(\frac{g_n^3}{n\tau_{0,n}^2}\right). \tag{S.20}$$

By (S.18), (S.19) and (S.20), we complete the proof.

Lemma 4 Under Conditions A2, A4 and A5, for any constant $\tau_1 > 0$ and $1 \le i, j \le \ell$,

$$P(\|\widehat{\Sigma}_{i,j} - \Sigma_{i,j}\|_{\infty} > \tau_1) \le C/n,$$

where $\widehat{\Sigma}_{i,j} = (\mathbf{D}_1 \mathbf{S}_i)^T (\mathbf{D}_1 \mathbf{S}_j) / n$ and $\Sigma_{i,j}$ is defined in Condition A2.

Proof: For notational simplicity, define $s_{r,i} = s_i(r/n)$, for r = 0, ..., n-1.

Let J be an $m \times m$ matrix defined as

$$J(u,v) = \begin{cases} n^{-1} \sum_{r=0}^{n-v+u-2} (s_{r+1;j} - s_{r;j}) (s_{r+v-u+1;i} - s_{r+v-u;i}), & \text{if } 1 \le u < v \le m, \\ n^{-1} \sum_{r=0}^{n-u+v-2} (s_{r+1;i} - s_{r;i}) (s_{r+u-v+1;j} - s_{r+u-v;j}), & \text{if } 1 \le v \le u \le m. \end{cases}$$

For $1 \le u < v \le m$,

$$|\widehat{\Sigma}_{i,j}(u,v) - J(u,v)|$$

$$= \left| \frac{1}{n} \sum_{r=-1}^{n-v-1} (s_{r+1;j} - s_{r;j}) (s_{r+v-u+1;i} - s_{r+v-u;i}) - \frac{1}{n} \sum_{r=0}^{n-v+u-2} (s_{r+1;j} - s_{r;j}) (s_{r+v-u+1;i} - s_{r+v-u;i}) \right|$$

$$\leq \frac{1}{n} \left\{ |s_{0;j}(s_{v-u;i} - s_{v-u-1;i})| + \sum_{r=n-v-1}^{n-v+u-2} |(s_{r+1;j} - s_{r;j}) (s_{r+v-u+1;i} - s_{r+v-u;i})| \right\}$$

$$\equiv K(u,v), \qquad (S.21)$$

where $s_{-1;i} = s_{-1;j} = 0$ and K is an $m \times m$ matrix. Similarly, for $1 \le v \le u \le m$,

$$|\widehat{\Sigma}_{i,j}(u,v) - J(u,v)|$$

$$\leq \frac{1}{n} \Big\{ |s_{0,i}(s_{u-v;j} - s_{u-v-1;j})| + \sum_{r=n-u-1}^{n-u+v-2} |(s_{r+1;i} - s_{r;i})(s_{r+u-v+1;j} - s_{r+u-v;j})| \Big\}$$

$$\equiv K(u,v).$$
(S.22)

By Markov inequality and Cauchy-Schwarz inequality,

$$\begin{split} \mathbf{P} \Big(\sum_{1 \leq u < v \leq m} \mathbf{K}(u, v) > \frac{\tau_1}{4} \Big) & \leq & \frac{16}{\tau_1^2 n^2} E \Big(\Big[\sum_{1 \leq u < v \leq m} \Big\{ |s_{0;j} \big(s_{v-u;i} - s_{v-u-1;i} \big)| \\ & + \sum_{r=n-v-1}^{n-v+u-2} |(s_{r+1;j} - s_{r;j}) \big(s_{r+v-u+1;i} - s_{r+v-u;i} \big)| \Big\} \Big]^2 \Big) \\ & = & O(1/n^2), \end{split}$$

and similarly, we can show $P(\sum_{1 \le v \le u \le m} K(u, v) > \tau_1/4) = O(1/n^2)$.

Since, by Condition A4, $\Sigma_{i,j}$ is a Toeplitz matrix and so is J, we have $\|\mathbf{J} - \Sigma_{i,j}\|_{\infty} \le \|\boldsymbol{z}_{1,m}^T(\mathbf{J} - \Sigma_{i,j})\|_1 + \|\boldsymbol{z}_{m,m}^T(\mathbf{J} - \Sigma_{i,j})\|_1 = \sum_{v=1}^m |\mathbf{J}(1,v) - \Sigma_{i,j}(1,v)| + \sum_{v=1}^m |\mathbf{J}(m,v) - \Sigma_{i,j}(m,v)|$. From (S.21) and (S.22),

$$P(\|\widehat{\Sigma}_{i,j} - \Sigma_{i,j}\|_{\infty} > \tau_{1}) \leq P(\|J - \Sigma_{i,j}\|_{\infty} + \|\widehat{\Sigma}_{i,j} - J\|_{\infty} > \tau_{1})$$

$$\leq P(\|J - \Sigma_{i,j}\|_{\infty} > \tau_{1}/2) + P(\|\widehat{\Sigma}_{i,j} - J\|_{\infty} > \tau_{1}/2)$$

$$\leq P\left(\sum_{v=1}^{m} |J(1,v) - \Sigma_{i,j}(1,v)| + \sum_{v=1}^{m} |J(m,v) - \Sigma_{i,j}(m,v)| > \frac{\tau_{1}}{2}\right)$$

$$+ P\left(\sum_{1 \leq u,v \leq m} K(u,v) > \frac{\tau_{1}}{2}\right)$$

$$\leq \sum_{v=1}^{m} P(|J(1,v) - \Sigma_{i,j}(1,v)| > \tau_{1}/(4m))$$

$$+ \sum_{v=1}^{m} P(|J(m,v) - \Sigma_{i,j}(m,v)| > \tau_{1}/(4m)) + O(1/n^{2}). \tag{S.23}$$

Following basically the same method in the proof of Lemma 3, we can show $P(|J(1,v) - \Sigma_{i,j}(1,v)| > \tau_1/(4m)) = O(1/n)$ and $P(|J(m,v) - \Sigma_{i,j}(m,v)| > \tau_1/(4m)) = O(1/n)$. By (S.23) we complete the proof.

Lemma 5 Under Conditions A2, A4 and A5, for any constant $\tau_1 > 0$,

$$P(\|\widehat{\Sigma}_1 - \Sigma_1\| > \tau_1) \le C/n,$$

where $\widehat{\Sigma}_1 = (\mathbf{D}_1 \mathbf{S})^T (\mathbf{D}_1 \mathbf{S})/n$ and Σ_1 is defined in Condition A2.

