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This note contains proofs of theorems and propositions stated in the paper.

S1 Regularity conditions

We assume fixed true covariates which satisfy

(1/n)X'X = Cpp — Xys, as n — 00, (S1.1)
(1/”)1@3‘2{ (xix;) = 0, as n — oo, (S1.2)

where X, is a positive definite matrix.

The random measurement errors are assumed normally distributed with mean zero
and covariance 3,,. It follows (Anderson (2003, Th. 3.4.4)) that the limiting distri-
bution of n'/2 (Cyy — Byy) is normal with mean 0 and covariances (Zuw)y, (Suu);; +
(Buw)y (Buu)p, where (2yy),, is the (i, k)th element of X, and 4,5, k,1 € {1,...,p}.

Now,

Cuu = By, as n — 00, (S1.3)
(1/n)1rga<x (ufu;) — 0, as n — oo, (S1.4

hold with probability 1. It follows from (S1.1)-(S1.4) that with probability 1, C. —
Y w and (1/n)

has mean zero and finite covariances. Regularity conditions like these have also been as-
sumed by, e.g., Knight and Fu (2000) and Zhao and Yu (2006).

max
1<i<n

(wiw;) — 0,asn — oo. The limiting distribution of n'/2? (Cyw — Zww)
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S2 Karush-Kuhn-Tucker Conditions

We introduce the new coefficient v = 3 — 3°, which yields the naive lasso on the form
. . 2
¥ = arg min (—ne’W’y + 4 Couwy + 27 CuwuB + A |y + ,6'0||1) ) (S2.1)

where we have removed all terms which are constant in «. Taking derivatives, we arrive
at the Karush-Kuhn-Tucker (KKT) conditions for the naive Lasso.

Lemma 1. 4 = 3 — 8° is a solution to (52.1) if and only if —(2/n)€W + 2C.,u9 +
2C,u = —AT, where 7 € RP satisfies ||7||,, < 1 and 7; = sign (BJ) for j such that

B; # 0.

The same change of variables for the corrected lasso yields

2
4 = arg min { — €W+ (Cpuw — )Y (S2.2)
v v+l <R L T

+27 ©Cuu =B 8+ A+ 2], |

Due to the additional constraint ny + 60H1 < R added because of non-convexity, the
KKT conditions can only characterize critical points in the interior of this domain. A
critical point on the boundary may not have a zero subgradient. Under the assumptions
of Loh and Wainwright (2012), for sufficiently large n, all local optima lie in a small
¢1-ball around B°. We assume that R is chosen large enough such that H’y + ,BOH1 <R
for all these optima, while R is small enough to avoid the trivial solutions for which one
or more component of 4 is oo.

Lemma 2. Assume 4 = 3 — 8° is a critical point of (52.2). < R, then
—(2/n)eW + 2 (Cpw — Buu) ¥ + 2 (Cypu — Xuw) = —AT, where ¥ € RP is as defined in
Lemma 1.

S3 Proof of Proposition 1

By definition (Biithlmann and van de Geer (2011)),

1wy = W[, + 28], < w/m lly = Walls+ A16°) .
and after reorganizing terms,
(1/n) HW(ﬁ ﬁ)H +>\HBH (2/n) (e—UBO)’W(@—ﬁO)+AH5°||1. (53.1)
Under (S3.1),

(2/n) (e~ UB") W (B—8°) < (2/m) (e~ UB") W [B— 8| <ol|B-
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which inserted into (S3.1) yields

i [w (-1 [8], < [3- ], 421671,

Now use,
B = 18511, — |85, — 85|, +|Bss ], -
B - ,3OH1 = Hﬁso —/3%0 ) + HBSS L (53.2)
and A > 2, to obtain
/) [W (5~ 8°) [ + 2| |, < 37 Bs, - 85 (533)

Inequality (S3.3) shows that ”'356”1 < 3||,350 - ﬁ%o |;. That is, the vector 3 — 3°
is among the vectors to which the compatibility condition applies, for the index set Sy.
Next, use (S3.2) again in (S3.3) to obtain

/) [W (8- 8°) [ + 2|5 -8, <4 [Bs, - 8%

(S3.4)

