HYBRID-GARCH: A Generic Class of Models for Volatility Predictions using High Frequency Data - Technical Appendix

Xilong Chen
SAS Institute Inc.
Eric Ghysels
University of North Carolina at Chapel Hill
Fangfang Wang
University of Illinois at Chicago

S1 Notation

The purpose of this section is to collect the notation used in this supplementary file.
Let $\|X\|_{p}=\left(E|X|^{p}\right)^{1 / p}$ for $X \in L^{p}(\Omega, \mathcal{F}, P)$ and $p<\infty .\|A\|=\sqrt{\operatorname{tr}\left(A^{T} A\right)}$ for $A \in \mathbb{R}^{n \times n}$ or $A \in \mathbb{R}^{n \times 1}$ and $n \geq 1$. We write $A>0$ if A is a positive definite matrix, and $A \geq 0$ if A is positive semi-definite. If A is finite element by element, then we write $A<\infty$.

We use ∇ to denote the vector differential operator (w.r.t θ) so that ∇f is the gradient (column vector) of scaler function f, and $\operatorname{Hess}(f)$ the Hessian matrix of f, i.e., ent ${ }_{i, j} H e s s(f)=\partial_{i} \partial_{j} f$ where ∂_{k} denotes the partial derivative w.r.t. the $k^{t h}$ parameter in $\theta=(\alpha, \beta, \gamma, \phi)$. For a vector ϕ, ∂_{ϕ} represents the partial derivative w.r.t. a component of ϕ (say ϕ_{i}), and ∂_{ϕ}^{2} is treated as $\partial_{\phi_{i}} \partial_{\phi_{j}}$, and ∇_{ϕ} is a vector differential operator w.r.t. ϕ.

S2 More details on Assumption 2.4

Assumption 2.4 essentially guarantees that the HYBRID process is non-negative and measurable, and satisfies identifiability if it is parameterized. Conditions (1) and (2) are very standard. Here we give more explanations on condition (3) which also pertains to the choice of Φ.

Example 1. Consider the HYBRID process driven by MIDAS component with an
exponential Almon lag polynomial:

$$
\begin{equation*}
H_{t}(\phi)=\sum_{j=0}^{m-1}\left(\tilde{\gamma}+b_{j}(\eta)\right) r_{t-j / m}^{2} \tag{S2.1}
\end{equation*}
$$

and

$$
b_{j}(\eta)=\frac{\exp \left\{\eta_{1}(j / m)+\eta_{2}(j / m)^{2}\right\}}{\sum_{k=0}^{m-1} \exp \left\{\eta_{1}(k / m)+\eta_{2}(k / m)^{2}\right\}}, \quad \tilde{\gamma}>0, \eta_{1}, \eta_{2} \in \mathbb{R}, \phi=\left(\tilde{\gamma}, \eta_{1}, \eta_{2}\right)^{T}
$$

For easy discussion we let $m=5$.

1. When $\tilde{\gamma}>0$ and $\eta_{1}, \eta_{2} \neq 0$. Note that $\partial H_{t} / \partial \tilde{\gamma}=\sum_{j=0}^{m-1} r_{t-j / m}^{2}, \partial H_{t} / \partial \eta_{1}=$ $\sum_{j=0}^{m-1}\left(\partial b_{j} / \partial \eta_{1}\right) r_{t-j / m}^{2}$, and $\partial H_{t} / \partial \eta_{2}=\sum_{j=0}^{m-1}\left(\partial b_{j} / \partial \eta_{2}\right) r_{t-j / m}^{2}$. For $c=\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right)^{\top}$ $\in \mathbb{R}^{5}$, suppose that $c_{1}+c_{2} H_{t}+c_{3} \partial H_{t} / \partial \tilde{\gamma}+c_{4} \partial H_{t} / \partial \eta_{1}+c_{5} \partial H_{t} / \partial \eta_{2}=0$, which is equivalent to $c_{1}+\sum_{j=0}^{m-1}\left[c_{2}\left(\tilde{\gamma}+b_{j}\right)+c_{3}+c_{4}\left(\partial b_{j} / \partial \eta_{1}\right)+c_{5}\left(\partial b_{j} / \partial \eta_{2}\right)\right] r_{t-j / m}^{2}=0$. Hence $c_{1}=0$, and $c_{2}\left(\tilde{\gamma}+b_{j}\right)+c_{3}+c_{4}\left(\partial b_{j} / \partial \eta_{1}\right)+c_{5}\left(\partial b_{j} / \partial \eta_{2}\right)=0$ for $j=0,1,2,3,4$.
Note that $\sum_{j=0}^{m-1} b_{j}(\eta)=1$. We have $c_{2}(m \tilde{\gamma}+1)+m c_{3}=0$, and $c_{2}\left(b_{j}-1 / m\right)+$ $c_{4}\left(\partial b_{j} / \partial \eta_{1}\right)+c_{5}\left(\partial b_{j} / \partial \eta_{2}\right)=0, \forall j$, or equivalently

$$
\left(\begin{array}{ccc}
b_{0}-1 / 5 & \partial b_{0} / \partial \eta_{1} & \partial b_{0} / \partial \eta_{2} \tag{S2.2}\\
b_{1}-1 / 5 & \partial b_{1} / \partial \eta_{1} & \partial b_{1} / \partial \eta_{2} \\
b_{2}-1 / 5 & \partial b_{2} / \partial \eta_{1} & \partial b_{2} / \partial \eta_{2} \\
b_{3}-1 / 5 & \partial b_{3} / \partial \eta_{1} & \partial b_{3} / \partial \eta_{2} \\
b_{4}-1 / 5 & \partial b_{4} / \partial \eta_{1} & \partial b_{4} / \partial \eta_{2}
\end{array}\right)\left(\begin{array}{c}
c_{2} \\
c_{4} \\
c_{5}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Since

$$
\frac{\partial b_{j}(\eta)}{\partial \eta_{1}}=b_{j}(\eta)\left(\frac{j}{m}-\sum_{k=0}^{m-1} \frac{k}{m} b_{k}(\eta)\right), \quad \frac{\partial b_{j}(\eta)}{\partial \eta_{2}}=b_{j}(\eta)\left(\frac{j^{2}}{m^{2}}-\sum_{k=0}^{m-1} \frac{k^{2}}{m^{2}} b_{k}(\eta)\right)
$$

the rank of the coefficient matrix in (S2.2) is 3 . We have $c_{2}=c_{4}=c_{5}=0$, and hence $c_{3}=0$ as well. It follows that $1, H_{t}$, and each component of $\partial_{\phi}\left(H_{t}\right)$ are linearly independent, when $\tilde{\gamma}>0$ and $\eta_{1}, \eta_{2} \neq 0$.
2. When $\tilde{\gamma}>0$, and either $\eta_{1} \neq 0, \eta_{2}=0$ or $\eta_{1}=0, \eta_{2} \neq 0,1, H_{t}$, and each component of $\partial_{\phi}\left(H_{t}\right)$ are linearly independent. The proof is similar to (1).
3. When $\tilde{\gamma}>0$ and $\eta_{1}=\eta_{2}=0, H_{t}(\phi)=\sum_{j=0}^{m-1}(\tilde{\gamma}+1 / m) r_{t-j / m}^{2}$. For $c=$ $\left(c_{1}, c_{2}, c_{3}\right) \in R^{3}, c_{1}+c_{2} H_{t}+c_{3} \partial H_{t} / \partial \tilde{\gamma}=0$ is equivalent to $c_{1}+\sum_{j=0}^{m-1}\left[c_{2}(\tilde{\gamma}+\right.$ $\left.1 / m)+c_{3}\right] r_{t-j / m}^{2}=0$, which implies $c_{1}=0$, and $c_{2}(\tilde{\gamma}+1 / m)+c_{3}=0$. Because c_{2} and c_{3} may not be zero at the same time, $1, H_{t}$, and each component of $\partial_{\phi}\left(H_{t}\right)$ are linearly dependent.

The above discussion shows that if Φ is a connected subset of $\left\{\left(\tilde{\gamma}, \eta_{1}, \eta_{2}\right): \tilde{\gamma}>\right.$ $\left.0, \eta_{1}^{2}+\eta_{2}^{2} \neq 0\right\}, H_{t}(\phi)$ satisfies condition (3).

Example 2. Consider the HYBRID process in equation (18), i.e.,

$$
\begin{equation*}
H_{t}(\phi)=\sum_{j=0}^{m-1} \Psi_{j}\left(\phi_{1}\right) N I C\left(\phi_{2}, r_{t-j / m}\right), \quad \sum_{j=0}^{m-1} \Psi_{j}\left(\phi_{1}\right)=1 \tag{S2.3}
\end{equation*}
$$

where $\phi=\left(\phi_{1}, \phi_{2}\right)$, and the weights $\left(\Psi_{0}\left(\phi_{1}\right), \Psi_{1}\left(\phi_{1}\right), \ldots, \Psi_{m-1}\left(\phi_{1}\right)\right)^{\top}$ are determined by a low-dimensional functional specification. In this example, we will discuss how to choose weights and the parameter space Φ in order to meet condition (3). Two NIC specifications are considered:

$$
\begin{align*}
& N I C\left(\phi_{2}, r\right)=b r^{2} 1_{r \geq 0}+\delta r^{2} \mathbf{1}_{r<0} \tag{S2.4}\\
& N I C\left(\phi_{2}, r\right)=b(r-\delta)^{2} \tag{S2.5}
\end{align*}
$$

Hence $\phi_{2}=(b, \delta)$. The degenerate case that $\phi_{1}=0$ and/or $\phi_{2}=0$ is excluded from the discussion.
(1) Consider first $\operatorname{NIC}\left(\phi_{2}, r\right)=b r^{2} 1_{r \geq 0}+\delta r^{2} 1_{r<0}$ where $b \neq 0, \delta \neq 0$. For $c=$ $\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right), c_{1}+c_{2} H_{t}+c_{3} \partial H_{t} / \partial b+c_{4} \partial H_{t} / \partial \delta+c_{5}^{T} \nabla_{\phi_{1}} H_{t}=0$ is equivalent to

$$
\begin{aligned}
c_{1} & +\sum_{j=0}^{m-1}\left[c_{2} \Psi_{j} b+c_{3} \Psi_{j}+b c_{5}^{T} \nabla_{\phi_{1}} \Psi_{j}\right] 1_{r_{t-j / m} \geq 0} r_{t-j / m}^{2} \\
& +\sum_{j=0}^{m-1}\left[c_{2} \Psi_{j} \delta+c_{4} \Psi_{j}+\delta c_{5}^{T} \nabla_{\phi_{1}} \Psi_{j}\right] 1_{r_{t-j / m}<0} r_{t-j / m}^{2}=0 .
\end{aligned}
$$

Because $1_{r_{t-j / m} \geq 0}$ and $1_{r_{t-j / m}<0}$ are linearly independent, we have $c_{1}=0, c_{2} \Psi_{j} b+$ $c_{3} \Psi_{j}+b c_{5}^{T} \nabla_{\phi_{1}} \Psi_{j}=0, c_{2} \Psi_{j} \delta+c_{4} \Psi_{j}+\delta c_{5}^{T} \nabla_{\phi_{1}} \Psi_{j}=0$ for $j=0,1, \ldots, m-1$. Note that $\sum_{j=0}^{m-1} \Psi_{j}=1$. It follows that $c_{2} b+c_{3}=0, c_{2} \delta+c_{4}=0$, and $c_{5}^{T} \nabla_{\phi_{1}} \Psi_{j}=0(\forall j)$. Moreover, c_{5} is 0 if the weights satisfy Assumption S2.1 below.