Proof: $\widehat{\Sigma}_1$ could be expressed as a block matrix, i.e., $\widehat{\Sigma}_1 = (\widehat{\Sigma}_{i,j})_{i,j=1}^{\ell}$ where $\widehat{\Sigma}_{i,j} = (\mathbf{D}_1 \mathbf{S}_i)^T (\mathbf{D}_1 \mathbf{S}_j)/n$. Since $\widehat{\Sigma}_1$ and Σ_1 are symmetric matrices,

$$P(\|\widehat{\Sigma}_{1} - \Sigma_{1}\| > \tau_{1}) \leq P(\|\widehat{\Sigma}_{1} - \Sigma_{1}\|_{\infty} > \tau_{1}) \leq P\left(\sum_{1 \leq i, j \leq \ell} \|\widehat{\Sigma}_{i, j} - \Sigma_{i, j}\|_{\infty} > \tau_{1}\right)$$

$$\leq \sum_{1 \leq i, j \leq \ell} P(\|\widehat{\Sigma}_{i, j} - \Sigma_{i, j}\|_{\infty} > \tau_{1}/\ell^{2}) = O(1/n).$$

The last inequality is derived from Lemma 4. ■

Lemma 6 Under Conditions A1 (or B1) and A2-A5, for any $\tau_2 \equiv \tau_{2;n} > 0$,

$$P(\|(\mathbf{D}_1\mathbf{S})^T\boldsymbol{\epsilon}_1\|^2 \ge \tau_2) \le Cng_n^2/\tau_2,$$

where $\epsilon_1 = \mathbf{D}_1 \mathbf{d} + \mathbf{D}_1 \epsilon$ as in Notation 1.

Proof: First, we will show the result under Conditions A1–A5. Let $(\eta_1, \ldots, \eta_{\ell m})^T = (\mathbf{D_1S})^T \boldsymbol{\epsilon}_1$ and $\vartheta_{i,j} = \boldsymbol{z}_{i,n-1}^T (\mathbf{D_1S}) \boldsymbol{z}_{j,\ell m}$. For $j = 1, \ldots, \ell m, \ \eta_j = \sum_{i=1}^{n-1} \epsilon_1(t_{i+1}) \vartheta_{i,j} = \sum_{i=1}^{n-1} \{\epsilon(t_{i+1}) - \epsilon(t_i)\} \vartheta_{i,j} + \sum_{i=1}^{n-1} \{d(t_{i+1}) - d(t_i)\} \vartheta_{i,j}$.

$$P(\|(\mathbf{D}_1\mathbf{S})^T\boldsymbol{\epsilon}_1\|^2 \ge \tau_2) = P(\sum_{j=1}^{\ell m} \eta_j^2 \ge \tau_2) \le \sum_{j=1}^{\ell m} P(\eta_j^2 \ge \tau_2/(\ell m))$$

$$\leq \sum_{j=1}^{\ell m} P\left(\left|\sum_{i=1}^{n-1} \{\epsilon(t_{i+1}) - \epsilon(t_i)\} \vartheta_{i,j}\right| \geq \frac{\tau_2^{1/2}}{2(\ell m)^{1/2}}\right) + \sum_{j=1}^{\ell m} P\left(\left|\sum_{i=1}^{n-1} \{d(t_{i+1}) - d(t_i)\} \vartheta_{i,j}\right| \geq \frac{\tau_2^{1/2}}{2(\ell m)^{1/2}}\right)$$

$$\equiv I + II. \tag{S.24}$$

For term I, define $\phi_k^* = \phi_{n;k} - \phi_{n;k-1}$, so $\epsilon(t_{i+1}) - \epsilon(t_i) = \sum_{k=-\infty}^{\infty} \phi_k^* w_{i+1-k}$. Then,

$$\sum_{i=1}^{n-1} \{ \epsilon(t_{i+1}) - \epsilon(t_i) \} \vartheta_{i,j} = \sum_{i=1}^{n-1} \sum_{k=-\infty}^{\infty} \phi_k^* w_{i+1-k} \vartheta_{i,j} = \sum_{k=-\infty}^{\infty} \sum_{i=1}^{n-1} \phi_k^* w_{i+1-k} \vartheta_{i,j}. \quad (S.25)$$

For each k and j, define $\boldsymbol{\beta}_{k,j}=(\phi_k^*w_{2-k}\vartheta_{1,j},\ldots,\phi_k^*w_{n-k}\vartheta_{n-1,j})^T$. Divide $\boldsymbol{\beta}_{k,j}$ into blocks with length g_s+1 , and hence there are $q_n=\lceil (n-1)/(g_s+1)\rceil$ blocks. The sum of the elements of $\boldsymbol{\beta}_{k,j}$ within the uth block is denoted by $\kappa_{k,j,u}$, for $u=1,\ldots,q_n$. For example, $\kappa_{k,j,1}=\sum_{i=1}^{g_s+1}\phi_k^*w_{i+1-k}\vartheta_{i,j}$. Then, $E(\kappa_{k,j,u})=0$, $E(\kappa_{k,j,u}^2)\leq (g_s+1)\sum_{i=1}^{g_s+1}E[\{\phi_k^*w_{i+1-k}\vartheta_{i,j}\}^2]=O((g_s+1)^2\phi_k^{*2})$, $\{\kappa_{k,j,1},\kappa_{k,j,3},\ldots\}$ are independent and so are $\{\kappa_{k,j,2},\kappa_{k,j,4},\ldots\}$. Then,

$$E\left\{\left(\sum_{i=1}^{n-1} \phi_k^* w_{i+1-k} \vartheta_{i,j}\right)^2\right\} \le 2E\left\{\left(\sum_{u=1,3,5,\dots} \kappa_{k,j,u}\right)^2\right\} + 2E\left\{\left(\sum_{u=2,4,6,\dots} \kappa_{k,j,u}\right)^2\right\} = O(n\phi_k^{*2}),$$

which together with (S.25) and Minkowski inequality implies

$$E\left[\left|\sum_{i=1}^{n-1} \{\epsilon(t_{i+1}) - \epsilon(t_i)\} \vartheta_{i,j}\right|^2\right] = E\left[\left|\sum_{k=-\infty}^{\infty} \sum_{i=1}^{n-1} (\phi_k^* w_{i+1-k} \vartheta_{i,j})\right|^2\right]$$

$$\leq \left[\sum_{k=-\infty}^{\infty} \left\{ E\left(\left|\sum_{i=1}^{n-1} (\phi_k^* w_{i+1-k} \vartheta_{i,j})\right|^2\right) \right\}^{1/2}\right]^2 = O(ng_n^2). \tag{S.26}$$

By Markov inequality and (S.26),

$$I \le \frac{4\ell m}{\tau_2} \sum_{i=1}^{\ell m} E\left[\left| \sum_{i=1}^{n-1} \{ \epsilon(t_{i+1}) - \epsilon(t_i) \} \vartheta_{i,j} \right|^2 \right] = O(ng_n^2/\tau_2).$$

Similar arguments can be applied to show that II = $O(ng_n^2/\tau_2)$. From (S.24), we complete the proof.