L
Under the compatibility condition on Sy,

Bs, —BY% | <soPogn 2| W (B-p8%)] .
1 2

Using this and the inequality 4uv < 4u? + v? in (S3.4), we arrive at

(o)1 alo- o, <t

S4 Proof of Proposition 2

This proof goes along the lines of the proof of Theorem 1 in Knight and Fu (2000),
but with the addition of measurement error. We start with the naive Lasso after
reparametrization, and let

Ln(y) = €+ Cuuwy + 27 CuuB’ + Ay + 811 (S4.5)

2 W
VAN
Note that (2/v/n)(W/y/n)e 4 N(0,(4/n)0%E,); the first term in (S4.5) converges
in distribution to a normally distributed quantity whose variance goes to zero as 1/n,
which is equivalent to convergence in probability to zero. Combining this result with
the assumption that A — 0 as n — oo, yields L, (7) 2 L(7) = ¥ Zwwy + 27 08’
Since £,,(7) is convex, it follows that argm»}n{ﬁn )} > argm’}n{ﬁ(fy)} (Knight and Fu

(2000)). The minimum of £(7) is easily found, and accordingly, ¥ & —%-1 5,,8°. The
result follows immediately.

S3
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S5 Proof of Theorem 1

We follow the structure of the proof by Zhao and Yu (2006), who proved the corre-
sponding result in the absence of measurement error. Consider the naive lasso, and note

that
{Sign (ﬁgo) PAYSO > = |,3%0‘} = {Sign (BSO> = sign (ﬁgo)}

and 'S’Sg =0 = BSS = 0. Thus, by the KKT conditions for the naive lasso (Lemma 1),
if a solution 4 exists, and

W/, R AMn o
— €+ Vo (50,.50) A5, + VClun (S0, S0) B3, = —Tfmgn (8%,),  (55.1)
PAYSO’ < |ﬁg'o|’ (55.2)
Wee A
% 4 /G (55 50) A5y + VICun (55, 50) 8| < 2V, (35.3)

NG

then sign(ﬁso) = sign(B%,) and Sign(ﬁsg) =0.

Event A implies the existence of |4 | < |ﬂ%0| such that

/ N A T si
Zhe 26l | = Vi (s, | - 3 O (050 i (58

)

Buth then there must also exist |¥g, | < [8%,| such that

A 1
Zie —Z,8%, = Vn <’750 - §wa (S0, S0) ™" sign (ﬁg‘o)> ’

which essentially means choosing the appropriate signs of the elements of 4 . Multi-
plying through by C,,., (S0, So) and reorganizing terms, we get (S5.1). Thus, A ensures
that (S5.1) and (S5.2) are satisfied. Next, adding and subtracting /nC..w (S5, So)7s,
to the left-hand side of event B and then using the triangle inequaltity, yields

€+ \/ﬁ + wa(s& SO)’?SO + \/Ecwu<sg’ SO)IBOSO

_Wsg
Vi
!

w :
- wa(sg, S())wa(S(), SO)_1 \/%0 €+ \/ﬁcww(s(%y SO)wa(S()7 SO)_lcwu(SOa SO),@g*O

. A
VG (85,5075, < 2V (1 - o)1,

The second term on the left-hand side of this expression is the left-hand side of (S5.1)
multiplied by Cuuw (5§, S0)Cuww (S0, So) . It can thus be replaced by the right-hand side
of (S5.1) multiplied by this factor. This yields

W

Jn

€ + \/’FL + wa(587 SO)’AYSO + \/ﬁcwu(sg’ So)ﬂgo
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ww(S07 SO)wa(507 SO)ilsign (/8%0) S ¥ (1 - 9) 1

e

which implies, due to the IC-ME,

W ee
‘_ \/757 €+ vVnCuu (S5, S04, + VACun (S, S0)B%, | <

This is indeed (S5.3). Altogether, A implies (S5.1) and (S5.2), while B|A implies (S5.3).

AWy
2

For the asymptotic result, define the vectors

/

—1W5'0
z = wa(S(Ja SO) \/ﬁ €,

a= 8% | - |Cuwwl(So, S0) " Cuul(So, S0)B%,| .
b = Cuuw (S0, So) *sign (8%,) .

¢= <cww(53,so>cww(so,so) f ;)
f= (wa(SS,So)wa(Sovso) ( ) S07SO)) ﬁ%o
We have

— P(ANB) < P(A°) 4+ P(B°) <

pP—5so

ZP(|zJ|>f(aJ )+ 2 P (1o -vinl= 4 a-).