Assumption S2.1. The rank of the matrix $\left(\nabla_{\phi_{1}} \Psi_{0}, \nabla_{\phi_{1}} \Psi_{1}, \ldots, \nabla_{\phi_{1}} \Psi_{m-1}\right)$ is same as the dimension of ϕ_{1}.

But c_{2}, c_{3}, c_{4} may not be zeros. Therefore, $1, H_{t}$, and each component of $\partial_{\phi}\left(H_{t}\right)$ are linearly dependent.

In order to have $H_{t}(\phi)$ meet condition (3), one should consider $\operatorname{NIC}\left(\phi_{2}, r\right)=$ $r^{2} 1_{r \geq 0}+\delta r^{2} 1_{r<0}$ or $\operatorname{NIC}\left(\phi_{2}, r\right)=b r^{2} 1_{r \geq 0}+r^{2} 1_{r<0}$ and the weights satisfy Assumption S2.1.
(2) The HYBIRD process $H_{t}(\phi)$ with $N I C\left(\phi_{2}, r\right)=b(r-\delta)^{2}(b>0, \delta \neq 0)$ does not meet condition (3). The proof is similar. However, $H_{t}(\phi)$ with NIC $\left(\phi_{2}, r\right)=(r-c)^{2}$ and weights satisfying Assumption 52.1 will satisfy condition (3).

S3 Proofs

We first present some useful results. The following lemmas are stated under Assumptions 2.1 and 2.4

Lemma S3.1. Under Assumptions 3.1 and $3.3(1), \partial_{i} V_{t \mid t-1}(\theta), \partial_{i} \partial_{j} V_{t \mid t-1}(\theta)$ are strictly stationary ergodic for $\theta \in \mathcal{C}$ and $i, j \in\{1,2, \ldots, d+3\}$. Moreover under the additional $A s$ sumption $3.3(2), E\left(\sup _{\theta \in \mathcal{C}} V_{t \mid t-1}(\theta)\right)^{2}, E\left(\sup _{\theta \in \mathcal{C}}\left|\partial_{i} V_{t \mid t-1}(\theta)\right|\right)^{2}$, and $E\left(\sup _{\theta \in \mathcal{C}}\left|\partial_{i} \partial_{j} V_{t \mid t-1}(\theta)\right|\right)^{2}$ are bounded.

Proof: Note that $H_{t}, \partial_{i} H_{t}, \partial_{i} \partial_{j} H_{t}$ are strictly stationary ergodic. $V_{t \mid t-1}(\theta)=\frac{\alpha}{1-\beta}$ $+\gamma \sum_{k=0}^{\infty} \beta^{k} H_{t-1-k}(\phi)$ a.s for $\theta \in \mathcal{C}$. It is easy to check that $\sum_{k=0}^{\infty} \partial_{i}\left(\gamma \beta^{k}\right)$ and $\sum_{k=0}^{\infty} \partial_{i} \partial_{j}\left(\gamma \beta^{k}\right)$ are absolutely summable uniformly on \mathcal{C}, which implies that $\partial_{i} V_{t \mid t-1}$ $=\partial_{i}(\alpha /(1-\beta))+\sum_{k=0}^{\infty} \partial_{i}\left(\gamma \beta^{k} H_{t-1-k}(\phi)\right)$ a.s. and $\partial_{i} \partial_{j} V_{t \mid t-1}=\partial_{i} \partial_{j}(\alpha /(1-\beta))+$ $\sum_{k=0}^{\infty} \partial_{i} \partial_{j}\left(\gamma \beta^{k} H_{t-1-k}(\phi)\right)$ a.s., and hence they are strictly stationary ergodic.

Since \mathcal{C} is bounded, one can always find constants (say) $c_{1}>0, c_{2}>0$ and $0<c_{3}<1$ such that $V_{t \mid t-1}(\theta) \leq c_{1}+c_{2} \sum_{k=0}^{\infty} c_{3}^{k} \sup _{\phi \in \overline{\Phi^{0}}} H_{t-1-k}(\phi)$. Note that $\sum_{k=0}^{\infty} c_{3}^{k}\left(\sup _{\phi \in \overline{\Phi^{0}}} H_{t-1-k}(\phi)\right)^{2}$ $<\infty$ a.s. due to Assumption 3.3(2). We have $V_{t \mid t-1}(\theta)^{2} \leq 2 c_{1}^{2}+\frac{2 c_{2}^{2}}{1-c_{3}} \sum_{k=0}^{\infty} c_{3}^{k}\left(\sup _{\phi \in \overline{\Phi^{0}}} H_{t-1-k}(\phi)\right)^{2}$ a.s. due to the Cauchy-Schwarz inequality and hence $E\left(\sup _{\theta \in \mathcal{C}} V_{t \mid t-1}(\theta)\right)^{2}$ is $\mathrm{O}(1)$. Similarly $E\left(\sup _{\theta \in \mathcal{C}}\left|\partial_{i} V_{t \mid t-1}(\theta)\right|\right)^{2}$ and $E\left(\sup _{\theta \in \mathcal{C}}\left|\partial_{i} \partial_{j} V_{t \mid t-1}(\theta)\right|\right)^{2}$ are $\mathrm{O}(1)$.

Lemma S3.2. Fix $\theta \in \mathcal{C}$. If $p^{T} \nabla V_{t \mid t-1}(\theta)=0$ a.s. for any $t \in \mathbb{Z}$, then $p \equiv 0$.

Proof: Let $p=\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \in \mathbb{R}^{d+3}$, where p_{4} is of the same dimension as ϕ. Note that $\nabla V_{t+1 \mid t}(\theta)=\nabla \alpha+(\nabla \beta) V_{t \mid t-1}(\theta)+\beta\left(\nabla V_{t \mid t-1}(\theta)\right)+\nabla\left(\gamma H_{t}(\phi)\right) . p^{T} \nabla V_{t \mid t-1}(\theta)=0$ a.s. implies $p_{1}+p_{2} V_{t \mid t-1}(\theta)+p_{3} H_{t}(\phi)+\gamma p_{4}^{T} \nabla_{\phi} H_{t}(\phi)=0$ a.s. Since $p_{3} H_{t}(\phi)+\gamma p_{4}^{T} \nabla_{\phi} H_{t}(\phi)$ $\in \mathcal{I}_{t}, p_{2}=0$ and hence $p_{1}+p_{3} H_{t}(\phi)+\gamma p_{4}^{T} \nabla_{\phi} H_{t}(\phi)=0$ a.s. Assumption 2.4 implies $p_{1}=p_{3}=p_{4}=0($ since $\gamma>0)$.

Lemma S3.3. For $\theta \in \mathcal{C}, V_{t \mid t-1}(\theta)=V_{t \mid t-1}\left(\theta_{0}\right)$ a.s. $\forall t \in \mathbb{Z}$ if and only if $\theta=\theta_{0}$.

Proof: Sufficiency is apparent. We need to check the necessity. If $V_{t \mid t-1}(\theta)=V_{t \mid t-1}\left(\theta_{0}\right)$ a.s. for $t \in \mathbb{Z}$, then $\alpha-\alpha_{0}+\left(\beta-\beta_{0}\right) V_{t \mid t-1}\left(\theta_{0}\right)+\left(\gamma H\left(\phi, \vec{r}_{t}\right)-\gamma_{0} H\left(\phi_{0}, \vec{r}_{t}\right)\right)=0$ a.s. Since $V_{t \mid t-1}\left(\theta_{0}\right) \in \mathcal{I}_{t-1}$ and $\gamma H\left(\phi, \vec{r}_{t}\right)-\gamma_{0} H\left(\phi_{0}, \vec{r}_{t}\right) \in \mathcal{I}_{t}$, we have $\beta=\beta_{0}$ and hence $\left(\alpha-\alpha_{0}\right)+$ $\left(\gamma H\left(\phi, \vec{r}_{t}\right)-\gamma_{0} H\left(\phi_{0}, \vec{r}_{t}\right)\right)=0$ a.s. Note that $\gamma H\left(\phi, \vec{r}_{t}\right)-\gamma_{0} H\left(\phi_{0}, \vec{r}_{t}\right)=H\left(\bar{\phi}, \vec{r}_{t}\right)\left(\gamma-\gamma_{0}\right)$ $+\bar{\gamma}\left(\phi-\phi_{0}\right)^{T} \nabla_{\phi} H\left(\bar{\phi}, \vec{r}_{t}\right)$ where $(\bar{\gamma}, \bar{\phi})$ is between (γ, ϕ) and $\left(\gamma_{0}, \phi_{0}\right)$ and it may depend on t. Assumption 2.4 indicates that $\alpha=\alpha_{0}, \gamma=\gamma_{0}$ and $\phi=\phi_{0}$. In other words $\theta=\theta_{0}$.