Next, we will provide the proof under Conditions B1 and A2–A5. Since $\{\epsilon(t_{i+1}) - \epsilon(t_i)\}$ is $(g_n + 1)$ -dependent and any column of $\mathbf{D_1S}$ is $(g_s + 1)$ -dependent, the vector $\boldsymbol{\alpha}_j = (\{\epsilon(t_2) - \epsilon(t_1)\}\vartheta_{1,j}, \dots, \{\epsilon(t_n) - \epsilon(t_{n-1})\}\vartheta_{n-1,j})^T$ is $(g_n + g_s + 1)$ -dependent, $j = 1, \dots, m$. We divide $\boldsymbol{\alpha}_j$ into blocks with length $g_n + g_s + 1$ as we did before. So, there are $\lceil (n-1)/(g_n + g_s + 1) \rceil$ blocks. The sum of elements in $\boldsymbol{\alpha}_j$ within the wth block is denoted by $f_{j,w}$, for $w = 1, \dots, \lceil (n-1)/(g_n + g_s + 1) \rceil$. By Conditions B1 and A4, it is

easy to see that $E(f_{j,w}^2) \leq Cg_n^3$. Hence,

$$P\left(\left|\sum_{i=1}^{n-1} \{\epsilon(t_{i+1}) - \epsilon(t_i)\}\vartheta_{i,j}\right| \ge \frac{\tau_2^{1/2}}{2(\ell m)^{1/2}}\right)$$

$$\le P\left(\left|\sum_{w=1,3,5,\dots} f_{j,w}\right| \ge \frac{\tau_2^{1/2}}{4(\ell m)^{1/2}}\right) + P\left(\left|\sum_{w=2,4,6,\dots} f_{j,w}\right| \ge \frac{\tau_2^{1/2}}{4(\ell m)^{1/2}}\right)$$

$$\le \frac{16\ell m}{\tau_2} \left\{ E\left(\left|\sum_{w=1,3,5} f_{j,w}\right|^2\right) + E\left(\left|\sum_{w=2,4,6} f_{j,w}\right|^2\right) \right\} = O(ng_n^2/\tau_2)$$

Since (S.24) still holds under Condition B1, similar arguments can be applied to show that $I = O(ng_n^2/\tau_2)$ and $II = O(ng_n^2/\tau_2)$. From (S.24), we complete the proof.

Lemma 7 Under Conditions A1 (or B1) and A2-A5, for any $\tau_3 \equiv \tau_{3;n} > 0$,

$$P\left(\frac{1}{n}\sum_{i=3}^{n}\delta^{2}(t_{i}) \geq \tau_{3}\right) \leq \frac{Cg_{n}^{2}}{\tau_{3}n} + \frac{C}{n},$$

where $\delta(t_i)$ is the (i-2)th element of $\boldsymbol{\delta} = \mathbf{D}_2 \mathbf{S}(\mathbf{h} - \widehat{\mathbf{h}}_{DBE})$ as defined in Notation 2.

Proof: The proof is the same under either Condition A1 or B1.

Since $\epsilon_1 = \mathbf{D}_1 \mathbf{d} + \mathbf{D}_1 \epsilon$, from model (2.1),

$$\widehat{\mathbf{h}}_{\mathrm{DBE}} = \{(\mathbf{D}_1\mathbf{S})^T(\mathbf{D}_1\mathbf{S})\}^{-1}(\mathbf{D}_1\mathbf{S})^T(\mathbf{D}_1\mathbf{y}) = \mathbf{h} + \{(\mathbf{D}_1\mathbf{S})^T(\mathbf{D}_1\mathbf{S})\}^{-1}(\mathbf{D}_1\mathbf{S})^T\boldsymbol{\epsilon}_1.$$

Thus.

$$\sum_{i=3}^{n} \delta^{2}(t_{i}) = \|\mathbf{D}_{2}\mathbf{S}(\mathbf{h} - \widehat{\mathbf{h}}_{DBE})\|^{2} = \|\mathbf{D}_{0}(\mathbf{D}_{1}\mathbf{S})\{(\mathbf{D}_{1}\mathbf{S})^{T}(\mathbf{D}_{1}\mathbf{S})\}^{-1}(\mathbf{D}_{1}\mathbf{S})^{T}\boldsymbol{\epsilon}_{1}\|^{2} \\
\leq \|\mathbf{D}_{0}\|^{2} \|(\mathbf{D}_{1}\mathbf{S})\{(\mathbf{D}_{1}\mathbf{S})^{T}(\mathbf{D}_{1}\mathbf{S})\}^{-1} \|^{2} \|(\mathbf{D}_{1}\mathbf{S})^{T}\boldsymbol{\epsilon}_{1}\|^{2} \\
\leq 4 \|\{(\mathbf{D}_{1}\mathbf{S})^{T}(\mathbf{D}_{1}\mathbf{S})\}^{-1} \|\|(\mathbf{D}_{1}\mathbf{S})^{T}\boldsymbol{\epsilon}_{1}\|^{2} = 4n^{-1} \|\widehat{\Sigma}_{1}^{-1}\| \times \|(\mathbf{D}_{1}\mathbf{S})^{T}\boldsymbol{\epsilon}_{1}\|^{2}, \quad (S.27)$$

where $\widehat{\Sigma}_1 = (\mathbf{D}_1 \mathbf{S})^T (\mathbf{D}_1 \mathbf{S})/n$ and \mathbf{D}_0 is an $(n-2) \times (n-1)$ matrix defined as

$$\mathbf{D}_{0} = \begin{pmatrix} -1 & 1 & 0 & \cdots & 0 \\ 0 & -1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}_{(n-2)\times(n-1)},$$

such that $\mathbf{D}_2 = \mathbf{D}_0 \mathbf{D}_1$. By Condition A2, when $2^{-1} \lambda_{\min}(\Sigma_1) \geq \|\widehat{\Sigma}_1 - \Sigma_1\|$,

$$\frac{C}{2} \leq \frac{1}{2} \lambda_{\min}(\Sigma_1) \leq \lambda_{\min}(\Sigma_1) - \|\widehat{\Sigma}_1 - \Sigma_1\| \leq \lambda_{\min}(\Sigma_1) + \lambda_{\min}(\widehat{\Sigma}_1 - \Sigma_1) \leq \lambda_{\min}(\widehat{\Sigma}_1),$$

and thus, $\|\widehat{\Sigma}_1^{-1}\| = 1/\lambda_{\min}(\widehat{\Sigma}_1) \le 2/C$, which together with (S.27) implies

$$P\left(\frac{1}{n}\sum_{i=3}^{n}\delta^{2}(t_{i}) \geq \tau_{3}\right) \leq P(\|\widehat{\Sigma}_{1}^{-1}\|\|(\mathbf{D}_{1}\mathbf{S})^{T}\boldsymbol{\epsilon}_{1}\|^{2} \geq \tau_{3}n^{2}/4)$$

$$= P(\|\widehat{\Sigma}_{1}^{-1}\|\|(\mathbf{D}_{1}\mathbf{S})^{T}\boldsymbol{\epsilon}_{1}\|^{2} \geq \tau_{3}n^{2}/4, \ \|\widehat{\Sigma}_{1} - \Sigma_{1}\| \leq \lambda_{\min}(\Sigma_{1})/2)$$

