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S1 Notation

The purpose of this section is to collect the notation used in this supplementary file.

Let | X|, = (E|X|P)Y/? for X € LP(Q,F,P) and p < co. ||A|| = \/tr(ATA) for
AecR™ or A e R"™! and n > 1. We write A > 0 if A is a positive definite matrix,
and A > 0 if A is positive semi-definite. If A is finite element by element, then we write
A < oo.

We use V to denote the vector differential operator (w.r.t ) so that Vf is the
gradient (column vector) of scaler function f, and Hess(f) the Hessian matrix of f, i.e.,
ent; jHess(f) = 0;0;f where 0), denotes the partial derivative w.r.t. the k' parameter
in 0 = (a, 5,7, ¢). For avector ¢, 0y represents the partial derivative w.r.t. a component
of ¢ (say ¢;), and 8; is treated as 0y,0y,, and V4 is a vector differential operator w.r.t.

o.

S2 More details on Assumption [2.4]

Assumption 2.4 essentially guarantees that the HYBRID process is non-negative and
measurable, and satisfies identifiability if it is parameterized. Conditions (1) and (2) are
very standard. Here we give more explanations on condition (3) which also pertains to
the choice of ®.

Exzample 1. Consider the HYBRID process driven by MIDAS component with an
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exponential Almon lag polynomial:

m—1

Hy(¢) = Z (7 + bj(n))rffj/mv (52.1)
j=0
and
exp{m (j/m) +12(j/m)*} . . T
bj(n) = =z ;4> 0,m,m2 €R ¢ = (F,m1,1m2)
T explm (k/m) + e (k/m)?)
For easy discussion we let m = 5.
1. When 4 > 0 and 71,72 # 0. Note that 0H,; /07 = Z?:Ol Tf_j/m, OH/Om =

E;.n:_ol (8bj/8n1)rf_j/m, and OH;/Ons = Z;-n:_ol (Bbj/ang)rf_j/m. For ¢ = (¢1,c2,¢3,¢4,¢5) "
€ R®, suppose that ¢y + co Hy + c30H; /07 + c40H; /O + c50H; /Ona = 0, which is
equivalent to ¢; + Z;’:Ol [c2(7 +bj) + c3 + ca(Obj/Om) + 65(3bj/3772)]7"f_j/m = 0.
Hence Cc1 = O, and CQ(:Y"—bj)"'Cg +C4(abj/8771>—|—65 (8()]/87’]2) =0 fOI‘j = O, 1, 2, 3, 4.

Note that E;n:_ol bj(n) = 1. We have ca(m7 + 1) +meg = 0, and c2(b; — 1/m) +
c4(0b;/Om) + ¢5(0b;/On2) = 0, V 7, or equivalently

bo —1/5 9bo/On1  Obo/On2 0
b1 —1/5 0bi1/On1  0Ob1/0n2 c2 0
ba —1/5 9ba/On1  Oba/0n2 cyq = 0 (S2.2)
bz —1/5 0Obg/On1  0Obz/0n2 cs 0
bs —1/5 Oby/On1  Oba/On2 0

Since

0b;(n) ik 0b;(n) I s

—bn (L -5 2 Y (A )
B~ 00 | e | TR =0 { S = 3 T

the rank of the coefficient matrix in (S2.2)) is 3. We have co = ¢4 = ¢5 = 0, and
hence ¢z = 0 as well. It follows that 1, H;, and each component of 04(H;) are
linearly independent, when 4 > 0 and 71,712 # 0.

2. When 4 > 0, and either n; # 0,12 = 0ormy = 0,12 # 0, 1, H;, and each component
of 04(H,) are linearly independent. The proof is similar to (1).

3. When 4 > 0 and m1 = 2 = 0, Hi(¢) = Z;-n:_ol(ﬁ—i— 1/m)rt27j/m. For ¢ =
(c1,¢2,¢3) € R3, 1 + coHy + c30H; /07 = 0 is equivalent to ¢ + Z;’:(Jl[cQ(:y +
1/m) + ¢slry_; ), = 0, which implies ¢; = 0, and ¢2(7 + 1/m) + c3 = 0. Because
c2 and c3 may not be zero at the same time, 1, Hy, and each component of 0y (H;)
are linearly dependent.

The above discussion shows that if ® is a connected subset of {(§,m1,72) : ¥ >
0,m7 +n3 # 0}, Hy(¢) satisfies condition (3). [ ]
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Example 2. Counsider the HYBRID process in equation ([I8)), i.e.,

m—1 m—1
\Ijj (bl NIC ¢2;Tt ]/m) \I/J(d)l) = 17 (823)
Jj=0 Jj=0

where ¢ = (¢1,d2), and the weights (Uo(é1), ¥1(¢1),..., VUp_1(¢1))" are determined
by a low-dimensional functional specification. In this example, we will discuss how to
choose weights and the parameter space ® in order to meet condition (3). Two NIC
specifications are considered:

NIC(¢2,7) = br*l,>q + 0r°1,<o, (S2.4)
NIC(¢2,7) = b(r — )% (S2.5)

Hence ¢9 = (b,d). The degenerate case that ¢ = 0 and/or ¢o = 0 is excluded from the
discussion.

