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S1 Regularity conditions

We assume �xed true covariates which satisfy

(1/n)X′X = Cxx → Σxx, as n→∞, (S1.1)

(1/n) max
1≤i≤n

(x′ixi)→ 0, as n→∞, (S1.2)

where Σxx is a positive de�nite matrix.

The random measurement errors are assumed normally distributed with mean zero
and covariance Σuu. It follows (Anderson (2003, Th. 3.4.4)) that the limiting distri-
bution of n1/2 (Cuu −Σuu) is normal with mean 0 and covariances (Σuu)ik (Σuu)jl +
(Σuu)il (Σuu)jk, where (Σuu)ik is the (i, k)th element of Σuu and i, j, k, l ∈ {1, . . . , p}.
Now,

Cuu → Σuu, as n→∞, (S1.3)

(1/n) max
1≤i≤n

(u′iui)→ 0, as n→∞, (S1.4)

hold with probability 1. It follows from (S1.1)-(S1.4) that with probability 1, Cww →
Σww and (1/n) max

1≤i≤n
(w′iwi)→ 0, as n→∞. The limiting distribution of n1/2 (Cww −Σww)

has mean zero and �nite covariances. Regularity conditions like these have also been as-
sumed by, e.g., Knight and Fu (2000) and Zhao and Yu (2006).
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S2 Karush-Kuhn-Tucker Conditions

We introduce the new coe�cient γ = β − β0, which yields the naive lasso on the form

γ̂ = arg min
γ

(
− 2

n
ε′Wγ + γ′Cwwγ + 2γ′Cwuβ

0 + λ
∥∥γ + β0

∥∥
1

)
, (S2.1)

where we have removed all terms which are constant in γ. Taking derivatives, we arrive
at the Karush-Kuhn-Tucker (KKT) conditions for the naive Lasso.

Lemma 1. γ̂ = β̂ − β0 is a solution to (S2.1) if and only if −(2/n)ε′W + 2Cwwγ̂ +

2Cwu = −λτ̂ , where τ̂ ∈ Rp satis�es ‖τ̂‖∞ ≤ 1 and τ̂j = sign
(
β̂j

)
for j such that

β̂j 6= 0.

The same change of variables for the corrected lasso yields

γ̂ = arg min
γ : ‖γ+β0‖1≤R

{
− 2

n
ε′Wγ + γ′ (Cww −Σuu)γ (S2.2)

+ 2γ′ (Cwu −Σuu)β0 + λ
∥∥γ + β0

∥∥
1

}
.

Due to the additional constraint
∥∥γ + β0

∥∥
1
≤ R added because of non-convexity, the

KKT conditions can only characterize critical points in the interior of this domain. A
critical point on the boundary may not have a zero subgradient. Under the assumptions
of Loh and Wainwright (2012), for su�ciently large n, all local optima lie in a small
`1-ball around β0. We assume that R is chosen large enough such that

∥∥γ + β0
∥∥
1
< R

for all these optima, while R is small enough to avoid the trivial solutions for which one
or more component of γ̂ is ±∞.

Lemma 2. Assume γ̂ = β̂ − β0 is a critical point of (S2.2). If
∥∥γ̂ + β0

∥∥
1
< R, then

−(2/n)ε′W + 2 (Cww −Σuu) γ̂ + 2 (Cwu −Σuu) = −λτ̂ , where τ̂ ∈ Rp is as de�ned in
Lemma 1.

S3 Proof of Proposition 1

By de�nition (Bühlmann and van de Geer (2011)),

(1/n)
∥∥∥y −Wβ̂

∥∥∥2
2

+ λ
∥∥∥β̂∥∥∥

1
≤ (1/n)

∥∥y −Wβ0
∥∥2
2

+ λ
∥∥β0

∥∥
1
,

and after reorganizing terms,

(1/n)
∥∥∥W (

β̂ − β0
)∥∥∥2

2
+ λ

∥∥∥β̂∥∥∥
1
≤ (2/n)

(
ε−Uβ0

)′
W
(
β̂ − β0

)
+ λ

∥∥β0
∥∥
1
. (S3.1)

Under (S3.1),

(2/n)
(
ε−Uβ0

)′
W
(
β̂ − β0

)
≤ (2/n)

∥∥(ε−Uβ0
)
W
∥∥
∞

∥∥∥β̂ − β0
∥∥∥
1
≤ λ0

∥∥∥β̂ − β0
∥∥∥
1
,
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which inserted into (S3.1) yields

(1/n)
∥∥∥W (

β̂ − β0
)∥∥∥2

2
+ λ

∥∥∥β̂∥∥∥
1
≤ λ0

∥∥∥β̂ − β0
∥∥∥
1

+ λ
∥∥β0

∥∥
1
.