Lemma S3.4. Suppose that $E\left(\sup _{\phi \in \overline{\Phi^{0}}} H\left(\phi, \vec{r}_{t}\right)\right)^{\delta}<\infty$ for some $\delta>0$, and inequality (8) holds. Then we have

$$
\begin{equation*}
E\left(\sup _{\theta \in \mathcal{C}}\left|\partial_{i} V_{t \mid t-1} / V_{t \mid t-1}\right|\right)^{v}<\infty, \quad E\left(\sup _{\theta \in \mathcal{C}}\left|\partial_{i} \partial_{j} V_{t \mid t-1} / V_{t \mid t-1}\right|\right)^{v}<\infty \quad \forall v>0 . \tag{S3.1}
\end{equation*}
$$

Proof: $\left|\partial_{\phi} H(\phi, \vec{x}) / H(\phi, \vec{x})\right|$ and $\left|\partial_{\phi}^{2} H(\phi, \vec{x}) / H(\phi, \vec{x})\right|$ are bounded on \mathcal{C}. Suppose that the upper bound is $M_{1}>0$. Note that $\left|\partial_{i}(\alpha /(1-\beta))\right| \leq(1 / \alpha+1 /(1-\beta)) \alpha /(1-\beta)$ and $\left|\partial_{i}\left(\gamma \beta^{k}\right)\right| \leq(1 / \gamma+k / \beta) \gamma \beta^{k}$. (8) implies that $\left|\partial_{i} V_{t \mid t-1}\right| \leq\left|\partial_{i}(\alpha /(1-\beta))\right|+\sum_{k=0}^{\infty}$ $C(k) \gamma \beta^{k} H_{t-1-k}(\phi)$ where $C(k)=M_{1}+1 / \gamma+k / \beta$. Therefore, on $\mathcal{C},\left|\partial_{i} V_{t \mid t-1}(\theta) / V_{t \mid t-1}(\theta)\right|$ $\leq(1 / \alpha+1 /(1-\beta))+C(N)+(1-\beta) / \alpha \sum_{k>N} C(k) \gamma \beta^{k} H_{t-1-k}(\phi)$, for $N \in \mathbb{N}$. Because one can always find constants $M_{2}>0$ and $0<\rho_{*}<1$ such that $(1-\beta) / \alpha C(k) \gamma \beta^{k} \leq M_{2} \rho_{*}^{k}$, $1 / \alpha+1 /(1-\beta)<M_{2}$ and $C(N) \leq M_{2} N$ on \mathcal{C}, we have for $\theta \in \mathcal{C},\left|\partial_{i} V_{t \mid t-1}(\theta) / V_{t \mid t-1}(\theta)\right|$ $\leq M_{2}+M_{2} N+M_{2} \sum_{k>N} \rho_{*}^{k} H_{t-1-k}(\phi)$. The rest of discussion is similar to the proof of Lemma 5.2 of Berkes et al. (2003), and hence we have $E \sup _{\theta \in \mathcal{C}}\left|\partial_{i} V_{t \mid t-1} / V_{t \mid t-1}\right|^{v}<\infty$ for any $v>0$.

The second inequality in (S3.1) follows from a similar argument.
Lemma S3.5. Let $\varepsilon_{t}(\theta)=R V_{t}-V_{t \mid t-1}(\theta)$, and $\mathcal{F}_{t-m}^{t+m}=\sigma\left(r_{s}, t-m-1+1 / m \leq s \leq\right.$ $t+m)$. Suppose that Ers $\mathrm{r}_{s}^{8}<\infty, r_{s}$ is strictly stationary, and Assumption 3.3 (3) is true. For $k \in\{1, \ldots, d+3\}$ and $\theta \in \mathcal{C},\left\|\varepsilon_{t} \partial_{k} \varepsilon_{t}\right\|_{2}<\infty$ and $\sup _{t}\left\|\varepsilon_{t} \partial_{k} \varepsilon_{t}-E\left(\varepsilon_{t} \partial_{k} \varepsilon_{t} \mid \mathcal{F}_{t-m}^{t+m}\right)\right\|_{2}$ $\leq C \rho^{m}$ for some constants $C>0$ and $0<\rho<1$. Therefore $\left\{\varepsilon_{t} \partial_{k} \varepsilon_{t}, t \in \mathbb{Z}\right\}$ is near epoch dependent on $\left\{\vec{r}_{t}\right\}$. This is also true when $R V_{t}$ is replaced with R_{t}^{2}.

Proof: Let $Z_{t}=\varepsilon_{t} \partial_{k} \varepsilon_{t}$. Note that $E \sup _{\theta \in \mathcal{C}} V_{t \mid t-1}^{4}(\theta)<\infty$ and $E \sup _{\theta \in \mathcal{C}}\left(\partial_{k} V_{t \mid t-1}(\theta)\right)^{4}$ $<\infty$, which follows from an argument similar to the proof of Lemma S3.1 We have $\left\|Z_{t}\right\|_{2} \leq\left\|\varepsilon_{t}\right\|_{4}\left\|\partial_{k} \varepsilon_{t}\right\|_{4}<\infty$.

Since $\varepsilon_{t}(\theta)=R V_{t}-\frac{\alpha}{1-\beta}-\gamma \sum_{j=0}^{\infty} \beta^{j} H_{t-1-j}(\phi)$, it can be written as $\varepsilon_{t}(\theta)=$ $\sum_{j=0}^{\infty} c_{j}(\theta) \tilde{H}_{t-j}(\theta)$ where $c_{0}(\theta)=1, \tilde{H}_{t}(\theta)=R V_{t}-\alpha /(1-\beta)$, and $c_{j}(\theta)=-\gamma \beta^{j-1}$, $\tilde{H}_{t-j}(\theta)=H_{t-j}(\phi)$ for $j \geq 1$. Hence

$$
\begin{equation*}
Z_{t}=\left(\sum_{0 \leq i, j \leq m}+\sum_{0 \leq i \leq m, j>m}+\sum_{i>m, j \geq 0}\right) c_{i} \tilde{H}_{t-i} \partial_{k}\left(c_{j} \tilde{H}_{t-j}\right) \doteq Z_{t}^{(m)}+\xi_{t}^{(m)}+\eta_{t}^{(m)} . \tag{S3.2}
\end{equation*}
$$

Note that $\left\|\xi_{t}^{(m)}\right\|_{2} \leq \sum_{0 \leq i \leq m, j>m}\left|c_{i} \partial_{k}\left(c_{j}\right)\right|\left\|\tilde{H}_{t-i} \tilde{H}_{t-j}\right\|_{2}+\left|c_{i} c_{j}\right|\left\|\tilde{H}_{t-i} \partial_{k}\left(\tilde{H}_{t-j}\right)\right\|_{2}$. Since there exist $0<\rho<1$ and $M>0$ such that $\left|c_{i}\right|<M \rho^{i}$ and $\left|\partial_{k} c_{i}\right|<M \rho^{i}$ for $i \geq 0$, $\left\|\xi_{t}^{(m)}\right\|_{2} \leq 2 M^{2} B_{1} /(1-\rho) \rho^{m+1}$. Similarly, $\left\|\eta_{t}^{(m)}\right\|_{2} \leq 2 M^{2} B_{1} /(1-\rho) \rho^{m+1}$. Note that $\left\|Z_{t}-E\left(Z_{t} \mid \mathcal{F}_{t-m}^{t+m}\right)\right\|_{2} \leq\left\|Z_{t}-Z_{t}^{(m)}\right\|_{2}$. Therefore $\sup _{t}\left\|Z_{t}-E\left(Z_{t} \mid \mathcal{F}_{t-m}^{t+m}\right)\right\|_{2} \leq C \rho^{m}$ for some constants $C>0$ and $0<\rho<1$.
Lemma S3.6. Let $l_{t}(\theta)=\log V_{t \mid t-1}+R V_{t} / V_{t \mid t-1}(\theta)$. Suppose that r_{s} is strictly stationary. Then
(1) $E \sup _{\theta \in \mathcal{C}}\left|l_{t}(\theta)\right|<\infty$ if $E \sup _{\phi \in \overline{\Phi^{0}}} H\left(\phi, \vec{r}_{t}\right)<\infty$.
(2) Suppose that $E \sup _{\phi \in \overline{\Phi^{0}}} H\left(\phi, \vec{r}_{t}\right)<\infty$ and inequality (8) holds. Then $E \sup _{\theta \in \mathcal{C}}\left|\partial_{i} l_{t}(\theta)\right|$ $<\infty$ and $E \sup _{\theta \in \mathcal{C}}\left|\partial_{i} \partial_{j} l_{t}(\theta)\right|<\infty$. If additionally assume that $E r^{4+v}<\infty$ for some $v>0$, then $E\left(\sup _{\theta \in \mathcal{C}}\left|\partial_{i} l_{t}(\theta)\right|\right)^{2}<\infty$.

This is also true when $R V_{t}$ is replaced with R_{t}^{2}.

Proof: (1) Note that $\log \alpha \leq l_{t}(\theta) \leq \log V_{t \mid t-1}(\theta)+R V_{t} / \alpha$. Hence $\left|l_{t}(\theta)\right| \leq \max \left(|\log \alpha|, V_{t \mid t-1}(\theta)+\right.$ $\left.R V_{t} / \alpha\right)$. Since $E \sup _{\theta \in \mathcal{C}} V_{t \mid t-1}(\theta)<\infty$ which follows from an argument similar to the proof of Lemma 3.1 we have $E \sup _{\theta \in \mathcal{C}}\left|l_{t}(\theta)\right|<\infty$.
(2) Note that $\partial_{i} l_{t}=\left(1-R V_{t} / V_{t \mid t-1}\right) \partial_{i} V_{t \mid t-1} / V_{t \mid t-1}$ and $\partial_{i} \partial_{j} l_{t}=\left(1-R V_{t} / V_{t \mid t-1}\right)$ $\left(\partial_{i} \partial_{j} V_{t \mid t-1} / V_{t \mid t-1}\right)+\left(2 R V_{t} / V_{t \mid t-1}-1\right)\left(\partial_{i} V_{t \mid t-1} / V_{t \mid t-1}\right)\left(\partial_{j} V_{t \mid t-1} / V_{t \mid t-1}\right)$. We have, due to due to Lemma S3.4

$$
\begin{aligned}
E \sup _{\theta \in \mathcal{C}}\left|\partial_{i} l_{t}(\theta)\right| \leq & E\left(\sup _{\theta \in \mathcal{C}}\left(1+R V_{t} / \alpha\right)\right)^{2} E\left(\sup _{\theta \in \mathcal{C}} \partial_{i} V_{t \mid t-1} / V_{t \mid t-1}\right)^{2}<\infty \\
E\left(\sup _{\theta \in \mathcal{C}}\left|\partial_{i} l_{t}(\theta)\right|\right)^{2} \leq & E\left(\sup _{\theta \in \mathcal{C}}\left(1+R V_{t} / \alpha\right)\right)^{2+v / 2} E\left(\sup _{\theta \in \mathcal{C}} \partial_{i} V_{t \mid t-1} / V_{t \mid t-1}\right)^{(4+v) /(2+v)}<\infty, \\
E \sup _{\theta \in \mathcal{C}}\left|\partial_{i} \partial_{j} l_{t}(\theta)\right| \leq & E\left(\sup _{\theta \in \mathcal{C}}\left(1+R V_{t} / \alpha\right)\right)^{2} E\left(\sup _{\theta \in \mathcal{C}}\left(\partial_{i} \partial_{j} V_{t \mid t-1} / V_{t \mid t-1}\right)\right)^{2} \\
& +E\left(\sup _{\theta \in \mathcal{C}}\left(2 R V_{t} / \alpha+1\right)\right)^{2} E\left(\sup _{\theta \in \mathcal{C}}\left(\partial_{i} V_{t \mid t-1} / V_{t \mid t-1}\right)\left(\partial_{j} V_{t \mid t-1} / V_{t \mid t-1}\right)\right)^{2}<\infty .
\end{aligned}
$$