(1) Consider first NIC(¢2,7) = br?l,>q + 0r?l, .o where b # 0, § # 0. For ¢ =
(c1,¢2,¢3,¢4,05), 1 + caHy + c30H;/Ob + c40H: /I8 + ¢k V4, Hy =0 is equivalent to

c1 + [Cz\ij—FC;g\I/j —|—bC§V¢1\I/j] 1Tt—j/m207't27j/m
+ [Cz@jd + U + 5C§V¢1 \I/j] 1Tt7j/m<07't27j/m =0.

Because 1”7]./"20 and 1Tt—j/m<0 are linearly independent, we have ¢y = O7 oW ;b +
csW; + bc5 Ve,V =0, o6 + ca¥; + 5l Vy, ¥ = 0 for j = 0,1,. — 1. Note
that ZJ 0 \IJ = 1. It follows that cob+c3 = 0, 025—|—C4 =0, and ¢z V¢1\IJ =0 (V7).
Moreover, cs is 0 if the weights satisfy Assumption [S2.1] below.

Assumption S2.1. The rank of the matriz (Vy,¥o, Ve, U1, ..., Ve, 1) is same as
the dimension of ¢1.

But cg,c3,¢4 may not be zeros. Therefore, 1, H;, and each component of 04(H;) are
linearly dependent.

In order to have Hi(¢) meet condition (3), one should consider NIC(¢2,7) =

7‘21T20 +6r?1,<9 or NIC(¢a,7) = br21rzo + 721, .o and the weights satisfy Assumption

(2) The HYBIRD process H;(¢) with NIC(¢p2,7) = b(r — )% (b > 0,6 # 0) does not
meet condition (3). The proof is similar. However, H;(¢) with NIC(¢2,7) = (r — c)?
and weights satisfying Assumption [S2.1] will satisfy condition (3). |

S3
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S3 Proofs

We first present some useful results. The following lemmas are stated under Assumptions

2T and 24

Lemma S3.1. Under Assumptions[31 and[33(1), 0;Viji—1(0), 0:0;Vip—1(0) are strictly
stationary ergodic for 0 € C andi,j € {1,2,...,d+3}. Moreover under the additional As-
sumptionlZ(2), E(supgec Vije-1(0))?, E(supgec 10:Vije—1(0)1)?, and E(suppe 0:0;Viye—1(0)])?

are bounded.

Proof: Note that H;, 0;H;, 0;0;H; are strictly stationary ergodic. Vj;_1(0) = ﬁ
+ ¥ peo B Hi—1-k(¢) as for @ € C. It is easy to check that Y o, 9;(v8*) and
> ne 0:0;(vB*) are absolutely summable uniformly on C, which implies that 9;V;;—1
= 9i(a/(1 = B)) + X320 (VB Hi—1—1(¢)) as. and 9;0;Vip—1 = 9:05(a/(1 — B)) +
Y re 0 0:0;(vBEHy—1_1(¢)) a.s., and hence they are strictly stationary ergodic.

Since C is bounded, one can always find constants (say) ¢; > 0,3 > 0and 0 < ¢3 < 1
such that Vi1 (0) < c1 +c2 Yoo ck SUP,, 5o H;_1_1(¢). Note that -7 clg(sup%@ Hy 1 ()2

< 00 a.s. due to Assumption[33(2). We have Vyj,_1(0)* < 2¢7 + 12_653 D heo S5 (5upyego Hi—1-1(0))*

a.s. due to the Cauchy-Schwarz inequality and hence E(supyee Vip—1(6))? is O(1). Sim-
ilarly E(supgee |0:Vye—1(0)))? and E(supgee [0:9;Vi—1(0)])? are O(1). [ ]

Lemma S3.2. Fiz 0 € C. If p"VVy;_1(0) = 0 a.s. for anyt € Z, then p = 0.

Proof: Let p = (p1, p2, p3, p4) € R¥T3 where py is of the same dimension as ¢. Note that
VVigap(0) = Va + (VB)Vie—1(0) + B(VVie-1(0)) + V(vHi(9)). p"VVie—1(0) = 0 as.
implies py + p2Vije—1(0) +psHi(¢) + i Vo Hi(¢) = 0 a.s. Since psHy(¢) +ypi Ve Hyi(9)
€ Z;, p2=0 and hence p; + p3H;(¢) + vpIV4H(¢) = 0 a.s. Assumption 4] implies
p1 = p3 = pg = 0 (since v > 0). |

Lemma S3.3. For 0 € C, Vy;—1(0) = Viu—1(6o) a.s. V't € Z if and only if 6 = bp.

Proof: Sufficiency is apparent. We need to check the necessity. If Vyj;_1(6) = Vi—1(6o)
a.s. for t € Z, then a— g + (8—B0) Vijr—1(00) + (vH(0,7:) —y0H (¢0,7%)) = 0 a.s. Since
Vije—1(6o) € Zy—1 and yH (¢, ;) —voH (¢o,73) € L1, we have f = By and hence (a—ag) +
(YH (9, 7%) —70H (0, 7)) = 0 a.5. Note that vH (6, 7) — v0H (g0 75) = H(9,7)(y = 70)
+ (¢ — ¢0) TV H(p,7;) where (7, ) is between (v, ¢) and (vo, ¢o) and it may depend
on t. Assumption 24 indicates that o = «ag, v = 79 and ¢ = ¢p. In other words 6 = 6.
[ |

Lemma S3.4. Suppose that E(sup g5 H($,71))° < oo for some § > 0, and inequality
(&) holds. Then we have