Now use, ∥∥∥β̂∥∥∥
1
≥
∥∥β0

S0

∥∥
1
−
∥∥∥β̂S0

− β0
S0

∥∥∥
1

+
∥∥∥β̂Sc

0

∥∥∥
1
,∥∥∥β̂ − β0

∥∥∥
1

=
∥∥∥β̂S0

− β0
S0

∥∥∥
1

+
∥∥∥β̂Sc

0

∥∥∥
1
, (S3.2)

and λ ≥ 2λ0, to obtain

(2/n)
∥∥∥W (

β̂ − β0
)∥∥∥2

2
+ λ

∥∥∥β̂Sc
0

∥∥∥
1
≤ 3λ

∥∥∥β̂S0
− β0

S0

∥∥∥
1
. (S3.3)

Inequality (S3.3) shows that ‖β̂Sc
0
‖1 ≤ 3‖β̂S0

− β0
S0
‖1. That is, the vector β̂ − β0

is among the vectors to which the compatibility condition applies, for the index set S0.
Next, use (S3.2) again in (S3.3) to obtain

(2/n)
∥∥∥W (

β̂ − β0
)∥∥∥2

2
+ λ

∥∥∥β̂ − β0
∥∥∥
1
≤ 4λ

∥∥∥β̂S0
− β0

S0

∥∥∥
1
. (S3.4)

Under the compatibility condition on S0,∥∥∥β̂S0
− β0

S0

∥∥∥
1
≤ s1/20 φ−10 n−1/2

∥∥∥W (
β̂ − β0

)∥∥∥
2
.

Using this and the inequality 4uv ≤ 4u2 + v2 in (S3.4), we arrive at∥∥∥W (
β̂ − β0

)∥∥∥2
2

+ λ
∥∥∥β̂ − β0

S0

∥∥∥
1
≤ 4λ2s0/φ

2
0.

S4 Proof of Proposition 2

This proof goes along the lines of the proof of Theorem 1 in Knight and Fu (2000),
but with the addition of measurement error. We start with the naive Lasso after
reparametrization, and let

Ln(γ) = − 2√
n
γ′

W√
n
ε + γ′Cwwγ + 2γ′Cwuβ

0 + λ‖γ + β0‖1. (S4.5)

Note that (2/
√
n)(W/

√
n)ε

d→ N (0, (4/n)σ2Σww); the �rst term in (S4.5) converges
in distribution to a normally distributed quantity whose variance goes to zero as 1/n,
which is equivalent to convergence in probability to zero. Combining this result with

the assumption that λ → 0 as n → ∞, yields Ln(γ)
p→ L(γ) = γ′Σwwγ + 2γ′Σuuβ

0.

Since Ln(γ) is convex, it follows that argmin
γ
{Ln(γ)} p→ argmin

γ
{L(γ)} (Knight and Fu

(2000)). The minimum of L(γ) is easily found, and accordingly, γ̂
p→ −Σ−1wwΣuuβ

0. The
result follows immediately.
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S5 Proof of Theorem 1

We follow the structure of the proof by Zhao and Yu (2006), who proved the corre-
sponding result in the absence of measurement error. Consider the naive lasso, and note
that {

sign
(
β0
S0

)
γ̂S0

> −
∣∣β0

S0

∣∣} ⇒ {
sign

(
β̂S0

)
= sign

(
β0
S0

)}
and γ̂Sc

0
= 0 ⇒ β̂Sc

0
= 0. Thus, by the KKT conditions for the naive lasso (Lemma 1),

if a solution γ̂ exists, and

−
W′

S0√
n

ε +
√
nCww (S0, S0) γ̂S0

+
√
nCwu (S0, S0)β0

S0
= −λ

√
n

2
sign

(
β0
S0

)
, (S5.1)∣∣γ̂S0

∣∣ < ∣∣β0
S0

∣∣ , (S5.2)∣∣∣∣∣−W
′
Sc
0√
n
ε +
√
nCww (Sc

0, S0) γ̂S0
+
√
nCwu (Sc

0, S0)β0
S0

∣∣∣∣∣ ≤ λ
√
n

2
1, (S5.3)

then sign(β̂S0
) = sign(β0

S0
) and sign(β̂Sc

0
) = 0.