$$+P(\|\widehat{\Sigma}_{1}^{-1}\|\|(\mathbf{D}_{1}\mathbf{S})^{T}\boldsymbol{\epsilon}_{1}\|^{2} \geq \tau_{3}n^{2}/4, \ \|\widehat{\Sigma}_{1} - \Sigma_{1}\| > \lambda_{\min}(\Sigma_{1})/2)$$

$$\leq P(\|(\mathbf{D}_{1}\mathbf{S})^{T}\boldsymbol{\epsilon}_{1}\|^{2} \geq C\tau_{3}n^{2}/8) + P(\|\widehat{\Sigma}_{1} - \Sigma_{1}\| > C/2)$$

$$\equiv I + II. \tag{S.28}$$

By Lemma 6, if we take $\tau_{2;n} = C\tau_3 n^2/8$, $I = O(g_n^2/(\tau_3 n))$. From Lemma 5, by choosing $\tau_1 = C/2$, II = O(1/n). From (S.28), we complete the proof.

Lemma 8 Under Conditions A1 (or B1) and A2-A5, for $\varepsilon_0 \equiv \varepsilon_{0;n} > 0$ that satisfies $\varepsilon_0 = O(g_n^6)$, $\varepsilon_0 n/g_n^{11} \to \infty$ and $\varepsilon_0^2 n^2/g_n^{11} \to \infty$, and for any $k \in \{0, \ldots, g_n\}$,

$$P(|\widehat{\gamma}_e(k) - \gamma_e(k)| \ge \varepsilon_0/g_n^5) \le Cg_n^{13}/(n\varepsilon_0^2).$$

Proof: The proof is the same under either Condition A1 or B1.

Since $\widehat{e}(t_i) = e(t_i) + \delta(t_i)$, we have

$$\frac{1}{n} \sum_{i=3}^{n-k} \widehat{e}(t_i) \widehat{e}(t_{i+k}) = \frac{1}{n} \sum_{i=3}^{n-k} \{e(t_i) + \delta(t_i)\} \{e(t_{i+k}) + \delta(t_{i+k})\}
= \frac{1}{n} \sum_{i=3}^{n-k} e(t_i) e(t_{i+k}) + \frac{1}{n} \sum_{i=3}^{n-k} e(t_i) \delta(t_{i+k}) + \frac{1}{n} \sum_{i=3}^{n-k} e(t_{i+k}) \delta(t_i) + \frac{1}{n} \sum_{i=3}^{n-k} \delta(t_i) \delta(t_{i+k}).$$

By Cauchy-Schwarz inequality,

$$P\left(\left|\widehat{\gamma}_{e}(k) - \gamma_{e}(k)\right| \ge \frac{\varepsilon_{0}}{g_{n}^{5}}\right) = P\left(\left|\frac{1}{n}\sum_{i=3}^{n-k}\{\widehat{e}(t_{i})\widehat{e}(t_{i+k})\} - \gamma_{e}(k)\right| \ge \frac{\varepsilon_{0}}{g_{n}^{5}}\right)$$

$$\leq P\left(\left|\frac{1}{n}\sum_{i=3}^{n-k}\{e(t_{i})e(t_{i+k})\} - \gamma_{e}(k)\right| + \frac{2}{n}\left\{\sum_{i=3}^{n}e^{2}(t_{i})\sum_{i=3}^{n}\delta^{2}(t_{i})\right\}^{1/2} + \frac{1}{n}\sum_{i=3}^{n}\delta^{2}(t_{i}) \ge \frac{\varepsilon_{0}}{g_{n}^{5}}\right)$$

$$\leq P\left(\left|\frac{1}{n}\sum_{i=3}^{n-k}\{e(t_{i})e(t_{i+k})\} - \gamma_{e}(k)\right| \ge \frac{\varepsilon_{0}}{3g_{n}^{5}}\right) + P\left(\frac{2}{n}\left\{\sum_{i=3}^{n}e^{2}(t_{i})\sum_{i=3}^{n}\delta^{2}(t_{i})\right\}^{1/2} \ge \frac{\varepsilon_{0}}{3g_{n}^{5}}\right)$$

$$+P\left(\frac{1}{n}\sum_{i=3}^{n}\delta^{2}(t_{i}) \ge \frac{\varepsilon_{0}}{3g_{n}^{5}}\right)$$

$$\equiv I + II + III. \tag{S.29}$$

From Conditions A3 and A5, we have $|d_0(t_i)| \leq 2C/n^2$, where $d_0(t_i) = d(t_i) - 2d(t_{i-1}) + d(t_{i-2})$. Since $e(t_i) = e_0(t_i) + d_0(t_i)$, by Cauchy-Schwarz inequality, for large n,

$$I \leq P\left(\left|\frac{1}{n}\sum_{i=3}^{n-k} \{e_0(t_i)e_0(t_{i+k})\} - \gamma_e(k)\right| \geq \frac{\varepsilon_0}{4g_n^5}\right)$$

$$+P\left(\frac{2}{n}\left\{\sum_{i=3}^{n}e_{0}^{2}(t_{i})\sum_{i=3}^{n}d_{0}^{2}(t_{i})\right\}^{1/2} + \frac{1}{n}\sum_{i=3}^{n}d_{0}^{2}(t_{i}) \geq \frac{\varepsilon_{0}}{12g_{n}^{5}}\right)$$

$$\leq P\left(\left|\frac{1}{n}\sum_{i=3}^{n-k}\left\{e_{0}(t_{i})e_{0}(t_{i+k})\right\} - \gamma_{e}(k)\right| \geq \frac{\varepsilon_{0}}{4g_{n}^{5}}\right)$$

$$+P\left(\frac{2}{n}\left\{\sum_{i=3}^{n}e_{0}^{2}(t_{i})\sum_{i=3}^{n}d_{0}^{2}(t_{i})\right\}^{1/2} \geq \frac{\varepsilon_{0}}{24g_{n}^{5}}\right)$$

$$\equiv I_{1} + I_{2}. \tag{S.30}$$

The last inequality in (S.30) is true, when n is large enough, such that $n^4/g_n^5 > 96C^2/\varepsilon_0$, which implies $n^{-1} \sum_{i=3}^n d_0^2(t_i) < \varepsilon_0/(24g_n^5)$.