E(zug 10iVije—1/Vije-11)" < o0, E(zu;c) 10:0;Vijt—1/Vije—1])" < oo Vo >0. (S3.1)
€ €
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Proof: |04H(¢,Z)/H(¢,Z)| and |8§5H(¢, Z)/H (¢, Z)| are bounded on C. Suppose that

the upper bound is M; > 0. Note that |0;(a/(1 — )] < (1/a+ 1/(1 — 8))a/(1 — B)

and [9;(v8*)| < (1/v +k/B)vB*. @) implies that |9;Vi;—1| < [8i(a/(1 = B) + 2232,

C(k)yB¥Hy_1_i(¢) where C(k) = My 4 1/y+k/B. Therefore, on C, [0; Vyji—1(0)/Vyje—1(0)]
< (/a+1/(1=B)+C(N)+(1=8)/aY oy C(k)yB* Hi—1_k(¢), for N € N. Because one

can always find constants My > 0 and 0 < p, < 1 such that (1 — 3)/aC(k)y8F < Myp¥,

1/a+1/(1-p) < My and C(N) < MaN on C, we have for 0 € C, |0;Vy,—1(0)/Vyje—1(0)]

< Mo+ MyN 4 Mo >,y pFHy 1 1.(¢). The rest of discussion is similar to the proof of
Lemma 5.2 of Berkes et all (2003), and hence we have Esupgec [0iVyje—1/Vije—1]" < o0

for any v > 0.

The second inequality in (S3.)) follows from a similar argument. ]

Lemma S3.5. Let £,(0) = RV; — Vyi—1(0), and F{27 = o(rg,t —m—1+1/m < s <
t+m). Suppose that Er8 < oo, ry is strictly stationary, and Assumption[T3(3) is true.
Fork e {1,....,d+3} and 0 € C, ||e:0ket|l2 < oo and sup, ||e;0ker — E(0kee| Fi™)|l2
< Cp™ for some constants C > 0 and 0 < p < 1. Therefore {e,0rer,t € Z} is near
epoch dependent on {7}. This is also true when RV; is replaced with R?.

Proof: Let Z; = £,0ke¢. Note that Esupgec tht 1(0) < 0o and Esupyee(OkVi—1(0))*
< o0, which follows from an argument similar to the proof of Lemma [S3.11 We have
[1Ztll2 < lleellallOreella < oo

Since &,(0) = RV, — 195 — 72;10 BIH;—1-($), it can be written as 5t(9) =
Z;io ¢;j(0)H;_;(0) where c¢o(0) = 1, H(0) = RV; — /(1 — B), and ¢;(f) = —y37~,
H;_;(0) = Hy_j(¢) for j > 1. Hence

Zi=| Y 4 >+ > |eHide i) = 2 + 6™ 1™
0<i,j<m  0<i<m,j>m  i>m,j>0

(93.2)

Note that ||§tm)||2 < Zogigm,j>m |Ciak(0j)|||f{t7if{t7j”2 + |CiCj|||f{t7iak(gt,j)H2. Since
there exist 0 < p < 1 and M > 0 such that |¢;| < Mp® and |Okc;| < Mp® for i > 0,
1€, < 2M2B1 /(1 — p)p™+t. Similarly, |[n{™ ]2 < 2M2By/(1 — p)p™+!. Note that
12, — E(ZF ) < 120 — 2™ |ls. Therefore sup, | Z — E(ZIFE™ 2 < Cp™ for
some constants C' > 0 and 0 < p < 1. |

Lemma S3.6. Let [;(0) = log Vyu—1 4+ RV;/Vy—1(0). Suppose that r, is strictly station-
ary. Then

(1) Esupgec [1:(0)| < oo if E'sup,go H(¢, ) < o0

(2) Suppose that E SUp 4 5o H(¢,7}) < oo and inequality (§) holds. Then E supgcc |0il:(6)]

< 00 and Esupgec [0;0;14(0)| < co. If additionally assume that Er*™ < oo for some
v >0, then E(supgee 0:1:(0)])? < .

This is also true when RV; is replaced with R3.
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Proof: (1) Note that loga <1;(6) <log V;j;—1(0)+RV;/a. Hence [l;(0)| < max(|log al, Vy;—1(0)+
RV;/a). Since Esupgec Vipp—1(0) < oo which follows from an argument similar to the
proof of Lemma [S3.7] we have E supgce |l:(0)] < oc.

(2) Note that 9;l; = (1 — RV;/Vy4—1)0iVipr—1/Vij—1 and 0:0;ly = (1 — RV;/Vye—1)
(0:0;Vyjt—1/Vipr—1) + (2RV;/Vyp—1 — 1)(0:Vir—1/Vaje—1)(0;Vijt—1/Vije—1). We have, due
to due to Lemma

Esup|0;1:(0)| <E(sup(l + RV;/a))?E(sup Bﬂ/ﬂt,l/V}“,l)z < 00,
pec vec vec

E(sup|9;14(0)|)* <E(sup(1 + RV;/a))* /2 E(sup 0;Vye—1/Vijp—1) T ) < o,
eC eC oeC

Esup |9;0;1:(0)] <E(sup(1 + RVt/a))2E(§ulg(6iBjVﬂt,l/Vt‘t,l))2
€

oec oec
+ E(zug@RV}/a + 1))2E(2ufc)(aiv;|tfl/v;\tfl)(aj%ﬁfl/m\tfl)y < 0.
€ €
[ ]