Event A implies the existence of |γ̂S0
| < |β0

S0
| such that

∣∣Z′1ε− Z2β
0
S0

∣∣ =
√
n

(∣∣γ̂S0

∣∣− λ

2

∣∣∣Cww (S0, S0)
−1

sign
(
β0
S0

)∣∣∣) .
Buth then there must also exist |γ̂S0

| < |β0
S0
| such that

Z′1ε− Z2β
0
S0

=
√
n

(
γ̂S0
− λ

2
Cww (S0, S0)

−1
sign

(
β0
S0

))
,

which essentially means choosing the appropriate signs of the elements of γ̂S0
. Multi-

plying through by Cww(S0, S0) and reorganizing terms, we get (S5.1). Thus, A ensures
that (S5.1) and (S5.2) are satis�ed. Next, adding and subtracting

√
nCww(Sc

0, S0)γ̂S0

to the left-hand side of event B and then using the triangle inequaltity, yields∣∣∣∣−WSc
0√
n

ε +
√
n+ Cww(Sc

0, S0)γ̂S0
+
√
nCwu(Sc

0, S0)β0
S0

∣∣∣∣−∣∣∣∣−Cww(Sc
0, S0)Cww(S0, S0)−1

W′
S0√
n

ε +
√
nCww(Sc

0, S0)Cww(S0, S0)−1Cwu(S0, S0)β0
S0

+
√
nCww(Sc

0, S0)γ̂S0

∣∣∣∣ ≤ λ
√
n

2
(1− θ) 1.

The second term on the left-hand side of this expression is the left-hand side of (S5.1)
multiplied by Cww(Sc

0, S0)Cww(S0, S0)−1. It can thus be replaced by the right-hand side
of (S5.1) multiplied by this factor. This yields∣∣∣∣−WSc

0√
n

ε +
√
n+ Cww(Sc

0, S0)γ̂S0
+
√
nCwu(Sc

0, S0)β0
S0

∣∣∣∣−
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∣∣∣∣λ√n2
Cww(Sc

0, S0)Cww(S0, S0)−1sign
(
β0
S0

)∣∣∣∣ ≤ λ
√
n

2
(1− θ) 1,

which implies, due to the IC-ME,∣∣∣∣−WSc
0√
n

ε +
√
nCww(Sc

0, S0)γ̂S0
+
√
nCwu(Sc

0, S0)β0
S0

∣∣∣∣ ≤ λ
√
n

2
1.

This is indeed (S5.3). Altogether, A implies (S5.1) and (S5.2), while B|A implies (S5.3).

For the asymptotic result, de�ne the vectors

z = Cww(S0, S0)−1
W′

S0√
n

ε,

a =
∣∣β0

S0

∣∣− ∣∣Cww(S0, S0)−1Cwu(S0, S0)β0
S0

∣∣ ,
b = Cww(S0, S0)−1sign

(
β0
S0

)
,

ζ =

(
Cww(Sc

0, S0)Cww(S0, S0)−1
W′

S0√
n
−

W′
Sc
0√
n

)
ε,

f =
(
Cww(Sc

0, S0)Cww(S0, S0)−1Cwu(S0, S0)−Cwu(Sc
0, S0)

)
β0
S0
.

We have

1− P (A ∩B) ≤ P (Ac) + P (Bc) ≤
s0∑
j=1

P

(
|zj | ≥

√
n

(
aj −

λ

2
bj

))
+

p−s0∑
j=1

P

(∣∣ζj −√nfj∣∣ ≥ λ
√
n

2
(1− θ)

)
.