It is clear that z % N(0,02wa(SO,SO)’1), as n — oo. Hence, there exists a finite
constant k such that E(z;)® < k? for j =1,...,sp. Next, we have by assumption

a— |/8g0} - |2ww(SO7 SO)_IEuu(Sm SO)/BOSO
b — Eww(SO; SO)_lsign (ﬂ%o) , as n — OQ.

, as n — 00,

Now using the assumption A = o(1), we get

P (A°) <Z( ('ZJ|<\2/]; i (1+0(1 ))))

<1 +0(1))§0: <1 - (*2/?%— (1 +0(1))>>

j=1
— o (exp(—n®)),

where we used the bound for the Gaussian tail probability

1—®(t) <t exp(—(1/2)t?). (S5.4)
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Next, we note that
¢ N (0,02 (B (S5, 55) = Suww (S5, S0)Sww(S0,50) ™ Sww(S0,55))) , as n — oo,

Next, we consider f, and note that the limiting distribution of v/nC., = v/n(Cyy+Cay)
as n — oo is normal with mean /nX,,, = v/nX,, and finite variances (Anderson (2003,
Th. 3.4.4)). In addition, Cy — 3w as n — co. Thus, applying Slutsky’s theorem to
the product of the matrices, the limiting distribution of

V1 (Cuur (56, 50) Cuos (50, 50) ™ Cuu (S0, S0) = Cuw (S5 S0))
as n — oo has mean
VI (B (555 50) Zww (S0, 50) ™ B (S0, 50) = Twwu (S5, S0)) =0
and finite variances. The latter term equals zero by the MEC. Now
Vnf = /1 (Cuw(S§, S0)Cuw (S0, 50) ™ Cuu(S0, S0) — Cuwu (S, So)) B,

is a vector in RP~% whose elements are linear combinations of variables whose limiting
distributions as n — oo are normal with mean zero and finite variances. Accordingly, the
limiting distribution of v/nf as n — oo is normal with mean zero and finite variances.

So again there exists a finite constant k such that E((; — /nf;)? < k? for j =
., (p — 80). Thus, when An(1=¢)/2 — oo for ¢ € [0, 1), we have

PEY< Y (1_P<|<j —];/ﬁfjl _1am (1_9)»

1

P

2 k2
<q +0(1»p§: (1 - ® (iAf (1 “‘”))

— o (exp(—n°)).
It follows that P(AN B) =1 — o(exp(—n©)).

S6 Proof of Proposition 3

We consider now the Lasso with € = 0. In this case, y = X3°, and the Lasso becomes
8= argmﬁin{HW,@ — X33+ \|Bl1}. We follow the proof of Biihlmann and van de

Geer (2011, Th. 7.1), but also take measurement error into account.

Part 1

The KKT conditions take the form
2C (S0, 50) (Bs, — B%,) + 2Cuwu(So, S§)Bss + 2Cwu(So, 50)B%, = —As,  (S6.1)
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Zwa(Sg, SO)(BSO - ﬂgg) + chw(s(ch SS)BSS + QCwu(Sga SO)ﬂ%O = _/\7A-Sga (86-2)

where 7 = (7,,7’s)’ has the properties ||7]lo < 1 and 7; = sign(B;) if B; # 0. We
multiply (56.1) by B: Cuw (S5, So)Cuns(So, So) ™" and (S6.2) by B, and then subtract
the first from the second, to get
~/ N
2/658 (wa(Sga S(c)) - wa(S(c)7 SO)wa(S()7 SO)_lcww(SOv 58)) ﬂs’g—’_
~l
2/838 (Cwu(587 SO) - wa(SS, SO)wa(SOa SO)_lcwu(507 SO)) ﬁ%o
~l ~ .