S3.1 Proofs of Propositions 3.1l and

Proof of PropositionB.Ik Note that || RV;~Vyj;1(0)[3 = | RVi—07,_,[I3 + [[Vijs—1(0)—
of;_1l13 for all @’s. Hence mingec [|RV; — Vyje—1(0) ]2 = [RV: — Vijs—1(00)|[2. Suppose
there exists 0, € C such that [[RV; — Vi1 (601)|l2 = mingec || RV;: — Vi1 (0)||2. It implies
[Vije—1(01) =07, _1ll2 =0, or Vyju—1(01) = Viy—1(6o) a.s. Therefore 61 = 6, which follows
from Lemma |

Proof of Proposition It suffices to justify the first equality. Define () =

log Vije—1(0) + R?/V4—1(#). Due to Lemmas and [S3.3] Esupycc |1:(0)] < oo and
Vt t— 0 Vt t— 6 . .

E(.(0) — 1,(60)) = E (V“f&dj 1 log V“f(wf) > 0 if @ # 0. Therefore El,() is

uniquely minimized at 6. |

S3.2 Proof of Theorem [3.1]

Let £(6) = RV — Viju1(0), £1(6) = RV, — Vi(6), Or(6) = 1/T 5, 4(0), Or(0) =
1/T S/, £2(6). The proof is started with 2% = argmingec Or(6).

Lemma S3.7. Under Assumptions 2.1, 2.2, and [Z], é}”dm is identiftably unique

and converges to 0y a.s.

Proof: Note that e(f) is strictly stationary ergodic and E supyce(e(f))? < oo (see
Lemmal[S3.0)). Or(0) — E(2(0)) converges to 0 a.s. uniformly on C due to uniform SLLN.
Moreover 0 is identifiable unique. The results follow from Lemma A.1 of/Goncalves and Whitd
(2004) and Theorem 3.3 of [Gallant. and Whitd (1988). ]
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Lemma S3.8. Under Assumptions [21, 2.3, and [31, lim7_, o supgee |[O7(0) —
Or(0)] 2 0.

Proof: Note that there exists £ > 1 such that lim; . % supgee [Vip—1(8) — Vi(6)] =0
according to Theorem 3.1 of (1993) or Theorem 2.8 of Straumann and Mikosch

). In other words, V6 > 0, 3 Ty > 0 such that x'supgec |et(8) — &(0)] < &
for t > Tp. Hence supgec |E7(0) — £7(0)| < 26k supgee |e4(0)] + 622" when t > Ty.
Since under Assumption Bl E supycc |e4(0)| is bounded away from 0, F log supycc |e:(0)]
is finite as well. Considering Lemma 2.1 of |Straumann and Mikosch (2006), we have

Tim; 00 Supgee |E7(0) — €2(A)] = 0 a.s., and hence Timy o supgec |O7(0) — Or(0)] <
T oo 32y SUPgee |E2(0) — €2(0)] = 0 as. n
Proof of Theorem [3.71

(1) Due to Lemmas [S3.7 and [S3.8 (2) Let Z; = €4(00)0ket(6). EZ; = 0. Lemma
S35 implies that {Z;} is near epoch dependent on {7;} and sup, || Z; — E(Z|FiT™) |2

m

< Cp™ for some constants C' > 0 and 0 < p < 1. Let Qp = var(% Zthl Zt). Note
that Qp = 7(0) + 23,2 (1 — k/T)~(k) where (k) = cov(Zy, Zy). For k > 0

7(2k)| = |E(Z:Zs-21)| < CPP| Zill2 + 1201 Z]130, (k) 22/ 202 (53.3)

Therefore Y7 [v(k)| < oo under assumption and thus limp_,o Qr exists and is
finite. |

The proof of Theorem [B.1k3) needs the following lemmas.
Lemma S3.9. Under Assumptions[21, [2.2, and [31],

limsup lim sup |Hess(Or)(0) —25™4| =0 a.s. (S3.4)
N—oo T—009eB(6y,1/N)NC

where B(6p, 1/N) = {0 € R¥*3 : ||0—6y|| < 1/N} and 0 < ¥4 = EVVt‘t,l(Ho)(VVt“,l(HO))/
< 00.

Proof: Since 6y € C°, B(6y,1/N)NC is not empty for sufficiently large N. H in Scenario
1 meets Assumption 24 automatically. Note that Hess(Or) = + Ethl Hess(e?), and
81'(%‘5% = 251581'8;'515 + 28ist8j5t. Eaﬁjsf(ﬁo) = 2E8¢6t(90)8j8t(90) due to 81'(%‘5,5 S Itfl.
Hence EHess(e2)(0) = 2X™¢. Clearly, ¥™% > 0 and O(1). Suppose that there exists
p € R? such that p' EVe,(60)(Vei(6)) p = 0, which is equivalent to p/VVt‘t,l(Ho) =0
a.s. for all t. Lemma [$3.2 implies p = 0 and hence ¥™¢ > 0.