It is clear that z
d→ N

(
0, σ2Cww(S0, S0)−1

)
, as n → ∞. Hence, there exists a �nite

constant k such that E(zj)
2 < k2 for j = 1, . . . , s0. Next, we have by assumption

a→
∣∣β0

S0

∣∣− ∣∣Σww(S0, S0)−1Σuu(S0, S0)β0
S0

∣∣ , as n→∞,
b→ Σww(S0, S0)−1sign

(
β0
S0

)
, as n→∞.

Now using the assumption λ = o(1), we get

P (Ac) ≤
s0∑
j=1

(
1− P

(
|zj |
k

<

√
n

2k
aj (1 + o(1))

))

≤ (1 + o(1))

s0∑
j=1

(
1− Φ

(√
n

2s
aj (1 + o(1))

))
= o (exp(−nc)) ,

where we used the bound for the Gaussian tail probability

1− Φ(t) < t−1 exp
(
−(1/2)t2

)
. (S5.4)
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Next, we note that

ζ
d→ N

(
0, σ2

(
Σww(Sc

0, S
c
0)−Σww(Sc

0, S0)Σww(S0, S0)−1Σww(S0, S
c
0)
))
, as n→∞.

Next, we consider f , and note that the limiting distribution of
√
nCwu =

√
n(Cuu+Cxu)

as n→∞ is normal with mean
√
nΣwu =

√
nΣuu and �nite variances (Anderson (2003,

Th. 3.4.4)). In addition, Cww → Σww as n→∞. Thus, applying Slutsky's theorem to
the product of the matrices, the limiting distribution of

√
n
(
Cww(Sc

0, S0)Cww(S0, S0)−1Cwu(S0, S0)−Cwu(Sc
0, S0)

)
as n→∞ has mean

√
n
(
Σww(Sc

0, S0)Σww(S0, S0)−1Σwu(S0, S0)−Σwu(Sc
0, S0)

)
= 0

and �nite variances. The latter term equals zero by the MEC. Now

√
nf =

√
n
(
Cww(Sc

0, S0)Cww(S0, S0)−1Cwu(S0, S0)−Cwu(Sc
0, S0)

)
β0
S0

is a vector in Rp−s0 whose elements are linear combinations of variables whose limiting
distributions as n→∞ are normal with mean zero and �nite variances. Accordingly, the
limiting distribution of

√
nf as n→∞ is normal with mean zero and �nite variances.

So again there exists a �nite constant k such that E(ζj −
√
nfj)

2 < k2 for j =
1, . . . , (p− s0). Thus, when λn(1−c)/2 →∞ for c ∈ [0, 1), we have

P (Bc) ≤
p−s0∑
j=1

(
1− P

(
|ζj −

√
nfj |

k
<

1

k

λ
√
n

2
(1− θ)

))

≤ (1 + o(1))

p−s0∑
j=1

(
1− Φ

(
1

k

λ
√
n

2
(1− θ)

))
= o (exp(−nc)) .

It follows that P (A ∩B) = 1− o(exp(−nc)).

S6 Proof of Proposition 3

We consider now the Lasso with ε = 0. In this case, y = Xβ0, and the Lasso becomes
β̂ = argmin

β

{
‖Wβ −Xβ0‖22 + λ‖β‖1

}
. We follow the proof of Bühlmann and van de

Geer (2011, Th. 7.1), but also take measurement error into account.

Part 1

The KKT conditions take the form

2Cww(S0, S0)(β̂S0
− β0

S0
) + 2Cww(S0, S

c
0)β̂Sc

0
+ 2Cwu(S0, S0)β0

S0
= −λτ̂S0

(S6.1)
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2Cww(Sc
0, S0)(β̂S0

− β0
S0

) + 2Cww(Sc
0, S

c
0)β̂Sc

0
+ 2Cwu(Sc

0, S0)β0
S0

= −λτ̂Sc
0
, (S6.2)

where τ̂ = (τ̂ ′S0
, τ̂ ′Sc

0
)′ has the properties ‖τ̂‖∞ ≤ 1 and τ̂j = sign(β̂j) if βj 6= 0. We

multiply (S6.1) by β̂
′
Sc
0
Cww(Sc

0, S0)Cww(S0, S0)−1 and (S6.2) by β̂
′
Sc
0
, and then subtract

the �rst from the second, to get

2β̂
′
Sc
0

(
Cww(Sc

0, S
c
0)−Cww(Sc

0, S0)Cww(S0, S0)−1Cww(S0, S
c
0)
)
β̂Sc

0
+

2β̂
′
Sc
0

(
Cwu(Sc

0, S0)−Cww(Sc
0, S0)Cww(S0, S0)−1Cwu(S0, S0)