= 2 (B Cuu(S5, 50)Cuns (S0, 80) 75, — Blss 7 ) (56.3)
The matrix term within the parantheses in the leftmost term is positive semidefinite,
since it is the Schur complement of the positive semidefinite matrix C,,,,, in which the

part C., (S0, So) is positive definite, since sg < n. Next, the term within the parantheses
on the right-hand side is

B's, Cuns (555 50)Cuvno (S0, S0) 5 — 1B, 1 <

(1Cu (55, S0)Cun (50, 50) 73| = 1) B |, < 0-

The last inequality follows from the IC-ME, and is strict whenever ||3 s¢lli # 0. Finally,

the second term on the left-hand side of (S6.3) is zero by assumption. Thus, if ”BSS‘ I #
0, the left-hand side of (56.3) must be negative, which is a contradiction. We thus
conclude that Bge. = 0, and the KKT conditions (S6.1) and (S6.2) reduce to

2Cuu (S0, 50) (Bs, = B%, ) +2Cun (S0, 50)BY, = M, (S6.4)

2C.uu (5. 50) (Bs, — B, ) + 2Cuu(S5, 50)8%, = —s;. (56.5)
From (S6.4) we get
‘)\CSO(SO, So0) ' #5, + Cuww (S0, S0) " Cuwu(So, S0)BY,

’Bso - B%,| = (S6.6)

A
S ( sup chw(S07 SO)_1T50 Hoo) 1 + ‘wa(sm SO)_ICwu(SOa 50)5%0| .

ll7lloo <1

Now, if j € S§¢* and ; = 0, then

R A
\ﬂj—ﬁ?\=|ﬁ?\>2+< sup [ Cuns (S0, 50) " 750 o >+lvjlv

oo ll<1

where v = (vy,...,v,) = wa(So,SO)’lcwu(SO,SO),B%O, contradicting (56.6). Thus,
B; # 0 for j € Sdet.

S7
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Part 2

We start by assuming sign(3) = sign(8°). Thus, the KKT conditions are (S6.4) and
(56.5). From (S6.4) we get

“ A . _
/BSO - /6%0 = _§wa(‘s’07 SO)_ITSO - wa(507 SO) 1Cwu(SOa SO)IB%O~
Inserting this into (S6.5) yields

wa(sgaSO)wa(SmSO)_l%SO"_
2 N
X (wa(Sga SO)wa(SOa S0)7101uu(507 SO) - Cwu(S& SO)) /3%0 = TSSa

and the necessary condition stated in Proposition 3 follows by definition.

S7 Proof of Theorem 2

Starting from the KKT conditions of Lemma 2, we will redo the steps of the proof
of Theorem 1, but with the insertion of extra terms representing the correction for
measurement error. The corrected lasso is not in general convex, and our analysis will
thus concern any critical point 4 = ﬁ 3° in the interior of the feasible set {7 :

Iy +B8°ll < R}

If 4 exists, and

Wl
- \/% €+ /1 (Cuuw (S0, 50) — Buu (S0, 50)) s, + (S7.1)
A
\/ﬁ(cwu (SO7 SO) - Euu (507 SO)) IBOSO = 7$Sign (ﬁgo) )
9s.| < 8%, ] (S7.2)
W/
Se+ \f( ww (58, SO) Yuu (S()a SO)) Vs, T+ (S7-3)

-7

AVn
V1 (Cuu (85, 50) = Buu (55, 90)) B, | < Tfl,

then sign(BSo) = sign(ﬁgo) and sign(,@so) =0

Event A in Theorem 2 implies the existence of |y, | < |B%D| such that

ww So, SO) - 2uu (SO7 SO))_l Sigl’l (/3%0)

).

é wa (507 SO) - Euu (507 SO))_I Sign (/6%0)) :

12 - 205, | = i (|4, - 5 |(©

But then there must exist [Yg | < |ﬁ%0| such that

Z¢ — 778, = \/ﬁ(’?so 3 (
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Multiplying through by C,,., (S0, So) — 2w (S0, So) and reorganizing terms, we get (S7.1).
Thus, A ensures that (S7.1) and (S7.2) are satisfied. Next, adding and subtracting
V1 (Cuw (S5, S0) — Buw (55, 50)) 75, to the left-hand side of event B and the using the
triangle inequality, yields

ngc
| 2V ((Cu (5.50) = B (55 500) s, + (Coe (55 50) = B (5.50)) 85,)
. W/
’— (o (52 50) = i (55, 50)) (Cue (S0 50) — B (S0, 5o)) ' = 224

\/ﬁ(cww (587 SO) - 2uu (587 SO)) (Sww (S07 SO) - Zuu (SOa SO))_l
(Cwu (SO; SO) - Euu (507 SO)) ,Bgo + \/ﬁ (Sww (Sga SO) - Euu (SS’ SO)) ;YSO

#(1_9)1.