For term I_2 in (S.30), when n is large enough,

$$I_{2} = P\left(\frac{2}{n}\left\{\sum_{i=3}^{n}e_{0}^{2}(t_{i})\sum_{i=3}^{n}d_{0}^{2}(t_{i})\right\}^{1/2} \ge \frac{\varepsilon_{0}}{24g_{n}^{5}}\right) = P\left(\sum_{i=3}^{n}e_{0}^{2}(t_{i})\sum_{i=3}^{n}d_{0}^{2}(t_{i}) \ge \frac{\varepsilon_{0}^{2}n^{2}}{2304g_{n}^{10}}\right)$$

$$\leq P\left(\sum_{i=3}^{n}e_{0}^{2}(t_{i}) \ge \frac{\varepsilon_{0}^{2}n^{5}}{9216C^{2}g_{n}^{10}}\right) \le P\left(\left|\frac{1}{n}\sum_{i=3}^{n}e_{0}^{2}(t_{i}) - \gamma_{e}(0)\right| \ge \frac{\varepsilon_{0}^{2}n^{4}}{18432C^{2}g_{n}^{10}}\right)$$

$$\leq P\left(\left|\frac{1}{n}\sum_{i=3}^{n}e_{0}^{2}(t_{i}) - \gamma_{e}(0)\right| \ge \frac{\varepsilon_{0}}{4g_{n}^{5}}\right). \tag{S.31}$$

The last two inequalities in (S.31) are true, when n is large enough for the following inequalities to hold, $n^4/g_n^{10} > 18432C^2\gamma_e(0)/\varepsilon_0^2$ and $n^4/g_n^{5} > 4608C^2/\varepsilon_0$, which imply $\gamma_e(0) < \varepsilon_0^2 n^4/(18432C^2g_n^{10})$ and $\varepsilon_0/(4g_n^5) < \varepsilon_0^2 n^4/(18432C^2g_n^{10})$ respectively.

From the assumptions that $\varepsilon_0 n/g_n^{11} \to \infty$ and $\varepsilon_0^2 n^2/g_n^{11} \to \infty$, we can always choose a constant L_1 , such that, for any $n > L_1$, the following inequalities hold: $n^4/g_n^5 > 96C^2/\varepsilon_0$, $n^4/g_n^{10} > 18432C^2\gamma_e(0)/\varepsilon_0^2$ and $n^4/g_n^5 > 4608C^2/\varepsilon_0$, which imply that (S.30) and (S.31) hold. Therefore, for $n > L_1$, from (S.30), (S.31), by choosing $\tau_{0;n} = \varepsilon_0/(4g_n^5)$ in Lemma 2.

$$I \leq P\left(\left|\frac{1}{n}\sum_{i=3}^{n-k} \{e_0(t_i)e_0(t_{i+k})\} - \gamma_e(k)\right| \geq \frac{\varepsilon_0}{4g_n^5}\right) + P\left(\left|\frac{1}{n}\sum_{i=3}^{n} e_0^2(t_i) - \gamma_e(0)\right| \geq \frac{\varepsilon_0}{4g_n^5}\right)$$

$$= O(g_n^{13}/(n\varepsilon_0^2)). \tag{S.32}$$

For term II,

II =
$$P\left(\frac{1}{n}\left\{\frac{1}{n}\sum_{i=3}^{n}e^{2}(t_{i})-\gamma_{e}(0)+\gamma_{e}(0)\right\}\sum_{i=3}^{n}\delta^{2}(t_{i})\geq\frac{\varepsilon_{0}^{2}}{36g_{n}^{10}}\right)$$

 $\leq P\left(\frac{1}{n}\left|\frac{1}{n}\sum_{i=3}^{n}e^{2}(t_{i})-\gamma_{e}(0)\right|\sum_{i=3}^{n}\delta^{2}(t_{i})\geq\frac{\varepsilon_{0}^{2}}{72g_{n}^{10}}\right)$
 $+P\left(\frac{1}{n}\gamma_{e}(0)\sum_{i=3}^{n}\delta^{2}(t_{i})\geq\frac{\varepsilon_{0}^{2}}{72g_{n}^{10}}\right)$
 $\leq P\left(\left|\frac{1}{n}\sum_{i=3}^{n}e^{2}(t_{i})-\gamma_{e}(0)\right|\geq\frac{\varepsilon_{0}}{3g_{n}^{5}}\right)+P\left(\frac{1}{n}\sum_{i=3}^{n}\delta^{2}(t_{i})\geq\frac{\varepsilon_{0}}{24g_{n}^{5}}\right)$

$$+P\left(\frac{1}{n}\gamma_{e}(0)\sum_{i=3}^{n}\delta^{2}(t_{i}) \geq \frac{\varepsilon_{0}^{2}}{72g_{n}^{10}}\right)$$

$$\equiv II_{1} + II_{2} + II_{3}.$$
(S.33)

From the assumption $0 < \varepsilon_0 = O(g_n^6)$, we can first choose $\tau_{3;n} = \varepsilon_0^2/\{72\gamma_e(0)g_n^{10}\}$ in Lemma 7 and get $\mathrm{II}_3 = O(g_n^{13}/(n\varepsilon_0^2)) + O(1/n) = O(g_n^{13}/(n\varepsilon_0^2))$. Then, from Lemma 7, by taking $\tau_{3;n} = \varepsilon_0/(24g_n^5)$, $\mathrm{II}_2 = O(g_n^7/(n\varepsilon_0)) + O(1/n) = O(g_n^7/(n\varepsilon_0))$. Based on the proof for term I, $\mathrm{II}_1 = O(g_n^{13}/(n\varepsilon_0^2))$. By (S.33) and the assumption that $\varepsilon_0 = O(g_n^6)$,

$$II = O(g_n^{13}/(n\varepsilon_0^2)) + O(g_n^7/(n\varepsilon_0)) + O(g_n^{13}/(n\varepsilon_0^2)) = O(g_n^{13}/(n\varepsilon_0^2)).$$

It's easy to see that

$$III \le II_2 = O(g_n^7/(n\varepsilon_0)) = O(g_n^{13}/(n\varepsilon_0^2)). \tag{S.34}$$

From (S.29) and (S.32)–(S.34), we complete the proof for $n > L_1$. The result for $n \le L_1$ is straightforward. \blacksquare

Lemma 9 Assume Conditions A2-A5 and that there exists $\varepsilon \equiv \varepsilon_n > 0$ such that $\varepsilon = O(1)$, $\varepsilon^{1/2} n/g_n^{11} \to \infty$, $\varepsilon n^2/g_n^{11} \to \infty$. Under either of the following two assumptions:

- Condition A1 holds and $(g_n + 2)^{3-\alpha_n} = o(\varepsilon^{1/2}),$
- Condition B1 holds,

we have

$$P(\|\widehat{\mathbf{R}} - M_{g_n}(\mathbf{R})\|_{\infty}^2 \ge \varepsilon) \le Cg_n^{14}/(\varepsilon n).$$

Proof: The proof is the same under either Condition A1 or B1.