)
β0
S0

= λ
(
β̂
′
Sc
0
Cww(Sc

0, S0)Cww(S0, S0)−1τ̂S0 − β̂
′
Sc
0
τ̂Sc

0

)
(S6.3)

The matrix term within the parantheses in the leftmost term is positive semide�nite,
since it is the Schur complement of the positive semide�nite matrix Cww, in which the
part Cww(S0, S0) is positive de�nite, since s0 < n. Next, the term within the parantheses
on the right-hand side is

β̂
′
S0

Cww(Sc
0, S0)Cww(S0, S0)−1τ̂S0 − ‖β̂S0

‖1 ≤(∥∥Cww(Sc
0, S0)Cww(S0, S0)−1τ̂S0

∥∥
∞ − 1

) ∥∥∥β̂Sc
0

∥∥∥
1
≤ 0.

The last inequality follows from the IC-ME, and is strict whenever ‖β̂Sc
0
‖1 6= 0. Finally,

the second term on the left-hand side of (S6.3) is zero by assumption. Thus, if ‖β̂Sc
0
‖1 6=

0, the left-hand side of (S6.3) must be negative, which is a contradiction. We thus

conclude that β̂Sc
0

= 0, and the KKT conditions (S6.1) and (S6.2) reduce to

2Cww(S0, S0)
(
β̂S0
− β0

S0

)
+ 2Cwu(S0, S0)β0

S0
= −λτ̂S0

(S6.4)

2Cww(Sc
0, S0)

(
β̂S0
− β0

S0

)
+ 2Cwu(Sc

0, S0)β0
S0

= −λτ̂Sc
0
, (S6.5)

From (S6.4) we get∣∣∣β̂S0
− β0

S0

∣∣∣ =

∣∣∣∣λ2 CS0
(S0, S0)−1τ̂S0

+ Cww(S0, S0)−1Cwu(S0, S0)β0
S0

∣∣∣∣ (S6.6)

≤

(
λ

2
sup
‖τ‖∞≤1

∥∥Cww(S0, S0)−1τS0

∥∥
∞

)
1 +

∣∣Cww(S0, S0)−1Cwu(S0, S0)β0
S0

∣∣ .
Now, if j ∈ Sdet

0 and β̂j = 0, then

∣∣∣β̂j − β0
j

∣∣∣ =
∣∣β0

j

∣∣ > λ

2
+

(
sup
‖τ∞‖≤1

∥∥Cww(S0, S0)−1τS0

∥∥
∞

)
+ |vj | ,

where v = (v1, . . . , vp)
′

= Cww(S0, S0)−1Cwu(S0, S0)β0
S0
, contradicting (S6.6). Thus,

β̂j 6= 0 for j ∈ Sdet
0 .
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Part 2

We start by assuming sign(β̂) = sign(β0). Thus, the KKT conditions are (S6.4) and
(S6.5). From (S6.4) we get

β̂S0
− β0

S0
= −λ

2
Cww(S0, S0)−1τ̂S0

−Cww(S0, S0)−1Cwu(S0, S0)β0
S0
.

Inserting this into (S6.5) yields

Cww(Sc
0, S0)Cww(S0, S0)−1τ̂S0

+

2

λ

(
Cww(Sc

0, S0)Cww(S0, S0)−1Cwu(S0, S0)−Cwu(Sc
0, S0)

)
β0
S0

= τ̂Sc
0
,

and the necessary condition stated in Proposition 3 follows by de�nition.

S7 Proof of Theorem 2

Starting from the KKT conditions of Lemma 2, we will redo the steps of the proof
of Theorem 1, but with the insertion of extra terms representing the correction for
measurement error. The corrected lasso is not in general convex, and our analysis will
thus concern any critical point γ̂ = β̂ − β0 in the interior of the feasible set {γ :
‖γ + β0‖ < R}.