Note that SUPge B(0y,1/N)nc |Hess(Or)(0) — 25| < supyee [|[Hess(Or)(0) — EHess(e2)(0)||
+ Esupge p(o,.1/n)nc | Hess(e3)(0) — Hess(e3)(00)||, and E supgee ||Hess(e7)(0)]] is O(1) uni-
formly in ¢ due to Lemma[S3]l (S3.4)) follows from the dominated convergence theorem
and uniform SLLN. [ ]
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Lemma S3.10. Under Assumptions[21, [2.2, [71, and QMY > 0, \/T(éa’}d”’ —
o) = N (0, (57)1mre (5m4) 1) “uhere 70 = EVVy, .y (80)(V Vi (6o))

Proof: Note that —VOr(6y) = Hess(Or)(07)(029 — 6) where 07 is between 6y and
gmdre - Since 7 converges to 0y a.s., Lemma [S30 implies that Hess(O7)(f7) converges
to 25™% as. Note that 25™% is invertible — see the proof of Lemma We have
VT (079 —0y) = —(25™4) "1 (1+0,(1))VTVOr(6y). The asymptotic normality follows
if VTV Or () converges to N(0,4Q™9) in distribution. Therefore we just need to show
that /Tp"VOr () converges to N(0,4p” Q™4 p) in distribution for any p € R4 due
to the Cramér-Wold device.

Note that vTp'VOr(6y) = %Zil Z; where Z; = ZZ:?kakﬂg and Yy =
e¢(00)Okerby. Let Qp = var(\/iT Ethl Z). The random matrix Qp is O(1) and is
uniformly positive definite, hence Q;l is O(1). Consider X1y = Z;//TQr. E(X7y)

=0 and Var(thzl Xri) = 1. {X71¢} is near epoch dependent on {7}} of size 1 due to

Lemma [S3.5] and {7} is e—mixing of size —(2 + v2)/v2. Note also that || Z;| 24, < 00,
and T'(1//TQr)? is O(1). An application of Theorem 3.6 of [Davidson ) yields

that Ethl X, converges to N(0,1) in distribution and hence vTpT VOr () converges
to N(0,4pTQmd4rp) in distribution. [ |

Lemma S3.11. Under Assumptions[21, [2.2, and [31],
lim sup VT||[VOr(0) — VOr(8)| “= 0.
T—o0 gec

Proof: Note that for t > 1, V;(6) = all%g + Btv + 22;10 YB¥Hy_ (), and 9;V,(0) =
b} (a%) +0:(BY)w + S 9 (7B Hy i (¢)). Note also that 8;Vye_1(6) = d;(a/(1 —
B+ 0 0i(vB¥Hy—1-1(¢)) (see LemmalS3.1). It is easy to check that both 9;V;y1:(6)
and 9;V;(0) satisfy

8iXt = &-oz + (8¢ﬂ)Xt71 + ﬂ(aithﬂ + 81(7Ht(¢))7 te Z+, (835)

for each i. Since under AssumptionBdlthe conditions of Proposition 6.1 of Straumann and Mikosch
) are met, then 9;V;,_;(#) is the unique stationary ergodic solution to (S3.3)

a.s.

and limy o K} supgee [0iVip—1(0) — d;Vi(9)] = 0 for some k; > 1, which implies
limy o0 K} SUpgee |05 (0) — Dig(0)] 2 0. In other words, ¥ > 0, 3Ty > 0 such that
supgec |0ier (0) — 9i&1(0)| < k1'0 and supgec |e(0) —E.(0)] < k740 for t > Ty (the second
inequality is from (1)). Consequently,

Vtsup |e¢(0)9ie4(0) — £:(0)0:6.(0)] < & {\/1_5/47%5 + V't sup [e¢(0)| + Vtry sup |Die (0)]
vec vec vec

for ¢ > Ty. Note that Esupyce |0ie(0)| and Esupgec |€:(6)| are bounded away from 0.
Same as the discussion in (1), we have lim;—, o VEsupgec |e1(0)0iet(0) —£4(0)0;:(0)| = 0
a.s. Therefore,

T
. 2 . 1 ~ ~ a.s.
lim sup VT|9;07(0) — 8;07(8)| < Tlgr(l)o W E 2sup |e(0)0:e:(0) — £.(0)0:6:(0)] "= 0.

T—00 gcO i—1 0€©
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]
Proof of Theorem B1)(3): It suffices to that v/T (6% — 247v) = 0,(1). Note that

VOr (éj@drv) —VOr (é$drv) _ HGSS(OT)(éT)(ég}d”) _ éq@drv)7

where 67 € C is between 6229 and é}”dm. Since 67 converges to 6y a.s., Hess(Or)(0r)
converges to 25" a.s. Note that 254 is invertible - see the proof of Lemma [S3.9 We
have VT (04 —gmdrvy = —(254) =1 (140,(1))VT (VO (059) =V Or (0597)). Note
also that /T(VOr (0297) =V Op (052970)) = /T (VOr(057:97) =V Orp (67977)) converges
to 0 a.s. due to Lemma[S3IIl Therefore vT(A297 — 7197 converges to 0 in probability.
|

S3.3 Proof of Theorem

It suffices to show the proof of é}”dm. Use the notation introduced in section [S3.2)
(1) Similar to the proof of Theorem BI|1).
(2) Need to show VT (0% — 6y) = N (0, (Z7md)~tQmdry(xmd)=1);

Lemma still holds under Scenario 2. The first paragraph in the proof of
Lemma [S3.1(] is true under Scenario 2, and we only need to revise the proof in the sec-
ond paragraph, i.e., the asymptotic normality of vTpT VOr(6y). Note that Y5 (60) =
£1(00)Oker(0o) is strictly stationary ergodic with finite second moment due to Er® < oo
and AssumptionB3(3). Y;(0o) is a martingale difference sequence. Then /Tp" VOr(6y)
= % Zthl 2pTY;(0) converges to N(0,4pTQ™4p) in distribution due to martingale
central limit theorem where

Q™ = EY;(00)Y:(00)" = E[(RV; — Vijt—1(00))2VVije—1(00)VVie—1(60)T].