Since \mathbf{R} and $\hat{\mathbf{R}}$ are Toeplitz matrices,

$$P(\|\widehat{\mathbf{R}} - M_{g_n}(\mathbf{R})\|_{\infty}^2 \ge \varepsilon) \le P\left(\left\{2\sum_{k=1}^{g_n} |\widehat{\rho}(k) - \rho(k)|\right\}^2 \ge \varepsilon\right)$$

$$= P\left(\sum_{k=1}^{g_n} |\widehat{\rho}(k) - \rho(k)| \ge \varepsilon^{1/2}/2\right) = P\left(\left\|\frac{\widehat{\gamma}}{\widehat{\gamma}(0)} - \frac{\gamma}{\gamma(0)}\right\|_1 \ge \varepsilon^{1/2}/2\right)$$

$$\le P\left(\left\|\frac{\widehat{\gamma}}{\widehat{\gamma}(0)} - \frac{\gamma}{\gamma(0)}\right\|_1 \ge \varepsilon^{1/2}/2, |\widehat{\gamma}(0) - \gamma(0)| < \gamma(0)/2\right) + P(|\widehat{\gamma}(0) - \gamma(0)| \ge \gamma(0)/2)$$

$$\equiv I + II. \tag{S.35}$$

Since

$$\frac{\widehat{\gamma}}{\widehat{\gamma}(0)} - \frac{\gamma}{\gamma(0)} = (\widehat{\gamma} - \gamma) \left(\frac{1}{\widehat{\gamma}(0)} - \frac{1}{\gamma(0)} \right) + \gamma \left(\frac{1}{\widehat{\gamma}(0)} - \frac{1}{\gamma(0)} \right) + (\widehat{\gamma} - \gamma) \frac{1}{\gamma(0)},$$

then,

$$\left\|\frac{\widehat{\boldsymbol{\gamma}}}{\widehat{\boldsymbol{\gamma}}(0)} - \frac{\boldsymbol{\gamma}}{\boldsymbol{\gamma}(0)}\right\|_{1} \leq \|\widehat{\boldsymbol{\gamma}} - \boldsymbol{\gamma}\|_{1} \left|\frac{1}{\widehat{\boldsymbol{\gamma}}(0)} - \frac{1}{\boldsymbol{\gamma}(0)}\right| + \|\boldsymbol{\gamma}\|_{1} \left|\frac{1}{\widehat{\boldsymbol{\gamma}}(0)} - \frac{1}{\boldsymbol{\gamma}(0)}\right| + \|\widehat{\boldsymbol{\gamma}} - \boldsymbol{\gamma}\|_{1} \frac{1}{\boldsymbol{\gamma}(0)},$$

which implies that

$$I \leq P\left(\|\widehat{\gamma} - \gamma\|_{1} \left| \frac{1}{\widehat{\gamma}(0)} - \frac{1}{\gamma(0)} \right| \geq \varepsilon^{1/2}/6, |\widehat{\gamma}(0) - \gamma(0)| < \gamma(0)/2\right)$$

$$+ P\left(\|\gamma\|_{1} \left| \frac{1}{\widehat{\gamma}(0)} - \frac{1}{\gamma(0)} \right| \geq \varepsilon^{1/2}/6, |\widehat{\gamma}(0) - \gamma(0)| < \gamma(0)/2\right)$$

$$+ P\left(\|\widehat{\gamma} - \gamma\|_{1} \frac{1}{\gamma(0)} \geq \varepsilon^{1/2}/6, |\widehat{\gamma}(0) - \gamma(0)| < \gamma(0)/2\right)$$

$$\equiv III + IV + V.$$
(S.36)

Let $\varepsilon_0 = \varepsilon^{1/2} \gamma(0)/96$. By Lemma 1, Remark 1 and the assumption that $(g_n + 2)^{3-\alpha_n} = o(\varepsilon^{1/2})$, we have $||A_{g_n}^{-1}B_{g_n}||_1\{|\gamma(g_n + 1)| + |\gamma(g_n + 2)|\} = O(g_n^2(g_n + 2)^{1-\alpha_n}) = O((g_n + 2)^{3-\alpha_n}) = o(\varepsilon_0)$. There exists a constant $L_1 > 0$, such that for $n > L_1$, $||A_{g_n}^{-1}B_{g_n}||_1\{|\gamma(g_n + 1)| + |\gamma(g_n + 2)|\} \le 2\varepsilon_0$. For $n > L_1$, from Lemma 1,

$$V \leq P(\|\widehat{\gamma} - \gamma\|_{1} \geq \varepsilon^{1/2} \gamma(0)/6)$$

$$\leq P(\|A_{g_{n}}^{-1}(\widehat{\gamma}_{e} - \gamma_{e})\|_{1} + \|A_{g_{n}}^{-1}B_{g_{n}}\|_{1}\{|\gamma(g_{n} + 1)| + |\gamma(g_{n} + 2)|\} \geq 4\varepsilon_{0})$$

$$\leq P(\|A_{g_{n}}^{-1}\|_{1}\|\widehat{\gamma}_{e} - \gamma_{e}\|_{1} \geq 2\varepsilon_{0}) \leq P(\|\widehat{\gamma}_{e} - \gamma_{e}\|_{1} \geq 2\varepsilon_{0}/(Cg_{n}^{4})). \tag{S.37}$$

Similarly, we can show that, for $n > L_1$,

III
$$\leq P(\|\widehat{\boldsymbol{\gamma}} - \boldsymbol{\gamma}\|_1 \geq \varepsilon^{1/2} \gamma(0)/6).$$

By Lemma 1, Remark 1 and the assumption that $(g_n + 2)^{3-\alpha_n} = o(\varepsilon^{1/2})$, there exists a constant $L_2 > 0$, such that, for $n > L_2$,

$$\|\boldsymbol{z}_{1,g_n+1}^T A_{g_n}^{-1} B_{g_n}\|_{\infty} \{|\gamma(g_n+1)| + |\gamma(g_n+2)|\} \le \varepsilon^{1/2} \gamma(0) / \{24(g_n+1)\}.$$

For $n > L_2$, from Lemma 1,

$$\begin{aligned} \text{IV} & \leq & \text{P}\Big(\Big|\frac{1}{\widehat{\gamma}(0)} - \frac{1}{\gamma(0)}\Big| \geq \varepsilon^{1/2}/\{6\gamma(0)(g_n+1)\}, |\widehat{\gamma}(0) - \gamma(0)| < \gamma(0)/2\Big) \\ & \leq & \text{P}(|\widehat{\gamma}(0) - \gamma(0)| \geq \varepsilon^{1/2}\gamma(0)/\{12(g_n+1)\}) \\ & \leq & \text{P}(\|\boldsymbol{z}_{1,g_n+1}^T A_{g_n}^{-1}(\widehat{\gamma}_e - \boldsymbol{\gamma}_e)\| + \|\boldsymbol{z}_{1,g_n+1}^T A_{g_n}^{-1} B_{g_n}\|_{\infty}\{|\gamma(g_n+1)| + |\gamma(g_n+2)|\} \\ & \geq & \varepsilon^{1/2}\gamma(0)/\{12(g_n+1)\}) \\ & \leq & \text{P}(\|\boldsymbol{z}_{1,g_n+1}^T A_{g_n}^{-1}\|_{\infty}\|\widehat{\gamma}_e - \boldsymbol{\gamma}_e\|_1 \geq \varepsilon^{1/2}\gamma(0)/\{24(g_n+1)\}) \\ & \leq & \text{P}(\|\widehat{\boldsymbol{\gamma}}_e - \boldsymbol{\gamma}_e\|_1 \geq 2\varepsilon_0/(Cg_n^4)). \end{aligned}$$