If γ̂ exists, and

−
W′

S0√
n

ε +
√
n (Cww (S0, S0)−Σuu (S0, S0)) γ̂S0

+ (S7.1)

√
n (Cwu (S0, S0)−Σuu (S0, S0))β0

S0
= −λ

√
n

2
sign

(
β0
S0

)
,∣∣γ̂S0

∣∣ < ∣∣β0
S0

∣∣ , (S7.2)∣∣∣∣− W ′Sc
0√
n
ε +
√
n (Cww (Sc

0, S0)−Σuu (Sc
0, S0)) γ̂S0

+ (S7.3)

√
n (Cwu (Sc

0, S0)−Σuu (Sc
0, S0))β0

S0

∣∣∣∣ ≤ λ
√
n

2
1,

then sign(β̂S0
) = sign(β0

S0
) and sign(β̂S0

) = 0.

Event A in Theorem 2 implies the existence of |γ̂S0
| < |β0

S0
| such that∣∣Z6 − Z7βS0

∣∣ =
√
n

(∣∣γ̂S0

∣∣− λ

2

∣∣∣(Cww (S0, S0)−Σuu (S0, S0))
−1

sign
(
β0
S0

)∣∣∣) .
But then there must exist |γ̂S0

| < |β0
S0
| such that

Z6 − Z7βS0
=
√
n

(
γ̂S0
− λ

2
(Cww (S0, S0)−Σuu (S0, S0))

−1
sign

(
β0
S0

))
.
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Multiplying through by Cww(S0, S0)−Σuu(S0, S0) and reorganizing terms, we get (S7.1).
Thus, A ensures that (S7.1) and (S7.2) are satis�ed. Next, adding and subtracting√
n (Cww (Sc

0, S0)−Σuu (Sc
0, S0)) γ̂S0

to the left-hand side of event B and the using the
triangle inequality, yields∣∣∣∣∣−W′

Sc
0√
n

ε +
√
n
(
(Cwu (Sc

0, S0)−Σuu (Sc
0, S0)) γ̂S0

+ (Cwu (Sc
0, S0)−Σuu (Sc

0, S0))β0
S0

)∣∣∣∣∣∣∣∣∣− (Cww (Sc
0, S0)−Σuu (Sc

0, S0)) (Cww (S0, S0)−Σuu (S0, S0))
−1 W′

S0√
n

+

√
n (Cww (Sc

0, S0)−Σuu (Sc
0, S0)) (Sww (S0, S0)−Σuu (S0, S0))

−1

(Cwu (S0, S0)−Σuu (S0, S0))β0
S0

+
√
n (Sww (Sc

0, S0)−Σuu (Sc
0, S0)) γ̂S0

∣∣∣∣
≤ λ
√
n

2
(1− θ) 1.

The second term on the left-hand side of this expression is the left-hand side of (S7.1) mul-

tiplied by (Cww (Sc
0, S0)−Σuu (Sc

0, S0)) (Cww (S0, S0)−Σuu (S0, S0))
−1
. It can thus be

replaced by the right-hand side of (S7.1) multiplied by this factor. This yields∣∣∣∣∣−W′
Sc
0√
n

ε +
√
n
(
(Cwu (Sc

0, S0)−Σuu (Sc
0, S0)) γ̂S0

+ (Cwu (Sc
0, S0)−Σuu (Sc

0, S0))β0
S0

)∣∣∣∣∣∣∣∣∣λ√n2
(Cww (Sc

0, S0)−Σuu (Sc
0, S0)) (Cww (S0, S0)−Σuu (S0, S0))

−1
sign

(
β0
S0

)∣∣∣∣
≤ λ
√
n

2
(1− θ) 1,

which implies, due to the IC-CL,∣∣∣∣− W′
Sc
0√
n

ε +
√
n (Cwu (Sc

0, S0)−Σuu (Sc
0, S0)) γ̂S0

+
√
n (Cwu (Sc

0, S0)−Σuu (Sc
0, S0))β0

S0

∣∣∣∣ ≤ λ
√
n

2
1.

This is indeed (S7.3). Altogether, A implies (S7.1) and (S7.2), while B|A implies (S7.3).