Note that p” Q™4p > 0 if and only if pTVVHt_l(HO) £ 0 a.s. Hence Q™7 is positive
definite.

Note that limp_ e VT (éa’fd” - égf‘””) = 0 in probability, which follows from an
argument similar to the proof of Theorem [3.1] (since Lemmas[S3.§ and[S3.9 are true under
Scenario 2). VT(07297 — ) converges to N (0, (X™)~tQmdry(ymd)=1) in distribution.

S3.4 Proof of Theorem

It suffices to show the proof regarding éi}”v. Define 14(0) = log Vip—1 + RV;/Vyi—1(0)
and [,(0) = logf/t + RV;/V,(0). Let Lp(0) = * Zthl 1:(0) and Lr(0) = %Zthl 1,(0).
Suppose that 64 is the solution to mingec L1 (6).

Lemma S3.12. Under Assumptions [2.3, [31] and Esup, 3o H(p,7) < oo, éérhrv is
identifiably unique and it converges to 6y a.s.
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Proof: I, is strictly stationary ergodic, and Esupgec [I:(6)] < oo (see Lemma [S3.6]).
L1 (0) converges to ELp(0) = El1(0) a.s. uniformly on C due to the uniform SLLN.
Moreover 6y is the unique minimizer of L(6). The results follow from Lemma A.1 of

[Goncalves and Whitd (2004) and Theorem 3.3 of |Gallant and Whitd (1988). ]

Lemma S3.13. Suppose inequality (3) holds. Let B(6p,1/N) = {0 € R¥*3: |6 — 6| <
1/N}. Under Assumptions 2.3, [21] and Esup 55 H(p, ) < 00,

limsup lim sup |Hess(Lp)(0) — S| =0 a.s. (S3.6)
N—oo T—09eB(6y,1/N)NC

where 0 < S = F (V

t

ﬁ31(90)v‘4\t—1(90)VVt|t—1(90)') < oo.

Proof: Since 0y € C°, B(fy,1/N)NC is not empty for sufficiently large N. Note that

T T
1 1 RV, ) 0;0;Viji—1 (QRVt ) OiVijt—10; Vi1

0;0; Lt = — 0;0;ly = — 1-— + -1 .
T ; T ; ( Vijt—1 Vije—1 Vije—1 vz

tjt—1

0;0;ly is strictly stationary ergodic. And Esupycc |0;0;1:(0)] < oo by Lemma [S3.0
T > 0 because p/VVt‘t_l(Ho) # 0 a.s. for non-zero p € R™3 (see Lemma [S3.2).

Note that SUPge B(6,,1/N)nc | Hess(Lr)(0) — S| < supgee |Hess(Lr)(0) — EHess(11)(0)| +
Esupge p(gy,1/n)nc |Hess(l1)(0)—Hess(11)(00)||, and E supycc || Hess(1:)(0)]| is O(1) uniformly
in ¢. Thus (S3.6]) follows from the dominated convergence theorem and uniform SLLN.
|

Lemma S3.14. Suppose that Er*tV < oo for v > 0 and inequality (8) holds. Under
Assumptions[2.3, [31], and Esup 55 H(p,7) < 00, VIV Lr(hy) = N(0, Q") where
Qe = E (V74 (60)(RV, — Vt\t—l(90))2VVt\t—1(90)VVt\t—1(90)/) > 0.

tlt—1

Proof: Note that VLy = 37 Vi, = LS (1= RV,/Viji1) Vi1 /Vijr—1. Vi is
strictly stationary ergodic. E(9;l:(6p))? < oo due to Lemma [S3.61 And E(RV;|Fi—1) =
Vijt—1(00). Hence {0;l¢(6p),t € Z} is a martingale difference sequence. Note also that
Qthrv i positive definite because P'VVi—1(6o) # 0 as. for p # 0. The asymptotic
normality follows from the martingale central limit theorem and the Cramer-Wold device.
|

Lemma S3.15. Under assumptions and [31] and Esup 55 H(¢,7) < o0,

lim sup |L7(0) — L (0)] = 0. (S3.7)
T—o0 gec

Proof: Note that L7 (6) — Ly(0) = %ZtT:l(lt(G) —14()). Tt suffices to show limy_, o
supgec [1(0) L (0)| = 0 as. Since [1(0)=1,(0)] < |log Vije—1(0)-log Vi(O)| + | vi iy — 7y
< (1/a+ RV,/a?)[Vijs—1(6) = Vi(0)|, we have supgec [1:(0) = 1(6)] < (1/ay + RVi/a2)
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supgee [Vije—1(0) — ‘7,5(9)| for some a,, > 0. Note also that Elog™ RV, < oo and lim,_,
k! supgec [Vir—1(0)—Vi(0)] “= 0 for some k> 1 due to LemmalS3.8l lim;_, o supyec [1(0)—
1,(0)| = 0 a.s. by Lemma 2.1 of [Straumann and Mikosch (2006). [ |

Lemma S3.16. Suppose that inequality (8) holds. Under assumptions[Z3 and[31, and
Esup g5 H(¢,71) < o0,

lim VT sup||[VLp(0) — VLr(0)] = 0. (S3.8)
T— 00 peC

Proof: Since T supyce |0iLr(0) — 8;Lr(0)| < \/LT Zthl supgec |0:1:(0) — dily(0)] for
each i, it suffices to show lim;_, o vV supgec |9;1¢(0) — 9ily(9)] = 0 a.s. Note that