By (S.36) and Lemma 8, for $n > \max\{L_1, L_2\}$,

$$I \le 3 \sum_{k=0}^{g_n} P(|\widehat{\gamma}_e(k) - \gamma_e(k)| \ge \varepsilon_0 / (Cg_n^5)) = O(g_n^{14} / (\varepsilon_0^2 n)) = O(g_n^{14} / (\varepsilon n)).$$

From the assumption that $\varepsilon = O(1)$, we have $C\varepsilon_0 \leq \gamma(0)/2$ for some positive constant C. Following basically the same procedure in (S.37), there exists a constant $L_3 > 0$, such that, for $n > L_3$,

$$II \le P(\|\widehat{\gamma} - \gamma\|_1 \ge \gamma(0)/2) \le P(\|\widehat{\gamma} - \gamma\|_1 \ge C\varepsilon_0) = O(g_n^{14}/(\varepsilon n)).$$

Now by (S.35), we complete the proof for $n > \max\{L_1, L_2, L_3\}$. The result for $n \leq \max\{L_1, L_2, L_3\}$ could be easily derived. \blacksquare

Proof of Theorem 1. It is easy to see that

$$\|\widehat{\mathbf{R}} - \mathbf{R}\|_{\infty}^2 \le 2\|\widehat{\mathbf{R}} - M_{g_n}(\mathbf{R})\|_{\infty}^2 + 2\|M_{g_n}(\mathbf{R}) - \mathbf{R}\|_{\infty}^2 \equiv I + II.$$

For term II, from Remark 1, under Condition A1,

$$||M_{g_n}(\mathbf{R}) - \mathbf{R}||_{\infty} \le 2 \sum_{k=a_n+1}^{n-1} |\gamma(k)|/|\gamma(0)| = O\left(\sum_{k=a_n+1}^{n-1} (2k - g_n)^{1-\alpha_n}\right) = O((g_n + 2)^{2-\alpha_n}).$$

Therefore,

$$II = O_P((g_n + 2)^{4-2\alpha_n}).$$

From $(g_n + 2)^{8+2\alpha_n}/n \to \infty$ and $g_n^{14}/n = o(1)$, $(g_n + 2)^{4-2\alpha_n} = o(g_n^{14}/n)$, and hence, $II = o_P(g_n^{14}/n)$. Under Condition B1, II = 0.

Take $\varepsilon_n = C^* g_n^{14}/n$, where $C^* > 0$ is a constant. From Lemma 9, under either Condition A1 or B1, $P(\|\widehat{\mathbf{R}} - M_{g_n}(\mathbf{R})\|_{\infty}^2 \ge C^* g_n^{14}/n) \le C/C^*$. Thus,

$$I = O_P(g_n^{14}/n).$$

We complete the proof. ■

Proof of Proposition 1. From the proof of Theorem 1, $\|\widehat{\mathbf{R}} - \mathbf{R}\|_{\infty}^2 \le 2\|\widehat{\mathbf{R}} - M_{g_n}(\mathbf{R})\|_{\infty}^2 + 2\|M_{g_n}(\mathbf{R}) - \mathbf{R}\|_{\infty}^2$, and $\|M_{g_n}(\mathbf{R}) - \mathbf{R}\|_{\infty} = o(1)$. From Lemma 9, for any constant $\varepsilon > 0$ and n large enough such that $2\|M_{g_n}(\mathbf{R}) - \mathbf{R}\|_{\infty}^2 < \varepsilon/2$,

$$P(\|\widehat{\mathbf{R}} - \mathbf{R}\|_{\infty}^2 \ge \varepsilon) \le P(2\|\widehat{\mathbf{R}} - M_{g_n}(\mathbf{R})\|_{\infty}^2 \ge \varepsilon/2) \le Cg_n^{14}/n = o(1),$$
 (S.38)

because $\alpha_n g_n \to \infty$ implies that $(g_n + 2)^{3-\alpha_n} = o(1)$. So, we complete the proof.

Proof of Proposition 2. The proof is the same under either Condition A1 or B1. We can show that

$$\lambda_{\min}(\widehat{\mathbf{R}}) \geq \lambda_{\min}(\mathbf{R}) + \lambda_{\min}(\widehat{\mathbf{R}} - \mathbf{R}) \geq \lambda_{\min}(\mathbf{R}) - \|\widehat{\mathbf{R}} - \mathbf{R}\| \geq \lambda_{\min}(\mathbf{R}) - \|\widehat{\mathbf{R}} - \mathbf{R}\|_{\infty}.$$

From Condition A6 and Proposition 1, we can show that with probability tending to one, $\lambda_{\min}(\widehat{\mathbf{R}}) > 0$. Thus, we complete the proof.

Proof of Proposition 3. The proof is the same under either Condition A1 or B1. The proof is similar for $\widehat{\mathbf{R}}_Z$ and $\widehat{\mathbf{R}}_*$. In the following, we will only give the proof for $\widehat{\mathbf{R}}_*$. Since $\widehat{\mathbf{R}}_* - \mathbf{R} = (\widehat{\mathbf{R}} - \mathbf{R}) \operatorname{I}(\widehat{\mathbf{R}} \succ 0, \|\widehat{\mathbf{R}}^{-1}\|_{\infty} \leq Dn^{\omega}) + (\mathbf{I}_n - \mathbf{R}) \{1 - \operatorname{I}(\widehat{\mathbf{R}} \succ 0, \|\widehat{\mathbf{R}}^{-1}\|_{\infty} \leq Dn^{\omega})\}, \|\widehat{\mathbf{R}}_* - \mathbf{R}\|_{\infty} \leq \|\widehat{\mathbf{R}} - \mathbf{R}\|_{\infty} + \|\mathbf{I}_n - \mathbf{R}\|_{\infty} \{1 - \operatorname{I}(\widehat{\mathbf{R}} \succ 0, \|\widehat{\mathbf{R}}^{-1}\|_{\infty} \leq Dn^{\omega})\}.$ From the result of Theorem 1, it suffices to show $\lim_{n\to\infty} \operatorname{P}(\widehat{\mathbf{R}} \succ 0, \|\widehat{\mathbf{R}}^{-1}\|_{\infty} \leq Dn^{\omega}) = 1.$