S3.1 Proofs of Propositions 3.1, and 3.3

Proof of Proposition 3.1: Note that $\left\|R V_{t}-V_{t \mid t-1}(\theta)\right\|_{2}^{2}=\left\|R V_{t}-\sigma_{t \mid t-1}^{2}\right\|_{2}^{2}+\| V_{t \mid t-1}(\theta)-$ $\sigma_{t \mid t-1}^{2} \|_{2}^{2}$ for all θ 's. Hence $\min _{\theta \in \mathcal{C}}\left\|R V_{t}-V_{t \mid t-1}(\theta)\right\|_{2}=\left\|R V_{t}-V_{t \mid t-1}\left(\theta_{0}\right)\right\|_{2}$. Suppose there exists $\theta_{1} \in \mathcal{C}$ such that $\left\|R V_{t}-V_{t \mid t-1}\left(\theta_{1}\right)\right\|_{2}=\min _{\theta \in \mathcal{C}}\left\|R V_{t}-V_{t \mid t-1}(\theta)\right\|_{2}$. It implies $\left\|V_{t \mid t-1}\left(\theta_{1}\right)-\sigma_{t \mid t-1}^{2}\right\|_{2}=0$, or $V_{t \mid t-1}\left(\theta_{1}\right)=V_{t \mid t-1}\left(\theta_{0}\right)$ a.s. Therefore $\theta_{1}=\theta_{0}$, which follows from Lemma S3.3.

Proof of Proposition 3.3: It suffices to justify the first equality. Define $l_{t}(\theta)=$ $\log V_{t \mid t-1}(\theta)+R_{t}^{2} / V_{t \mid t-1}(\theta)$. Due to Lemmas S3.6 and S3.3, $E \sup _{\theta \in \mathcal{C}}\left|l_{t}(\theta)\right|<\infty$ and $E\left(l_{t}(\theta)-l_{t}\left(\theta_{0}\right)\right)=E\left(\frac{V_{t \mid t-1}\left(\theta_{0}\right)}{V_{t \mid t-1}(\theta)}-1-\log \frac{V_{t \mid t-1}\left(\theta_{0}\right)}{V_{t \mid t-1}(\theta)}\right)>0$ if $\theta \neq \theta_{0}$. Therefore $E l_{t}(\theta)$ is uniquely minimized at θ_{0}.

S3.2 Proof of Theorem 3.1

Let $\varepsilon_{t}(\theta) \doteq R V_{t}-V_{t \mid t-1}(\theta), \tilde{\varepsilon}_{t}(\theta) \doteq R V_{t}-\tilde{V}_{t}(\theta), O_{T}(\theta) \doteq 1 / T \sum_{t=1}^{T} \varepsilon_{t}^{2}(\theta), \tilde{O}_{T}(\theta) \doteq$ $1 / T \sum_{t=1}^{T} \tilde{\varepsilon}_{t}^{2}(\theta)$. The proof is started with $\hat{\theta}_{T}^{m d r v} \doteq \arg \min _{\theta \in \mathcal{C}} O_{T}(\theta)$.

Lemma S3.7. Under Assumptions 2.1, 2.2, 2.4, and 3.1, $\hat{\theta}_{T}^{m d r v}$ is identifiably unique and converges to θ_{0} a.s.

Proof: Note that $\varepsilon_{t}(\theta)$ is strictly stationary ergodic and $E \sup _{\theta \in \mathcal{C}}\left(\varepsilon_{t}(\theta)\right)^{2}<\infty$ (see LemmaS3.1). $O_{T}(\theta)-E\left(\varepsilon_{t}^{2}(\theta)\right)$ converges to 0 a.s. uniformly on \mathcal{C} due to uniform SLLN. Moreover θ_{0} is identifiable unique. The results follow from Lemma A. 1 of Goncalves and White (2004) and Theorem 3.3 of Gallant and White (1988).

Lemma S3.8. Under Assumptions 2.1, 2.2, 2.4, and 3.1, $\lim _{T \rightarrow \infty} \sup _{\theta \in \mathcal{C}} \mid O_{T}(\theta)-$ $\tilde{O}_{T}(\theta) \mid \stackrel{\text { a.s. }}{=} 0$.

Proof: Note that there exists $\kappa>1$ such that $\lim _{t \rightarrow \infty} \kappa^{t} \sup _{\theta \in \mathcal{C}}\left|V_{t \mid t-1}(\theta)-\tilde{V}_{t}(\theta)\right| \stackrel{\text { a.s. }}{=} 0$ according to Theorem 3.1 of Bougerol (1993) or Theorem 2.8 of Straumann and Mikosch (2006). In other words, $\forall \delta>0, \exists T_{0}>0$ such that $\kappa^{t} \sup _{\theta \in \mathcal{C}}\left|\varepsilon_{t}(\theta)-\tilde{\varepsilon}_{t}(\theta)\right|<\delta$ for $t>T_{0}$. Hence $\sup _{\theta \in \mathcal{C}}\left|\tilde{\varepsilon}_{t}^{2}(\theta)-\varepsilon_{t}^{2}(\theta)\right| \leq 2 \delta \kappa^{-t} \sup _{\theta \in \mathcal{C}}\left|\varepsilon_{t}(\theta)\right|+\delta^{2} \kappa^{-2 t}$ when $t>T_{0}$. Since under Assumption 3.1$] \sup _{\theta \in \mathcal{C}}\left|\varepsilon_{t}(\theta)\right|$ is bounded away from $0, E \log \sup _{\theta \in \mathcal{C}}\left|\varepsilon_{t}(\theta)\right|$ is finite as well. Considering Lemma 2.1 of Straumann and Mikosch (2006), we have $\varlimsup_{t \rightarrow \infty} \sup _{\theta \in \mathcal{C}}\left|\tilde{\varepsilon}_{t}^{2}(\theta)-\varepsilon_{t}^{2}(\theta)\right|=0$ a.s., and hence $\overline{\lim }_{T \rightarrow \infty} \sup _{\theta \in \mathcal{C}}\left|O_{T}(\theta)-\tilde{O}_{T}(\theta)\right| \leq$ $\varlimsup_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} \sup _{\theta \in \mathcal{C}}\left|\tilde{\varepsilon}_{t}^{2}(\theta)-\varepsilon_{t}^{2}(\theta)\right|=0$ a.s.

Proof of Theorem 3.1 .

(1) Due to Lemmas S3.7 and S3.8 (2) Let $Z_{t}=\varepsilon_{t}\left(\theta_{0}\right) \partial_{k} \varepsilon_{t}\left(\theta_{0}\right) . E Z_{t}=0$. Lemma S3.5 implies that $\left\{Z_{t}\right\}$ is near epoch dependent on $\left\{\vec{r}_{t}\right\}$ and $\sup _{t}\left\|Z_{t}-E\left(Z_{t} \mid \mathcal{F}_{t-m}^{t+m}\right)\right\|_{2}$ $\leq C \rho^{m}$ for some constants $C>0$ and $0<\rho<1$. Let $\Omega_{T}=\operatorname{var}\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} Z_{t}\right)$. Note that $\Omega_{T}=\gamma(0)+2 \sum_{k=1}^{T-1}(1-k / T) \gamma(k)$ where $\gamma(k)=\operatorname{cov}\left(Z_{k}, Z_{0}\right)$. For $k>0$

$$
\begin{equation*}
|\gamma(2 k)|=\left|E\left(Z_{t} Z_{t-2 k}\right)\right| \leq C \rho^{k}\left\|Z_{t}\right\|_{2}+12\left\|Z_{t}\right\|_{2+v_{2}}^{2} \alpha(k)^{v_{2} /\left(2+v_{2}\right)} . \tag{S3.3}
\end{equation*}
$$

Therefore $\sum_{k=0}^{\infty}|\gamma(k)|<\infty$ under assumption 3.2 and thus $\lim _{T \rightarrow \infty} \Omega_{T}$ exists and is finite.

The proof of Theorem 3.1(3) needs the following lemmas.
Lemma S3.9. Under Assumptions 2.1, 2.2, 2.4, and 3.1,

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \lim _{T \rightarrow \infty} \sup _{\theta \in B\left(\theta_{0}, 1 / N\right) \cap \subset}\left\|\operatorname{Hess}\left(O_{T}\right)(\theta)-2 \Sigma^{m d}\right\|=0 \quad \text { a.s. } \tag{S3.4}
\end{equation*}
$$

where $B\left(\theta_{0}, 1 / N\right)=\left\{\theta \in \mathbb{R}^{d+3}:\left\|\theta-\theta_{0}\right\|<1 / N\right\}$ and $0<\Sigma^{m d}=E \nabla V_{t \mid t-1}\left(\theta_{0}\right)\left(\nabla V_{t \mid t-1}\left(\theta_{0}\right)\right)^{\prime}$ $<\infty$.