IN

The second term on the left-hand side of this expression is the left-hand side of (S7.1) mul-
tiplied by (Cuw (S8, 50) — Zuw (55, .90)) (Cuww (S0, S0) — Suu (So,50)) " It can thus be
replaced by the right-hand side of (S7.1) multiplied by this factor. This yields

\/ﬁ €+ \/ﬁ ((Cwu (SS, SO) — Xuu (SS, SO)) ':/So + (Cwu (587 SO) — Y (58» SO)) /3%0)

An
2

!
’ Wi

(wa (567 SO) - Euu (587 SO)) (wa (507 SO) - 2uu (507 SO))_l Sign (ﬂ%[])‘
<M o,

which implies, due to the IC-CL,

Wi A
' - \/ﬁo € + \/ﬁ(cwu (ng SO) - Z]uu (S(C), SO)) '750

A
+ \/E(Cwu (Sg, So) — B (Sg’ So)) 5050 < %1.

This is indeed (S7.3). Altogether, A implies (S7.1) and (S7.2), while B|A implies (S7.3).

For the asymptotic result, define the vectors

_1 W
z = (Cuw(S0. S0) — Suu (So, S0)) ™ \/g €,

a =182, | = [(CuulSo, S0) = Zuu(S0,50) ™" (CuulSo, 50) = Zuul(S0, 50)) BY,
b = (Cuuw(S0, So) — Zuu(So. So)) ™ sign (BY,) .

)

W/ e
C - ((wa(557 SO) - Euu(soca SO)) (wa(SOa SO) - Euu(s(b SO))_I \/%0 - \/%O ) €,
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£ ((cww(sg, 50) = Bun(S5 50)) (Cura (S0, S0) — S0, S0)) !
(Cuwu(S0,80) = Zuu(S0,50)) = (Cwu (S, So) — (S, So)) )ggo.

We have

— P(ANB) < P(A°)+ P(B°) <

iP(IzﬂZﬁ(czj;\bj>>+p-—sop<|gj ffj{> 19))

Jj=1
It is clear that

Z i) N (0, 0'2211 (507 So)il Eww (So, S()) me (50, So)il> , as n — oQ.

Hence, there exists a finite constant k such that E(z;)? < k% for j = 1,...,s0. Next, we
have by assumption a — |,6%0| , as n — oo. Now using the assumption A = o(1), we get

P(4) <Z( ('Z” <Y (14 o1 ))))
<(1 +o(1))§0: <1 - (ﬁaj (1 +0(1))>>

Jj=1

— o (exp(—n®)),

where we used the bound (S5.4). Next, we note that

¢ N (0,02 (200 (S5, 55) — Zaw (S5, 50) (S0, 50) " (S0, 5))) 5 as n — oo

Next, we consider f, and note that the limiting distribution of \/n (Cyy — Xuu), as n —
00, is normal with mean 0 and finite variances (Anderson (2003, Th. 3.4.4)). In addition,
Cupw — Zuu — Zzz, as n — oo. Thus, applying Slutsky’s theorem to the product of the
matrices, the limiting distribution of

w%( (Cun(55:50) = Sua(55, 50)) (Cons (S, S0) — (S0, S0))
(Cuwn(So0,50) — 20w (S0, 50)) — (Cwu(S§, So) — Xuu (S§, So)) ), as n — 0o,
is normal with mean 0 and finite variances. Now,
Vi = ﬁ( (Cun(55: 50) = (56 50)) (Can (S0, S0) — S (S0, 50)) ™

(Cun (501 50) — S (50 50)) — (Can (551 50) — B (55, 50)) )ﬁ%o
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is a vector in RP™%0 whose elements are linear combinations of variables whose limiting
distributions as n — oo are normal with mean zero and finite variances. Accordingly, the
limiting distribution of \/nf as n — oo is normal with mean zero and finite variances.

So again there exists a finite constant k such that E((; — v/nf;)? < k* for j =

1,...,(p — 80). Thus, when \n(1=¢)/2 — oo for ¢ € [0, 1), we have
P—5so
c G =vnfil _1AVn
<5 (S8 )
= 1\/n

— o (exp(—n")).

It follows that P(AN B) = 1 — o(exp(—n°)).
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