By Condition A6, we can verify that there is a constant $M_1>0$, such that $\|\mathbf{R}^{-1}\|_{\infty} < M_1$. Define the event $Q=\{\|\widehat{\mathbf{R}}-\mathbf{R}\|_{\infty} \leq \xi\}$, for some $0<\xi<\min\{1/M_1,c,1/C\}$, where c and C are constants in Condition A6. From Theorem 1, $\lim_{n\to\infty} \mathrm{P}(Q)=1$. Following the proof of Theorem 6 in Cai and Zhou (2012), $\|\widehat{\mathbf{R}}^{-1}\|_{\infty}$ is bounded on Q. Hence, $\lim_{n\to\infty} \mathrm{P}(\|\widehat{\mathbf{R}}^{-1}\|_{\infty} \leq Dn^{\omega}) \geq \lim_{n\to\infty} \mathrm{P}(\|\widehat{\mathbf{R}}^{-1}\|_{\infty} \leq Dn^{\omega}, \ Q) = 1$. Together with $\lim_{n\to\infty} \mathrm{P}(\widehat{\mathbf{R}} \succ 0) = 1$ from Proposition 2, we can conclude $\lim_{n\to\infty} \mathrm{P}(\widehat{\mathbf{R}} \succ 0, \|\widehat{\mathbf{R}}^{-1}\|_{\infty} \leq Dn^{\omega}) = 1$.

Proof of Theorem 2. The proof is the same under either Condition A1 or B1. By Condition A6, we can verify that there is a constant $M_1 > 0$, such that $\|\mathbf{R}^{-1}\|_{\infty} < M_1$. Define the event $Q = \{\|\hat{\mathbf{R}} - \mathbf{R}\|_{\infty} \le \xi\}$, for some $0 < \xi < \min\{1/M_1, c, 1/C\}$. Following the proof of Theorem 6 in Cai and Zhou (2012), we can show that, for n large enough, $\|\hat{\mathbf{R}}_*^{-1} - \mathbf{R}^{-1}\|_{\infty} \le C_0 \|\hat{\mathbf{R}} - \mathbf{R}\|_{\infty}$ on Q and $\|\hat{\mathbf{R}}_*^{-1} - \mathbf{R}^{-1}\|_{\infty} \le C_0 n^{\omega}$ on Q^c , where $C_0 > 0$ is a constant. Thus, from similar arguments in (S.38), for n large enough,

$$E(\|\widehat{\mathbf{R}}_{*}^{-1} - \mathbf{R}^{-1}\|_{\infty}^{2}) = E\{\|\widehat{\mathbf{R}}_{*}^{-1} - \mathbf{R}^{-1}\|_{\infty}^{2} I(Q)\} + E\{\|\widehat{\mathbf{R}}_{*}^{-1} - \mathbf{R}^{-1}\|_{\infty}^{2} I(Q^{c})\}$$

$$\leq C_{0}^{2} E\{\|\widehat{\mathbf{R}} - \mathbf{R}\|_{\infty}^{2} I(Q)\} + C_{0}^{2} n^{2\omega} P(Q^{c})$$

$$= C_{0}^{2} E\{\|\widehat{\mathbf{R}} - \mathbf{R}\|_{\infty}^{2} I(Q)\} + O(g_{n}^{14}/n^{1-2\omega}). \tag{S.39}$$

Since by (S.38), for any constant $\varepsilon > 0$, $P(\|\widehat{\mathbf{R}} - \mathbf{R}\|_{\infty}^2 \ge \varepsilon) = O(g_n^{14}/n) \to 0$, we have $\|\widehat{\mathbf{R}} - \mathbf{R}\|_{\infty}^2 \xrightarrow{P} 0$, which implies $\|\widehat{\mathbf{R}} - \mathbf{R}\|_{\infty}^2 I(Q) \xrightarrow{P} 0$. Then,

$$\begin{split} &E\{\|\widehat{\mathbf{R}}-\mathbf{R}\|_{\infty}^{2}\operatorname{I}(Q)\operatorname{I}(\|\widehat{\mathbf{R}}-\mathbf{R}\|_{\infty}^{2}\operatorname{I}(Q)\geq\varepsilon)\}\\ \leq &\left[E\{\|\widehat{\mathbf{R}}-\mathbf{R}\|_{\infty}^{4}\operatorname{I}(Q)\}\operatorname{P}(\|\widehat{\mathbf{R}}-\mathbf{R}\|_{\infty}^{2}\geq\varepsilon)\right]^{1/2}\\ \leq &\left\{\xi^{4}\operatorname{P}(\|\widehat{\mathbf{R}}-\mathbf{R}\|_{\infty}^{2}\geq\varepsilon)\right\}^{1/2}=O(g_{n}^{7}/n^{1/2})\rightarrow0. \end{split}$$

By asymptotically uniform integrability, we have $E\{\|\widehat{\mathbf{R}} - \mathbf{R}\|_{\infty}^2 I(Q)\} \to 0$, which together with (S.39) implies $E(\|\widehat{\mathbf{R}}_*^{-1} - \mathbf{R}^{-1}\|_{\infty}^2) \to 0$.

Proof of Proposition 4. The proof is the same under either Condition A1 or B1. Following the proof in Proposition 3, $\|\mathbf{R}^{-1}\|_{\infty}$ is bounded, and $\|\hat{\mathbf{R}}^{-1}\|_{\infty}$ is bounded on Q (defined in Proposition 3). Since $\hat{\mathbf{R}}^{-1} - \mathbf{R}^{-1} = \hat{\mathbf{R}}^{-1}(\mathbf{R} - \hat{\mathbf{R}})\mathbf{R}^{-1}$, $\|\hat{\mathbf{R}}^{-1} - \mathbf{R}^{-1}\|_{\infty} \le \|\hat{\mathbf{R}}^{-1}\|_{\infty} \|\mathbf{R} - \hat{\mathbf{R}}\|_{\infty} \|\mathbf{R}^{-1}\|_{\infty}$ on Q, and hence, $\|\hat{\mathbf{R}}^{-1} - \mathbf{R}^{-1}\|_{\infty} \le C\|\mathbf{R} - \hat{\mathbf{R}}\|_{\infty}$. From the result in Theorem 1 and $P(Q^c) = o(1)$, $\|\hat{\mathbf{R}}^{-1} - \mathbf{R}^{-1}\|_{\infty} = O_P(g_n^7/n^{1/2})$.

From the result in Proposition 2 that $\lim_{n\to\infty} P(\widehat{\mathbf{R}} \succ 0) = 1$, it is easy to prove that $\|\widehat{\mathbf{R}}_Z^{-1} - \mathbf{R}^{-1}\|_{\infty} = O_P(g_n^7/n^{1/2})$.

From $\lim_{n\to\infty} P(\widehat{\mathbf{R}}\succ 0)=1$ and that $\|\widehat{\mathbf{R}}^{-1}\|_{\infty}$ is bounded on Q, it's easy to show $\|\widehat{\mathbf{R}}_*^{-1}-\mathbf{R}^{-1}\|_{\infty}=O_P(g_n^7/n^{1/2})$.