7 O Vi i~
8ilt—aizt_<1 RVt) t'“_<1_ﬂ)avt

a Vi1 ) Vije—1 Vi Vi
Applying the mean value theorem to 0;l; — 81-l~t, we have

- 10iVi = 8;Vije—1| + 0iVije—1] [ 2RV - RV;\ 1 -
|03l — Oil¢] S‘ : z t‘toﬂll Sl ( a : +1) Vije—1 — Vil + (1+ at) a'aivt\t—l—aivﬂ

Note that

OV — Vi 2RV, -
\/¥| f ) -1l i WVijeer — Vil
a a

~ ~ it ot - 2RV,
:Hﬂai‘/t - 8i‘/.f\t71|’€t|‘/t\t71 - Vt|\/£:‘<é t:‘ﬁ fa™? <Tt + 1) )

0iViju— 2RV, ~ ~ ¢ |0iVije— 2RV;
Vil 1'( t+1) WVies = Vil = 8 Viga — Tl 120l g ! (—at+1)7

a? «
RV:\ 1 -~ -~ _ RV 1
Vi (1 + —t) ~|0:Vijpr = OiVi| = K110 Vi1 — 0V VERy ! <1 + —t) -~
[0} « [0} «
Since Flog® RV; < oo, and

Elog™ (sup |0;Vy;—1(0)|RV;) < Elog™ (sup|0;Vy;—1(0)]) + Elog™ RV, < 0,
bec vec

and lim;_, o K} supyce |81-Vt‘t_1—8ﬂ~/t| 20, limy—yo0 K SUPgec |‘/ze|t—1—‘7t| )| (k and K1
are defined in the proof of Lemma [S3.8)), we have lim;_,oo v/ supgec |0il:(0) — dil:(8)|=0
a.s. u

Proof of Theorem The results follow from an argument similar to the proof of
Theorem 311 |
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S3.5 Proofs of Proposition [4.1] and Corollary 4.1]

Proof of Proposition ATk As shown in [Drost and Werkerl (1996), (a, b, c) relates to

(0,w, A\, v}) in the following way: letting h = 1/m, a = w(1 — _‘%)h c=e " —band
b < 1is the solution to 145 = ﬁ where p = 4= 1+9h>+2‘19he<1;9gy/2+9h><1 N/

and v = (6vy)/(1 = N).

Note that p = 14+h0(1+1/\)+02h? /A +0(1+h0+6%h?/3)+0o(h?) where © = (v/2)(1—
A)/A = 0vi /(2)). Therefore when vi >0, b=1—h0(1 + ¢) + o(h) and c = e " — b =
hO¢p+o(h) where ¢ = /1 + 1/0—1 = /1 4+ 2)\/( 9’UL —1. It implies that, as m goes to oo,

Bm = b™ goes to e ?(1+9) o5 = 1—b tends to m, dﬁ = % tends to 671 (1 —
_ ma(l1—b™ cd,n _ _
e ), am = 1_((1b+c)) (1 - m(f_b)) tends to w (1 — e~ 00+9)) (1 — %0 1—e 9)),

and ,, = cd,,, tends to (1 —e~%)¢.

7

Note that lim,, e Y pr, e 00T Etiz)y2 = f(tf1 q e~ 0040 E=9)qd[p, p|, in proba-
bility where t; = t — 1 +4/m (see [Prottel (2004)). For any € > 0,

m—1 m
P ( STBTE = S e 0Nt 2 | 6) < 2 (|1og(Bm) + 0(1 + 6)[/2 + 0(1 + 6)/m).
j=0 i=1 €
Therefore lim sup,,, P (’Z;n o g™ T i m T 2oiel 6_9(1""1’)“_“*1)7}21.’ > 6) =0 and (I4)
is proved.

When vj =0, we have b =1 — vV ho\ + 0(h1/2) and ¢ = VRO + o(h'/?). Therefore,
as m goes to 0o, B, = b™ tends to 0, 1% tends to 1, ‘fj; tends to 671(1 — e~ ?),

i = B (1 — e tends to w (1— 071 (1 — %)), and 22 = \/A/0(1 — ¢~%).

We next show that \/_Z;n_ol B%mrf J/m converges to (OA\)~/2¢? in L?, which is
=o?in L% Let RV, = Z?Zol bir?

equivalent to show that lim,,, .. mc Zm Lpir2 iym-

Note that

t—j/m

m—1 2 ho —h6\2
E(RV) }:#Jifz +2§:Uﬂ{ﬁ 2y WA U ~G-no/m]|

DY 62
=0 1<t
E(RVio?) = ﬁm /th otoudL 2—£-L”m+"M9( e%mﬁgﬂﬁi
T et T I [T T T 1— be—o/m
j=0 J/m m
Therefore,

m—1 2
j o2 2
E |mc E b'ri_j/m — O%
=0

2 2m 2 ho —h0\2
o w 221—0 2 2 itj 22 W Ae (1_6 ) itj —(i—j4)0/m
—1_)\+kwc T2 +2chb —|—2mcl_)\ 0 Zb e

j<i Jj<i
Ty

T T3
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1—bme?