Proof: Since $\theta_{0} \in \mathcal{C}^{0}, B\left(\theta_{0}, 1 / N\right) \cap \mathcal{C}$ is not empty for sufficiently large $N . H$ in Scenario 1 meets Assumption 2.4 automatically. Note that $\operatorname{Hess}\left(O_{T}\right)=\frac{1}{T} \sum_{t=1}^{T} \operatorname{Hess}\left(\varepsilon_{t}^{2}\right)$, and $\partial_{i} \partial_{j} \varepsilon_{t}^{2}=2 \varepsilon_{t} \partial_{i} \partial_{j} \varepsilon_{t}+2 \partial_{i} \varepsilon_{t} \partial_{j} \varepsilon_{t} . E \partial_{i} \partial_{j} \varepsilon_{t}^{2}\left(\theta_{0}\right)=2 E \partial_{i} \varepsilon_{t}\left(\theta_{0}\right) \partial_{j} \varepsilon_{t}\left(\theta_{0}\right)$ due to $\partial_{i} \partial_{j} \varepsilon_{t} \in I_{t-1}$. Hence $\operatorname{EHess}\left(\varepsilon_{t}^{2}\right)\left(\theta_{0}\right)=2 \Sigma^{m d}$. Clearly, $\Sigma^{m d} \geq 0$ and $\mathrm{O}(1)$. Suppose that there exists $p \in \mathbb{R}^{d}$ such that $p^{\prime} E \nabla \varepsilon_{t}\left(\theta_{0}\right)\left(\nabla \varepsilon_{t}\left(\theta_{0}\right)\right)^{\prime} p=0$, which is equivalent to $p^{\prime} \nabla V_{t \mid t-1}\left(\theta_{0}\right)=0$ a.s. for all t. Lemma S3.2 implies $p \equiv 0$ and hence $\Sigma^{m d}>0$.

Note that $\sup _{\theta \in B\left(\theta_{0}, 1 / N\right) \cap \mathcal{C}}\left\|\operatorname{Hess}\left(O_{T}\right)(\theta)-2 \Sigma^{m d}\right\| \leq \sup _{\theta \in \mathcal{C}}\left\|\operatorname{Hess}\left(O_{T}\right)(\theta)-\operatorname{EHess}\left(\varepsilon_{1}^{2}\right)(\theta)\right\|$ $+E \sup _{\theta \in B\left(\theta_{0}, 1 / N\right) \cap \mathcal{C}}\left\|\operatorname{Hess}\left(\varepsilon_{1}^{2}\right)(\theta)-\operatorname{Hess}\left(\varepsilon_{1}^{2}\right)\left(\theta_{0}\right)\right\|$, and $E \sup _{\theta \in \mathcal{C}}\left\|H e s s\left(\varepsilon_{t}^{2}\right)(\theta)\right\|$ is $\mathrm{O}(1)$ uniformly in t due to Lemma S3.1 S3.4) follows from the dominated convergence theorem and uniform SLLN.

Lemma S3.10. Under Assumptions 2.1, 2.2, 2.4, 3.1, 3.2 and $\Omega^{m d r v}>0, \sqrt{T}\left(\hat{\theta}_{T}^{m d r v}-\right.$ $\left.\theta_{0}\right) \Rightarrow N\left(0,\left(\Sigma^{m d}\right)^{-1} \Omega^{m d r v}\left(\Sigma^{m d}\right)^{-1}\right)$, where $\Sigma^{m d}=E \nabla V_{t \mid t-1}\left(\theta_{0}\right)\left(\nabla V_{t \mid t-1}\left(\theta_{0}\right)\right)^{\prime}$.

Proof: Note that $-\nabla O_{T}\left(\theta_{0}\right)=\operatorname{Hess}\left(O_{T}\right)\left(\bar{\theta}_{T}\right)\left(\hat{\theta}_{T}^{m d r v}-\theta_{0}\right)$ where $\bar{\theta}_{T}$ is between θ_{0} and $\hat{\theta}_{T}^{m d r v}$. Since $\bar{\theta}_{T}$ converges to θ_{0} a.s., Lemma S3.9 implies that $\operatorname{Hess}\left(O_{T}\right)\left(\bar{\theta}_{T}\right)$ converges to $2 \Sigma^{m d}$ a.s. Note that $2 \Sigma^{m d}$ is invertible - see the proof of Lemma S3.9. We have $\sqrt{T}\left(\hat{\theta}_{T}^{m d r v}-\theta_{0}\right)=-\left(2 \Sigma^{m d}\right)^{-1}\left(1+o_{p}(1)\right) \sqrt{T} \nabla O_{T}\left(\theta_{0}\right)$. The asymptotic normality follows if $\sqrt{T} \nabla O_{T}\left(\theta_{0}\right)$ converges to $N\left(0,4 \Omega^{m d r v}\right)$ in distribution. Therefore we just need to show that $\sqrt{T} p^{T} \nabla O_{T}\left(\theta_{0}\right)$ converges to $N\left(0,4 p^{T} \Omega^{m d r v} p\right)$ in distribution for any $p \in \mathbb{R}^{d+3}$ due to the Cramér-Wold device.

Note that $\sqrt{T} p^{T} \nabla O_{T}\left(\theta_{0}\right)=\frac{2}{\sqrt{T}} \sum_{t=1}^{T} Z_{t}$ where $Z_{t}=\sum_{k=1}^{d+3} p_{k} Y_{k, t}$ and $Y_{k, t}=$ $\varepsilon_{t}\left(\theta_{0}\right) \partial_{k} \varepsilon_{t} \theta_{0}$. Let $\Omega_{T}=\operatorname{var}\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} Z_{t}\right)$. The random matrix Ω_{T} is $\mathrm{O}(1)$ and is uniformly positive definite, hence Ω_{T}^{-1} is $\mathrm{O}(1)$. Consider $X_{T t} \doteq Z_{t} / \sqrt{T \Omega_{T}}$. $E\left(X_{T t}\right)$ $=0$ and $\operatorname{Var}\left(\sum_{t=1}^{T} X_{T t}\right)=1 .\left\{X_{T t}\right\}$ is near epoch dependent on $\left\{\vec{r}_{t}\right\}$ of size 1 due to Lemma S3.5 and $\left\{\vec{r}_{t}\right\}$ is α-mixing of size $-\left(2+v_{2}\right) / v_{2}$. Note also that $\left\|Z_{t}\right\|_{2+v_{2}}<\infty$, and $T\left(1 / \sqrt{T \Omega_{T}}\right)^{2}$ is $\mathrm{O}(1)$. An application of Theorem 3.6 of Davidson (1992) yields that $\sum_{t=1}^{T} X_{T t}$ converges to $\mathrm{N}(0,1)$ in distribution and hence $\sqrt{T} p^{T} \nabla O_{T}\left(\theta_{0}\right)$ converges to $N\left(0,4 p^{T} \Omega^{m d r v} p\right)$ in distribution.
Lemma S3.11. Under Assumptions 2.1, 2.2, 2.4, and 3.1,

$$
\lim _{T \rightarrow \infty} \sup _{\theta \in \mathcal{C}} \sqrt{T}\left\|\nabla O_{T}(\theta)-\nabla \tilde{O}_{T}(\theta)\right\| \stackrel{\text { a.s. }}{=} 0
$$

Proof: Note that for $t \geq 1, \tilde{V}_{t}(\theta)=\alpha \frac{1-\beta^{t}}{1-\beta}+\beta^{t} v+\sum_{k=0}^{t-1} \gamma \beta^{k} H_{t-k}(\phi)$, and $\partial_{i} \tilde{V}_{t}(\theta)=$ $\partial_{i}\left(\alpha \frac{1-\beta^{t}}{1-\beta}\right)+\partial_{i}\left(\beta^{t}\right) v+\sum_{k=0}^{t-1} \partial_{i}\left(\gamma \beta^{k} H_{t-k}(\phi)\right)$. Note also that $\partial_{i} V_{t \mid t-1}(\theta)=\partial_{i}(\alpha /(1-$ $\beta))+\sum_{k=0}^{\infty} \partial_{i}\left(\gamma \beta^{k} H_{t-1-k}(\phi)\right)$ (see LemmaS3.1). It is easy to check that both $\partial_{i} V_{t+1 \mid t}(\theta)$ and $\partial_{i} \tilde{V}_{t}(\theta)$ satisfy

$$
\begin{equation*}
\partial_{i} X_{t}=\partial_{i} \alpha+\left(\partial_{i} \beta\right) X_{t-1}+\beta\left(\partial_{i} X_{t-1}\right)+\partial_{i}\left(\gamma H_{t}(\phi)\right), \quad t \in \mathbb{Z}^{+} \tag{S3.5}
\end{equation*}
$$

for each i. Since under Assumption 3.1 the conditions of Proposition 6.1 of Straumann and Mikosch (2006) are met, then $\partial_{i} V_{t \mid t-1}(\theta)$ is the unique stationary ergodic solution to (S3.5) and $\lim _{t \rightarrow \infty} \kappa_{1}^{t} \sup _{\theta \in \mathcal{C}}\left|\partial_{i} V_{t \mid t-1}(\theta)-\partial_{i} \tilde{V}_{t}(\theta)\right| \stackrel{\text { a.s. }}{=} 0$ for some $\kappa_{1}>1$, which implies $\lim _{t \rightarrow \infty} \kappa_{1}^{t} \sup _{\theta \in \mathcal{C}}\left|\partial_{i} \varepsilon_{t}(\theta)-\partial_{i} \tilde{\varepsilon}_{t}(\theta)\right| \stackrel{\text { a.s. }}{=} 0$. In other words, $\forall \delta>0, \exists T_{0}>0$ such that $\sup _{\theta \in \mathcal{C}}\left|\partial_{i} \varepsilon_{t}(\theta)-\partial_{i} \tilde{\varepsilon}_{t}(\theta)\right|<\kappa_{1}^{-t} \delta$ and $\sup _{\theta \in \mathcal{C}}\left|\varepsilon_{t}(\theta)-\tilde{\varepsilon}_{t}(\theta)\right|<\kappa^{-t} \delta$ for $t>T_{0}$ (the second inequality is from (1)). Consequently,