For the asymptotic result, de�ne the vectors

z = (Cww(S0, S0)−Σuu (S0, S0))
−1 W′

S0√
n

ε,

a =
∣∣β0

S0

∣∣− ∣∣∣(Cww(S0, S0)−Σuu(S0, S0))
−1

(Cwu(S0, S0)−Σuu(S0, S0))β0
S0

∣∣∣ ,
b = (Cww(S0, S0)−Σuu(S0, S0))

−1
sign

(
β0
S0

)
,

ζ =

(
(Cww(Sc

0, S0)−Σuu(Sc
0, S0)) (Cww(S0, S0)−Σuu(S0, S0))

−1 W′
S0√
n
−

W′
Sc
0√
n

)
ε,
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f =

(
(Cww(Sc

0, S0)−Σuu(Sc
0, S0)) (Cww(S0, S0)−Σuu(S0, S0))

−1

(Cwu(S0, S0)−Σuu(S0, S0))− (Cwu(Sc
0, S0)−Σuu(Sc

0, S0))

)
β0
S0
.

We have

1− P (A ∩B) ≤ P (Ac) + P (Bc) ≤
s0∑
j=1

P

(
|zj | ≥

√
n

(
aj −

λ

2
bj

))
+

p−s0∑
j=1

P

(∣∣ζj −√nfj∣∣ ≥ λ
√
n

2
(1− θ)

)
.

It is clear that

z
d→ N

(
0, σ2Σxx (S0, S0)

−1
Σww (S0, S0) Σxx (S0, S0)

−1
)
, as n→∞.

Hence, there exists a �nite constant k such that E(zj)
2 < k2 for j = 1, . . . , s0. Next, we

have by assumption a→
∣∣β0

S0

∣∣ , as n→∞. Now using the assumption λ = o(1), we get

P (Ac) ≤
s0∑
j=1

(
1− P

(
|zj |
k

<

√
n

2k
aj (1 + o(1))

))

≤ (1 + o(1))

s0∑
j=1

(
1− Φ

(√
n

2s
aj (1 + o(1))

))
= o (exp(−nc)) ,

where we used the bound (S5.4). Next, we note that

ζ
d→ N

(
0, σ2

(
Σxx(Sc

0, S
c
0)−Σxx(Sc

0, S0)Σxx(S0, S0)−1Σxx(S0, S
c
0)
))
, as n→∞.

Next, we consider f , and note that the limiting distribution of
√
n (Cwu −Σuu) , as n→

∞, is normal with mean 0 and �nite variances (Anderson (2003, Th. 3.4.4)). In addition,
Cww −Σuu → Σxx, as n→∞. Thus, applying Slutsky's theorem to the product of the
matrices, the limiting distribution of

√
n

(
(Cww(Sc

0, S0)−Σuu(Sc
0, S0)) (Cww(S0, S0)−Σuu(S0, S0))

−1

(Cwu(S0, S0)−Σuu(S0, S0))− (Cwu(Sc
0, S0)−Σuu(Sc

0, S0))

)
, as n→∞,

is normal with mean 0 and �nite variances. Now,

√
nf =

√
n

(
(Cww(Sc

0, S0)−Σuu(Sc
0, S0)) (Cww(S0, S0)−Σuu(S0, S0))

−1

(Cwu(S0, S0)−Σuu(S0, S0))− (Cwu(Sc
0, S0)−Σuu(Sc

0, S0))

)
β0
S0
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is a vector in Rp−s0 whose elements are linear combinations of variables whose limiting
distributions as n→∞ are normal with mean zero and �nite variances. Accordingly, the
limiting distribution of

√
nf as n→∞ is normal with mean zero and �nite variances.

So again there exists a �nite constant k such that E(ζj −
√
nfj)

2 < k2 for j =
1, . . . , (p− s0). Thus, when λn(1−c)/2 →∞ for c ∈ [0, 1), we have

P (Bc) ≤
p−s0∑
j=1

(
1− P

(
|ζj −

√
nfj |

k
<

1

k

λ
√
n

2
(1− θ)

))

≤ (1 + o(1))

p−s0∑
j=1

(
1− Φ

(
1

k

λ
√
n

2
(1− θ)

))
= o (exp(−nc)) .

It follows that P (A ∩B) = 1− o(exp(−nc)).
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