A -1 _m0/my LY €
+ 0 (1—e )l—be*"/m'

Ty

w3

Note that, as m = oo, T1 = 0, Th = w?, Tz = <=, and Ty = % Therefore

m—1 (m)j,.2 2 - 2
mey g b Ti_j/m converges to oy in L*. u

Proof of Corollary 4.1} Sufficiency follows from the fact that for s > 0, lim,, e
P(supocsc, ViL3), = Bel[p Pless — [0, p)0)| > €) < S5y limyn oo PV, = Bu((p, Plisa
[p,plt)| > €)=0. To prove necessity, suppose {Vt(ﬁ)\tvt}mzl converges to {E([p, ple+1 —
[p, plt), t} uniformly on compacts in probability when jumps are present. It follows

that V;(J:q)‘t converges to Fi([p, plt+1 — [p,p]t) in probability for each ¢, and hence Ht(m)

will converge to (af — e 00HOG2 (1 — e 00Oy /(1 + ¢)) /(8¢) in probability, which
however contradicts Proportion f] |

S13
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Table 1: Small sample property of various estimators, GARCH Diffusion
The table displays estimation of cy,, Bm, vm (and g for the MEM estimation procedure) of a GARCH diffusion
process appearing in equation (@) (7 = 0) with sample size 500 (Panel I:11I) and sample size 1000 (Panel IV:VI),
where the true values of oy, Bm, Ym are shown in the first line of each panel. The estimators considered are:
mdrv, defined in {@), and the companion estimator mdr2, replacing RV by R?, as well as (quasi-)likelihood-
based estimators [hr2, defined in (@), and lhrv, defined in ([@). The table also includes the mem method
described in subsection B2221 The numbers in the parenthesis are MSE for [hr2, relative MSE (with respect
to lhr2) for lhrv, mdr2, mdrv, mem. For g, we only report sample variance.

True Value
lhr2

lhrv

mdr2

mdrv

mem

True Value
lhr2

lhrv

mdr2

mdrv

mem

True Value
1hr2

lhrv

mdr2

mdrv

mem

True Value
1hr2

lhrv

mdr2

mdrv

mem

True Value
lhr2

lhrv

mdr2

mdrv

mem

True Value
1hr2

lhrv

mdr2

mdrv

mem

A,

0.021560
0.028485 (0.000239)
0.027866 (0.299575)
0.047512 (14.672334)
0.029201 (0.731973)
0.003728 (1.825360)

0.020402
0.045201 (0.003203)
0.026274 (0.098454)
0.068484 (2.404729)
0.029991 (0.060709)
0.002005 (0.150026)

0.019472
0.043392 (0.003154)
0.023372 (0.026421)
0.072641 (2.886375)
0.028927 (0.060610)
0.020868 (0.738234)

0.021560
0.027721 (0.000070)
0.027869 (0.808425)
0.038240 (23.955470)
0.026646 (1.013888)
0.002638 (6.866083)

0.020402
0.031422 (0.001167)
0.023179 (0.112965)
0.053584 (3.304682)
0.026522 (0.078156)
0.000591 (0.355572)

0.019472
0.034068 (0.001155)
0.021192 (0.029212)
0.058739 (4.439753)
0.025429 (0.075973)
0.014977 (0.189630)

Bm Ym

Panel I: m = 24, T = 500
0.606483 0.452303
0.574957 (0.021370) 0.519297 (0.078285)
0.592717 (0.085556)  0.463234 (0.055312)
0.554378 (2.350239) 0.624201 (8.267090)
0.603333 (0.153910) 0.444092 (0.097035)
0.639632 (0.163212) 0.439080 (0.295075)

Panel II: m = 144, T = 500
0.294540 1.161865
0.283460 (0.043350)
0.285434 (0.044476)
0.277976 (1.392734)
0.289406 (0.070331)

0.308290 (0.038025) 1.159722 (0.004771)

Panel ITI: m = 288, T = 500
0.177589 1.659011
0.192863 (0.040788) 3.269031 (22.558997)
0.172963 (0.020106) 1.680080 (0.001080)
0.195808 (1.321687) 6.074646 (7.459430)
0.175222 (0.047458) 1.667509 (0.002766)
0.175481 (0.062443) 1.935688 (0.176230)

Panel IV: m = 24, T = 1000

0.606483 0.452303
0.582393 (0.011110) 0.493834 (0.037197)
0.590124 (0.101996)  0.465888 (0.064436)
0.568033 (3.269306) 0.579447 (12.799811)
0.603776 (0.184239) 0.447793 (0.134316)
0.640964 (0.235021) 0.434746 (0.068354)

Panel V: m = 144, T = 1000
0.294540 1.161865
0.299256 (0.031683)  1.353009 (0.707128)
0.290395 (0.029173)  1.171383 (0.012677)
0.288688 (1.653277)  2.071579 (17.816284)
0.291540 (0.056826)  1.162984 (0.028757)
0.310927 (0.029184)  1.150915 (0.008941)

Panel VI: m = 288, T = 1000
0.177589 1.659011
0.197662 (0.028785) 2.132745 (3.979507)
0.175443 (0.016039) 1.669002 (0.003373)
0.200768 (1.623452) 4.015785 (20.044682)
0.175460 (0.044330) 1.668098 (0.010440)
0.177831 (0.064847) 1.960999 (1.213615)

7.793987 (0.312895)

26.320110 (5.386544)

35.562272 (100.568095)

7.730200 (0.187919)

26.387767 (2.853065)

35.716633 (92.418742)
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