$$
\sqrt{t} \sup _{\theta \in \mathcal{C}}\left|\varepsilon_{t}(\theta) \partial_{i} \varepsilon_{t}(\theta)-\tilde{\varepsilon}_{t}(\theta) \partial_{i} \tilde{\varepsilon}_{t}(\theta)\right| \leq \delta\left[\sqrt{t} \kappa^{-2 t} \delta+\sqrt{t} \kappa^{-t} \sup _{\theta \in \mathcal{C}}\left|\varepsilon_{t}(\theta)\right|+\sqrt{t} \kappa_{1}^{-t} \sup _{\theta \in \mathcal{C}}\left|\partial_{i} \varepsilon_{t}(\theta)\right|\right]
$$

for $t>T_{0}$. Note that $E \sup _{\theta \in \mathcal{C}}\left|\partial_{i} \varepsilon_{t}(\theta)\right|$ and $E \sup _{\theta \in \mathcal{C}}\left|\varepsilon_{t}(\theta)\right|$ are bounded away from 0 . Same as the discussion in (1), we have $\lim _{t \rightarrow \infty} \sqrt{t} \sup _{\theta \in \mathcal{C}}\left|\varepsilon_{t}(\theta) \partial_{i} \varepsilon_{t}(\theta)-\tilde{\varepsilon}_{t}(\theta) \partial_{i} \tilde{\varepsilon}_{t}(\theta)\right|=0$ a.s. Therefore,

$$
\lim _{T \rightarrow \infty} \sup _{\theta \in \Theta} \sqrt{T}\left|\partial_{i} O_{T}(\theta)-\partial_{i} \tilde{O}_{T}(\theta)\right| \leq \lim _{T \rightarrow \infty} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} 2 \sup _{\theta \in \Theta}\left|\varepsilon_{t}(\theta) \partial_{i} \varepsilon_{t}(\theta)-\tilde{\varepsilon}_{t}(\theta) \partial_{i} \tilde{\varepsilon}_{t}(\theta)\right| \stackrel{\text { a.s. }}{=} 0
$$

Proof of Theorem 3.1(3): It suffices to that $\sqrt{T}\left(\tilde{\theta}_{T}^{m d r v}-\hat{\theta}_{T}^{m d r v}\right)=o_{p}(1)$. Note that

$$
\nabla O_{T}\left(\tilde{\theta}_{T}^{m d r v}\right)-\nabla O_{T}\left(\hat{\theta}_{T}^{m d r v}\right)=\operatorname{Hess}\left(O_{T}\right)\left(\bar{\theta}_{T}\right)\left(\tilde{\theta}_{T}^{m d r v}-\hat{\theta}_{T}^{m d r v}\right),
$$

where $\bar{\theta}_{T} \in \mathcal{C}$ is between $\tilde{\theta}_{T}^{m d r v}$ and $\hat{\theta}_{T}^{m d r v}$. Since $\bar{\theta}_{T}$ converges to θ_{0} a.s., $\operatorname{Hess}\left(O_{T}\right)\left(\bar{\theta}_{T}\right)$ converges to $2 \Sigma^{m d}$ a.s. Note that $2 \Sigma^{m d}$ is invertible - see the proof of Lemma S3.9. We have $\sqrt{T}\left(\tilde{\theta}_{T}^{m d r v}-\hat{\theta}_{T}^{m d r v}\right)=-\left(2 \Sigma^{m d}\right)^{-1}\left(1+o_{p}(1)\right) \sqrt{T}\left(\nabla O_{T}\left(\tilde{\theta}_{T}^{m d r v}\right)-\nabla O_{T}\left(\hat{\theta}_{T}^{m d r v}\right)\right)$. Note also that $\sqrt{T}\left(\nabla O_{T}\left(\tilde{\theta}_{T}^{m d r v}\right)-\nabla O_{T}\left(\hat{\theta}_{T}^{m d r v}\right)\right)=\sqrt{T}\left(\nabla O_{T}\left(\tilde{\theta}_{T}^{m d r v}\right)-\nabla \tilde{O}_{T}\left(\tilde{\theta}_{T}^{m d r v}\right)\right)$ converges to 0 a.s. due to LemmaS3.11. Therefore $\sqrt{T}\left(\tilde{\theta}_{T}^{m d r v}-\hat{\theta}_{T}^{m d r v}\right)$ converges to 0 in probability.

S3.3 Proof of Theorem 3.2

It suffices to show the proof of $\tilde{\theta}_{T}^{m d r v}$. Use the notation introduced in section S3.2,
(1) Similar to the proof of Theorem 3.1(1).
(2) Need to show $\sqrt{T}\left(\hat{\theta}_{T}^{m d r v}-\theta_{0}\right) \Longrightarrow N\left(0,\left(\Sigma^{m d}\right)^{-1} \Omega^{m d r v}\left(\Sigma^{m d}\right)^{-1}\right)$:

Lemma S3.9 still holds under Scenario 2. The first paragraph in the proof of Lemma S3.10 is true under Scenario 2, and we only need to revise the proof in the second paragraph, i.e., the asymptotic normality of $\sqrt{T} p^{T} \nabla O_{T}\left(\theta_{0}\right)$. Note that $Y_{k, t}\left(\theta_{0}\right) \equiv$ $\varepsilon_{t}\left(\theta_{0}\right) \partial_{k} \varepsilon_{t}\left(\theta_{0}\right)$ is strictly stationary ergodic with finite second moment due to $E r^{8}<\infty$ and Assumption 3.3(3). $Y_{i, t}\left(\theta_{0}\right)$ is a martingale difference sequence. Then $\sqrt{T} p^{T} \nabla O_{T}\left(\theta_{0}\right)$ $=\frac{1}{\sqrt{T}} \sum_{t=1}^{T} 2 p^{T} Y_{t}\left(\theta_{0}\right)$ converges to $N\left(0,4 p^{T} \Omega^{m d r v} p\right)$ in distribution due to martingale central limit theorem where

$$
\Omega^{m d r v}=E Y_{t}\left(\theta_{0}\right) Y_{t}\left(\theta_{0}\right)^{T}=E\left[\left(R V_{t}-V_{t \mid t-1}\left(\theta_{0}\right)\right)^{2} \nabla V_{t \mid t-1}\left(\theta_{0}\right) \nabla V_{t \mid t-1}\left(\theta_{0}\right)^{T}\right]
$$

Note that $p^{T} \Omega^{m d r v} p>0$ if and only if $p^{T} \nabla V_{t \mid t-1}\left(\theta_{0}\right) \neq 0$ a.s. Hence $\Omega^{m d r v}$ is positive definite.

Note that $\lim _{T \rightarrow \infty} \sqrt{T}\left(\tilde{\theta}_{T}^{m d r v}-\hat{\theta}_{T}^{m d r v}\right)=0$ in probability, which follows from an argument similar to the proof of Theorem 3.1 (since Lemmas S3.8 andS3.9 are true under Scenario 2). $\sqrt{T}\left(\tilde{\theta}_{T}^{m d r v}-\theta_{0}\right)$ converges to $N\left(0,\left(\Sigma^{m d}\right)^{-1} \Omega^{m d r v}\left(\Sigma^{m d}\right)^{-1}\right)$ in distribution.

S3.4 Proof of Theorem 3.3

It suffices to show the proof regarding $\tilde{\theta}_{T}^{l h r v}$. Define $l_{t}(\theta)=\log V_{t \mid t-1}+R V_{t} / V_{t \mid t-1}(\theta)$ and $\tilde{l}_{t}(\theta)=\log \tilde{V}_{t}+R V_{t} / \tilde{V}_{t}(\theta)$. Let $L_{T}(\theta) \equiv \frac{1}{T} \sum_{t=1}^{T} l_{t}(\theta)$ and $\tilde{L}_{T}(\theta) \equiv \frac{1}{T} \sum_{t=1}^{T} \tilde{l}_{t}(\theta)$. Suppose that $\hat{\theta}_{T}^{l h r v}$ is the solution to $\min _{\theta \in \mathcal{C}} L_{T}(\theta)$.
Lemma S3.12. Under Assumptions 2.3, 3.1 and $E \sup _{\phi \in \overline{\Phi^{0}}} H\left(\phi, \vec{r}_{t}\right)<\infty$, $\hat{\theta}_{T}^{\text {lhrv }}$ is identifiably unique and it converges to θ_{0} a.s.

Proof: l_{t} is strictly stationary ergodic, and $E \sup _{\theta \in \mathcal{C}}\left|l_{t}(\theta)\right|<\infty$ (see Lemma S3.6). $L_{T}(\theta)$ converges to $E L_{T}(\theta)=E l_{1}(\theta)$ a.s. uniformly on \mathcal{C} due to the uniform SLLN. Moreover θ_{0} is the unique minimizer of $L(\theta)$. The results follow from Lemma A. 1 of Goncalves and White (2004) and Theorem 3.3 of Gallant and White (1988).

Lemma S3.13. Suppose inequality (8) holds. Let $B\left(\theta_{0}, 1 / N\right)=\left\{\theta \in \mathbb{R}^{d+3}:\left\|\theta-\theta_{0}\right\|<\right.$ $1 / N\}$. Under Assumptions 2.3, 3.1 and $E \sup _{\phi \in \overline{\Phi^{0}}} H\left(\phi, \vec{r}_{t}\right)<\infty$,

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \lim _{T \rightarrow \infty} \sup _{\theta \in B\left(\theta_{0}, 1 / N\right) \cap \mathcal{C}}\left\|\operatorname{Hess}\left(L_{T}\right)(\theta)-\Sigma^{l h}\right\|=0 \quad \text { a.s. } \tag{S3.6}
\end{equation*}
$$

where $0<\Sigma^{l h}=E\left(V_{t \mid t-1}^{-2}\left(\theta_{0}\right) \nabla V_{t \mid t-1}\left(\theta_{0}\right) \nabla V_{t \mid t-1}\left(\theta_{0}\right)^{\prime}\right)<\infty$.

Proof: Since $\theta_{0} \in \mathcal{C}^{0}, B\left(\theta_{0}, 1 / N\right) \cap \mathcal{C}$ is not empty for sufficiently large N. Note that $\partial_{i} \partial_{j} L_{T}=\frac{1}{T} \sum_{t=1}^{T} \partial_{i} \partial_{j} l_{t}=\frac{1}{T} \sum_{t=1}^{T}\left(1-\frac{R V_{t}}{V_{t \mid t-1}}\right) \frac{\partial_{i} \partial_{j} V_{t \mid t-1}}{V_{t \mid t-1}}+\left(\frac{2 R V_{t}}{V_{t \mid t-1}}-1\right) \frac{\partial_{i} V_{t \mid t-1} \partial_{j} V_{t \mid t-1}}{V_{t \mid t-1}^{2}}$.
$\partial_{i} \partial_{j} l_{t}$ is strictly stationary ergodic. And $E \sup _{\theta \in \mathcal{C}}\left|\partial_{i} \partial_{j} l_{t}(\theta)\right|<\infty$ by Lemma S3.6. $\Sigma^{l h}>0$ because $p^{\prime} \nabla V_{t \mid t-1}\left(\theta_{0}\right) \neq 0$ a.s. for non-zero $p \in \mathbb{R}^{d+3}$ (see Lemma S3.2).

