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S1 Proof of Theorem 1

Suppose Sζ is an arbitrary dimension-reduction subspace. Define Bζ as the basis matrix
of Sζ , and PBζ

= Bζ(B
′
ζBζ)

−1B′ζ is the projection matrix. Note that the population

version of QIF is Q(b) = (Eg)′W−1(Eg), where g is a (mp)-dimensional estimating
function.

We first show that Q(b) ≥ Q(PBζ
b) for any p-dimensional parameter b ∈ Rp. This

implies that the minimizer of Q(b), denoted as γ, must lie in Sζ , and thus lie in the
central subspace SY |X = ∩ζSζ . This is similar to the argument of Theorem 2.1 in Li
and Duan (1989), and Proposition 8.1 in Cook (1998, p.144).

Since Q(b) = {E(W− 1
2g)}′{E(W− 1

2g)}, we define g∗ = W− 1
2g. Then,

Var(g∗) = Imp = E(g∗g∗′)− (Eg∗)(Eg∗)′.

Therefore,

Q(b) = (Eg∗)′(Eg∗) = tr{(Eg∗)′(Eg∗)}
= tr{(Eg∗)(Eg∗)′} = tr{E(g∗g∗′)− Imp}
= E{tr(g∗g∗′)−mp} = E(g∗′g∗)−mp
= E[E{g∗′(b′X,Y)g∗(b′X,Y)}|Y,B′ζX]−mp.

Note that L(b′X,Y) = g∗′(b′X,Y)g∗(b′X,Y) is convex with respect to its first argu-
ment. Therefore,

Q(b) = E[E{L(b′X,Y)}|Y,B′ζX]−mp
≥ E{L(E(b′X|Y,B′ζX),Y)} −mp
= E{g∗′(E(b′X|Y,B′ζX),Y)g∗(E(b′X|Y,B′ζX),Y)} −mp.

Because Bζ is the basis matrix of Sζ , we have X|(Y,B′ζX)
d
= X|B′ζX; and the linearity
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condition implies that E(X|B′ζX) = PBζ
X. Hence,

Q(b) ≥ E{g∗′(E(b′X|B′ζX),Y)g∗(E(b′X|B′ζX),Y)} −mp
= E{g∗′((PBζ

b)′X,Y)g∗((PBζ
b)′X,Y)} −mp

= Q(PBζ
b).

Next, we show that γ̂ is a strongly consistent estimator of γ. This follows Theorem
5.1 of Li and Duan (1989), which states that the minimizer of the sample loss function
converges to the minimizer of the risk function almost surely, if the objective loss function
is convex with respect to its first arument.

S2 Proof of Corollary 1(transformation)

Following Cook (1998, p.115), if h is a function of Y, then Sh(Y )|X ⊆ SY |X; and if h is
one-to-one, then Sh(Y )|X = SY |X. Then Corollary 1 follows immediately from Theorem
1.

S3 Proof of Lemma 1

The first part of this proof shows that we gain more information and achieve higher
efficiency by incorporating additional correlation information formulated by the moment
condition G2.

We first orthogonalize G2 from G1 as

G∗2 = G2 −C21C
−1
11 G1,

where C21 = Cov(G2,G1) and C11 = Var(G1). After orthogonalization, Cov(G∗2,G1) =
0. Let G∗ = (G′1,G

∗
2
′)′, C∗ = Var(G∗), and C∗22 = Var(G∗2), then C∗22 = C22 −

C21C
−1
11 C12, where C22 = Var(G2) and C12 = Cov(G1,G2). Since Ġ∗2 = Ġ2 −

C21C
−1
11 Ġ1, the information matrix of the estimator by minimizing G′C−1G is pro-

portional to

Ġ′C−1Ġ = (Ġ∗)′(C∗)−1(Ġ∗)

= Ġ′1C
−1
11 Ġ1 + (Ġ∗2)′(C∗22)−1(Ġ∗2).

Note that C∗22 is non-negative definite, so in the sense of Loewner ordering for matrices,

Ġ′C−1Ġ ≥ Ġ′1C
−1
11 Ġ1.

The following argument shows that if G1 contains all information about the param-
eter, adding additional moment conditions will not improve efficiency. That is, if M1 is
proportional to R−1, then Ġ′C−1Ġ = Ġ′1C

−1
11 Ġ1.
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The detailed proof is provided as follows. Recall that Gl =
∑n
i=1 µ̇

′
iA
− 1

2
i MlA

− 1
2

i (yi−
µi), l = 1, 2. Assume R−1 = a1M1, then

Ġ1 = − 1

a1

n∑
i=1

µ̇′iA
− 1

2
i R−1A

− 1
2

i µ̇i + op(1), and Ġ2 = −
n∑
i=1

µ̇′iA
− 1

2
i M2A

− 1
2

i µ̇i + op(1).

In addition,

C11 =
1

a21

n∑
i=1

µ̇′iA
− 1

2
i R−1A

− 1
2

i µ̇i, and C21 =
1

a1

n∑
i=1

µ̇′iA
− 1

2
i M2A

− 1
2

i µ̇i.

Thus, C11 = − 1
a1
Ġ1 + op(1) and C21 = − 1

a1
Ġ2 + op(1), and this results in Ġ∗2 = op(1).

Therefore,

Ġ′C−1Ġ = Ġ′1C
−1
11 Ġ1 + op(1).

S4 Proof of Theorem 2

Theorem 18.11 of Kosorok (2008, p.341) shows that the marginal efficiency of two es-
timators leads to their joint efficiency on product spaces, given the condition that the
two estimated parameters are differentiable with respect to their tangent space. The
main goal of this proof is to verify this condition under the sufficient dimension reduc-
tion framework for longitudinal data, and thus the estimators by the proposed method
have joint efficiency, leading to the efficiency of the central subspace. The definition of
tangent space and differentiability with respect to the tangent space are provided in the
following two paragraphs respectively.

Without loss of generosity, we assume γ1, . . . ,γd are linearly independent. Then
γj ∈ SY |X implies Span(γ1, . . . ,γd) = SY |X, j = 1, . . . , d. Set s = d and B∗ =

(γ1, . . . ,γd). Suppose u = (u1, . . . ,ud) is a p × d constant matrix in Rp×d, and let
vec(u) = (u′1, . . . ,u

′
d)
′ denote the vectorization of u. Suppose the transformed response

hj(yit) is imposed for score function Sj such that the solution γ̂j of Sj = 0 is an efficient
estimator of γj , j = 1, . . . , d. Let S = (S′1, . . . ,S

′
d)
′. Define the tangent function to be

H = S′vec(u). Then a tangent set is T = {H = S′vec(u) : u ∈ Rp×d}. Since this
tangent set is closed under linear combination, it is also a tangent space.

For an arbitrarily small δ ≥ 0 and fixed vec(B) = (β′1, . . . ,β
′
d)
′, suppose the model

has a true parameter vec(B) + δvec(u). A parameter γ is differentiable with respect to
the tangent space T , if dγ/dδ|δ=0 = ψ̇(H), where ψ̇(·) is a bounded linear operator.

Since B = (β1, . . . ,βd) and span(B) = SY |X, there exists a d×d matrix D, such that
B∗ = BD. Since the pd× pd information matrix of vec(B) = (β′1, . . . ,β

′
d)
′ is bounded,

the information matrix Ṡ′C̃−1Ṡ of (γ′1, . . . ,γ
′
d)
′ is also bounded, where C̃ = Var(S).
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For any direction u ∈ Rp×d and an arbitrarily small δ ≥ 0,

dγj
dδ

=
dγj

dvec(B + δu)
vec(u)

=
dγj

dvec(BD + δuD)

dvec(BD + δuD)

dvec(B + δu)
vec(u)

=
dγj

dvec(BD + δuD)
(D′ ⊗ Ip)vec(u)

=
dγj

dvec(B∗ + δu∗)
(D′ ⊗ Ip)vec(u),

where u∗ = uD, j = 1, . . . , d and ⊗ denotes the Kronecker product.

Similar to Lemma 1, we can show that C̃ = −Ṡ + op(1). And E(S) = 0 implies

−Ṡ′C̃−1Ṡ = E(SS′) + op(1). Therefore,

dγj
dδ

=
dγj

dvec(B∗ + δu∗)
(D′ ⊗ Ip)(−Ṡ′C̃−1Ṡ)−1{E(SS′)}vec(u) + op(1)

=
dγj

dvec(B∗ + δu∗)
(D′ ⊗ Ip)(−Ṡ′C̃−1Ṡ)−1{E(SH)}+ op(1).

Define ψ̇j(H) = dγj/dδ|δ=0 for any tangent function H ∈ T . Since γj is the j-
th column of B∗, dγj/dvec(B∗ + δu∗)|δ=0 is bounded. Because D is a bounded linear

transformation and (−Ṡ′C̃−1Ṡ) is also bounded, it follows that ψ̇j(·) is a bounded linear
operator. Therefore, γj is differentiable with respect to the tangent space T , j = 1, . . . , d.

Following Theorem 18.11 of Kosorok (2008, p.341), we conclude that (γ̂1, . . . , γ̂d)
is an asymptotic efficient estimator of (γ1, . . . ,γd).

References

Cook, R. D. (1998). Regression Graphics: Ideas for Studying Regressions Through
Graphics. Wiley, New York.

Kosorok, M. R. (2008). Introduction to Empirical Processes and Semiparametric Infer-
ence. Springer, New York.

Li, K. C. and Duan, N. (1989). Regression analysis under link violation. Ann. Statist.
17, 1009-1052.