Note that $\sup _{\theta \in B\left(\theta_{0}, 1 / N\right) \cap \mathcal{C}}\left\|\operatorname{Hess}\left(L_{T}\right)(\theta)-\Sigma^{l h}\right\| \leq \sup _{\theta \in \mathcal{C}}\left\|\operatorname{Hess}\left(L_{T}\right)(\theta)-E H e s s\left(l_{1}\right)(\theta)\right\|+$ $E \sup _{\theta \in B\left(\theta_{0}, 1 / N\right) \cap \mathcal{C}}\left\|\operatorname{Hess}\left(l_{1}\right)(\theta)-\operatorname{Hess}\left(l_{1}\right)\left(\theta_{0}\right)\right\|$, and $E \sup _{\theta \in \mathcal{C}}\left\|\operatorname{Hess}\left(l_{t}\right)(\theta)\right\|$ is $\mathrm{O}(1)$ uniformly in t. Thus (S3.6) follows from the dominated convergence theorem and uniform SLLN.

Lemma S3.14. Suppose that $E r^{4+v}<\infty$ for $v>0$ and inequality (8) holds. Under Assumptions 2.3, 3.1, and $E \sup _{\phi \in \overline{\Phi^{0}}} H\left(\phi, \vec{r}_{t}\right)<\infty, \sqrt{T} \nabla L_{T}\left(\theta_{0}\right) \Longrightarrow N\left(0, \Omega^{\text {lhrv }}\right)$ where $\Omega^{l h r v}=E\left(V_{t \mid t-1}^{-4}\left(\theta_{0}\right)\left(R V_{t}-V_{t \mid t-1}\left(\theta_{0}\right)\right)^{2} \nabla V_{t \mid t-1}\left(\theta_{0}\right) \nabla V_{t \mid t-1}\left(\theta_{0}\right)^{\prime}\right)>0$.

Proof: Note that $\nabla L_{T}=\frac{1}{T} \sum_{t=1}^{T} \nabla l_{t}=\frac{1}{T} \sum_{t=1}^{T}\left(1-R V_{t} / V_{t \mid t-1}\right) \nabla V_{t \mid t-1} / V_{t \mid t-1} . \nabla l_{t}$ is strictly stationary ergodic. $E\left(\partial_{i} l_{t}\left(\theta_{0}\right)\right)^{2}<\infty$ due to Lemma S3.6. And $E\left(R V_{t} \mid \mathcal{F}_{t-1}\right)=$ $V_{t \mid t-1}\left(\theta_{0}\right)$. Hence $\left\{\partial_{i} l_{t}\left(\theta_{0}\right), t \in \mathbb{Z}\right\}$ is a martingale difference sequence. Note also that $\Omega^{l h r v}$ is positive definite because $p^{\prime} \nabla V_{t \mid t-1}\left(\theta_{0}\right) \neq 0$ a.s. for $p \neq 0$. The asymptotic normality follows from the martingale central limit theorem and the Cramer-Wold device.

Lemma S3.15. Under assumptions 2.3 and 3.1 and $E \sup _{\phi \in \overline{\Phi^{0}}} H\left(\phi, \vec{r}_{t}\right)<\infty$,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \sup _{\theta \in \mathcal{C}}\left|L_{T}(\theta)-\tilde{L}_{T}(\theta)\right| \stackrel{\text { a.s. }}{=} 0 \tag{S3.7}
\end{equation*}
$$

Proof: Note that $L_{T}(\theta)-\tilde{L}_{T}(\theta)=\frac{1}{T} \sum_{t=1}^{T}\left(l_{t}(\theta)-\tilde{l}_{t}(\theta)\right)$. It suffices to show $\lim _{t \rightarrow \infty}$ $\sup _{\theta \in \mathcal{C}}\left|l_{t}(\theta)-\tilde{l}_{t}(\theta)\right|=0$ a.s. Since $\left|l_{t}(\theta)-\tilde{l}_{t}(\theta)\right| \leq\left|\log V_{t \mid t-1}(\theta)-\log \tilde{V}_{t}(\theta)\right|+\left|\frac{1}{V_{t \mid t-1}(\theta)}-\frac{1}{V_{t}(\theta)}\right|$ $\leq\left(1 / \alpha+R V_{t} / \alpha^{2}\right)\left|V_{t \mid t-1}(\theta)-\tilde{V}_{t}(\theta)\right|$, we have $\sup _{\theta \in \mathcal{C}}\left|l_{t}(\theta)-\tilde{l}_{t}(\theta)\right| \leq\left(1 / \alpha_{u}+R V_{t} / \alpha_{u}^{2}\right)$
$\sup _{\theta \in \mathcal{C}}\left|V_{t \mid t-1}(\theta)-\tilde{V}_{t}(\theta)\right|$ for some $\alpha_{u}>0$. Note also that $E \log ^{+} R V_{t}<\infty$ and $\lim _{t \rightarrow \infty}$ $\kappa^{t} \sup _{\theta \in \mathcal{C}}\left|V_{t \mid t-1}(\theta)-\tilde{V}_{t}(\theta)\right| \stackrel{\text { a.s. }}{=} 0$ for some $\kappa>1$ due to LemmaS3.8, $\lim _{t \rightarrow \infty} \sup _{\theta \in \mathcal{C}} \mid l_{t}(\theta)-$ $\tilde{l}_{t}(\theta) \mid=0$ a.s. by Lemma 2.1 of Straumann and Mikosch (2006).

Lemma S3.16. Suppose that inequality (8) holds. Under assumptions 2.3 and 3.1, and $E \sup _{\phi \in \overline{\Phi^{0}}} H\left(\phi, \vec{r}_{t}\right)<\infty$,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \sqrt{T} \sup _{\theta \in \mathcal{C}}\left\|\nabla L_{T}(\theta)-\nabla \tilde{L}_{T}(\theta)\right\| \stackrel{\text { a.s. }}{=} 0 \tag{S3.8}
\end{equation*}
$$

Proof: Since $\sqrt{T} \sup _{\theta \in \mathcal{C}}\left|\partial_{i} L_{T}(\theta)-\partial_{i} \tilde{L}_{T}(\theta)\right| \leq \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \sup _{\theta \in \mathcal{C}}\left|\partial_{i} l_{t}(\theta)-\partial_{i} \tilde{l}_{t}(\theta)\right|$ for each i, it suffices to show $\lim _{t \rightarrow \infty} \sqrt{t} \sup _{\theta \in \mathcal{C}}\left|\partial_{i} l_{t}(\theta)-\partial_{i} \tilde{l}_{t}(\theta)\right|=0$ a.s. Note that

$$
\partial_{i} l_{t}-\partial_{i} \tilde{l}_{t}=\left(1-\frac{R V_{t}}{V_{t \mid t-1}}\right) \frac{\partial_{i} V_{t \mid t-1}}{V_{t \mid t-1}}-\left(1-\frac{R V_{t}}{\tilde{V}_{t}}\right) \frac{\partial_{i} \tilde{V}_{t}}{\tilde{V}_{t}}
$$

Applying the mean value theorem to $\partial_{i} l_{t}-\partial_{i} \tilde{l}_{t}$, we have
$\left|\partial_{i} l_{t}-\partial_{i} \tilde{l}_{t}\right| \leq \frac{\left|\partial_{i} \tilde{V}_{t}-\partial_{i} V_{t \mid t-1}\right|+\left|\partial_{i} V_{t \mid t-1}\right|}{\alpha^{2}}\left(\frac{2 R V_{t}}{\alpha}+1\right)\left|V_{t \mid t-1}-\tilde{V}_{t}\right|+\left(1+\frac{R V_{t}}{\alpha}\right) \frac{1}{\alpha}\left|\partial_{i} V_{t \mid t-1}-\partial_{i} \tilde{V}_{t}\right|$.
Note that

$$
\begin{gathered}
\sqrt{t} \frac{\left|\partial_{i} \tilde{V}_{t}-\partial_{i} V_{t \mid t-1}\right|}{\alpha^{2}}\left(\frac{2 R V_{t}}{\alpha}+1\right)\left|V_{t \mid t-1}-\tilde{V}_{t}\right| \\
=\kappa_{1}^{t}\left|\partial_{i} \tilde{V}_{t}-\partial_{i} V_{t \mid t-1}\right| \kappa^{t}\left|V_{t \mid t-1}-\tilde{V}_{t}\right| \sqrt{t} \kappa^{-t} \kappa_{1}^{-t} \alpha^{-2}\left(\frac{2 R V_{t}}{\alpha}+1\right), \\
\sqrt{t} \frac{\left|\partial_{i} V_{t \mid t-1}\right|}{\alpha^{2}}\left(\frac{2 R V_{t}}{\alpha}+1\right)\left|V_{t \mid t-1}-\tilde{V}_{t}\right|=\kappa^{t}\left|V_{t \mid t-1}-\tilde{V}_{t}\right| \sqrt{t}_{t} \kappa^{-t} \frac{\left|\partial_{i} V_{t \mid t-1}\right|}{\alpha^{2}}\left(\frac{2 R V_{t}}{\alpha}+1\right), \\
\sqrt{t}\left(1+\frac{R V_{t}}{\alpha}\right) \frac{1}{\alpha}\left|\partial_{i} V_{t \mid t-1}-\partial_{i} \tilde{V}_{t}\right|=\kappa_{1}^{t}\left|\partial_{i} V_{t \mid t-1}-\partial_{i} \tilde{V}_{t}\right| \sqrt{t} \kappa_{1}^{-t}\left(1+\frac{R V_{t}}{\alpha}\right) \frac{1}{\alpha} .
\end{gathered}
$$

Since $E \log ^{+} R V_{t}<\infty$, and

$$
E \log ^{+}\left(\sup _{\theta \in \mathcal{C}}\left|\partial_{i} V_{t \mid t-1}(\theta)\right| R V_{t}\right) \leq E \log ^{+}\left(\sup _{\theta \in \mathcal{C}}\left|\partial_{i} V_{t \mid t-1}(\theta)\right|\right)+E \log ^{+} R V_{t}<\infty
$$

and $\lim _{t \rightarrow \infty} \kappa_{1}^{t} \sup _{\theta \in \mathcal{C}}\left|\partial_{i} V_{t \mid t-1}-\partial_{i} \tilde{V}_{t}\right| \stackrel{\text { a.s. }}{=} 0, \lim _{t \rightarrow \infty} \kappa^{t} \sup _{\theta \in \mathcal{C}}\left|V_{t \mid t-1}-\tilde{V}_{t}\right| \stackrel{\text { a.s. }}{=} 0\left(\kappa\right.$ and κ_{1} are defined in the proof of Lemma S3.8), we have $\lim _{t \rightarrow \infty} \sqrt{t} \sup _{\theta \in \mathcal{C}}\left|\partial_{i} l_{t}(\theta)-\partial_{i} \tilde{l}_{t}(\theta)\right|=0$ a.s.

Proof of Theorem 3.3. The results follow from an argument similar to the proof of Theorem 3.1.

S3.5 Proofs of Proposition 4.1 and Corollary 4.1

Proof of Proposition 4.1; As shown in Drost and Werker (1996), (a, b, c) relates to $\left(\theta, \omega, \lambda, v_{L}^{*}\right)$ in the following way: letting $h=1 / m, a=\omega\left(1-e^{-\theta h}\right) h, c=e^{-\theta h}-b$ and $|b|<1$ is the solution to $\frac{b}{1+b^{2}}=\frac{\rho e^{-\theta h}-1}{\rho\left(1+e^{-2 \theta h}\right)-2}$, where $\rho=\frac{4\left(e^{-\theta h}-1+\theta h\right)+2 \theta h(1+(v / 2+\theta h)(1-\lambda) / \lambda)}{1-e^{-2 \theta h}}$, and $v=\left(\theta v_{L}^{*}\right) /(1-\lambda)$.

Note that $\rho=1+h \theta(1+1 / \lambda)+\theta^{2} h^{2} / \lambda+\tilde{v}\left(1+h \theta+\theta^{2} h^{2} / 3\right)+o\left(h^{2}\right)$ where $\tilde{v}=(v / 2)(1-$ $\lambda) / \lambda=\theta v_{L}^{*} /(2 \lambda)$. Therefore when $v_{L}^{*}>\mathbf{0}, b=1-h \theta(1+\phi)+o(h)$ and $c=e^{-\theta h}-b=$ $h \theta \phi+o(h)$ where $\phi=\sqrt{1+1 / \tilde{v}}-1=\sqrt{1+2 \lambda /\left(\theta v_{L}^{*}\right)}-1$. It implies that, as m goes to ∞, $\beta_{m}=b^{m}$ goes to $e^{-\theta(1+\phi)}, \frac{c}{1-b}=\frac{e^{-\theta h}-b}{1-b}$ tends to $\frac{\phi}{1+\phi}, \frac{d_{m}}{m}=\frac{1-(b+c)^{m}}{m(1-b-c)}$ tends to $\theta^{-1}(1-$ $\left.e^{-\theta}\right), \alpha_{m}=\frac{m a\left(1-b^{m}\right)}{1-(b+c)}\left(1-\frac{c d_{m}}{m(1-b)}\right)$ tends to $\omega\left(1-e^{-\theta(1+\phi)}\right)\left(1-\frac{\phi}{1+\phi} \theta^{-1}\left(1-e^{-\theta}\right)\right)$, and $\gamma_{m}=c d_{m}$ tends to $\left(1-e^{-\theta}\right) \phi$.

Note that $\lim _{m \rightarrow \infty} \sum_{i=1}^{m} e^{-\theta(1+\phi)\left(t-t_{i-1}\right)} r_{t_{i}}^{2}=\int_{(t-1, t]} e^{-\theta(1+\phi)(t-s)} d[p, p]_{s}$ in probability where $t_{i}=t-1+i / m$ (see Protter (2004)). For any $\epsilon>0$,

$$
P\left(\left|\sum_{j=0}^{m-1} \beta_{m}^{j / m} r_{t-j / m}^{2}-\sum_{i=1}^{m} e^{-\theta(1+\phi)\left(t-t_{i-1}\right)} r_{t_{i}}^{2}\right|>\epsilon\right) \leq \frac{\omega}{\epsilon}\left(\left|\log \left(\beta_{m}\right)+\theta(1+\phi)\right| / 2+\theta(1+\phi) / m\right) .
$$

Therefore $\limsup _{m} P\left(\left|\sum_{j=0}^{m-1} \beta_{m}^{j / m} r_{t-j / m}^{2}-\sum_{i=1}^{m} e^{-\theta(1+\phi)\left(t-t_{i-1}\right)} r_{t_{i}}^{2}\right|>\epsilon\right)=0$ and (14) is proved.

When $v_{L}^{*}=\mathbf{0}$, we have $b=1-\sqrt{h \theta \lambda}+o\left(h^{1 / 2}\right)$ and $c=\sqrt{h \theta \lambda}+o\left(h^{1 / 2}\right)$. Therefore, as m goes to $\infty, \beta_{m}=b^{m}$ tends to $0, \frac{c}{1-b}$ tends to $1, \frac{d_{m}}{m}$ tends to $\theta^{-1}\left(1-e^{-\theta}\right)$, $\alpha_{m}=\frac{m a\left(1-b^{m}\right)}{1-(b+c)}\left(1-\frac{c d_{m}}{m(1-b)}\right)$ tends to $\omega\left(1-\theta^{-1}\left(1-e^{-\theta}\right)\right)$, and $\frac{\gamma_{m}}{\sqrt{m}}=\sqrt{\lambda / \theta}\left(1-e^{-\theta}\right)$.

We next show that $\sqrt{m} \sum_{j=0}^{m-1} \beta_{m}^{j / m} r_{t-j / m}^{2}$ converges to $(\theta \lambda)^{-1 / 2} \sigma_{t}^{2}$ in L^{2}, which is equivalent to show that $\lim _{m \rightarrow \infty} m c \sum_{j=0}^{m-1} b^{j} r_{t-j / m}^{2}=\sigma_{t}^{2}$ in L^{2}. Let $\widetilde{R V}_{t}=\sum_{j=0}^{m-1} b^{j} r_{t-j / m}^{2}$. Note that

$$
\begin{aligned}
E\left(\widetilde{R V}_{t}^{2}\right) & =\sum_{j=0}^{m-1} b^{2 j}\left(k h^{2} \omega^{2}\right)+2 \sum_{j<i} b^{i+j}\left[h^{2} \omega^{2}+\frac{\omega^{2} \lambda}{1-\lambda} \frac{e^{h \theta}\left(1-e^{-h \theta}\right)^{2}}{\theta^{2}} e^{-(i-j) \theta / m}\right], \\
E\left(\widetilde{R V}_{t} \sigma_{t}^{2}\right) & =\sum_{j=0}^{m-1} b^{j} E\left(\int_{t-j / m-1 / m}^{t-j / m} \sigma_{t} \sigma_{u} d L_{u}\right)^{2}=\frac{\omega^{2}}{m}\left[\frac{1-b^{m}}{1-b}+\frac{m \lambda}{1-\lambda} \theta^{-1}\left(1-e^{-\theta / m}\right) \frac{1-b^{m} e^{-\theta}}{1-b e^{-\theta / m}}\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& E\left[m c \sum_{j=0}^{m-1} b^{j} r_{t-j / m}^{2}-\sigma_{t}^{2}\right]^{2} \\
= & \frac{\omega^{2}}{1-\lambda}+\underbrace{k \omega^{2} c^{2} \frac{1-b^{2 m}}{1-b^{2}}}_{T_{1}}+\underbrace{2 \omega^{2} c^{2} \sum_{j<i} b^{i+j}}_{T_{2}}+\underbrace{2 m^{2} c^{2} \frac{\omega^{2} \lambda}{1-\lambda} \frac{e^{h \theta}\left(1-e^{-h \theta}\right)^{2}}{\theta^{2}} \sum_{j<i} b^{i+j} e^{-(i-j) \theta / m}}_{T_{3}}
\end{aligned}
$$

$$
-\underbrace{2 c \omega^{2}\left[\frac{1-b^{m}}{1-b}+\frac{m \lambda}{1-\lambda} \theta^{-1}\left(1-e^{-\theta / m}\right) \frac{1-b^{m} e^{-\theta}}{1-b e^{-\theta / m}}\right]}_{T_{4}}
$$

Note that, as $m \Rightarrow \infty, T_{1} \Rightarrow 0, T_{2} \Rightarrow \omega^{2}, T_{3} \Rightarrow \frac{\omega^{2} \lambda}{1-\lambda}$, and $T_{4} \Rightarrow \frac{2 \omega^{2}}{1-\lambda}$. Therefore $m c \sum_{j=0}^{m-1} b^{(m) j} r_{t-j / m}^{2}$ converges to σ_{t}^{2} in L^{2}.

Proof of Corollary 4.1: Sufficiency follows from the fact that for $s>0, \lim _{m \rightarrow \infty}$ $P\left(\sup _{0 \leq t \leq s}\left|V_{t+1 \mid t}^{(m)}-E_{t}\left([p, p]_{t+1}-[p, p]_{t}\right)\right| \geq \varepsilon\right) \leq \sum_{t=0}^{s} \lim _{m \rightarrow \infty} P\left(\mid V_{t+1 \mid t}^{(m)}-E_{t}\left([p, p]_{t+1}-\right.\right.$ $\left.\left.[p, p]_{t}\right) \mid \geq \varepsilon\right)=0$. To prove necessity, suppose $\left\{V_{t+1 \mid t}^{(m)}, t\right\}_{m \geq 1}$ converges to $\left\{E_{t}\left([p, p]_{t+1}-\right.\right.$ $\left.\left.[p, p]_{t}\right), t\right\}$ uniformly on compacts in probability when jumps are present. It follows that $V_{t+1 \mid t}^{(m)}$ converges to $E_{t}\left([p, p]_{t+1}-[p, p]_{t}\right)$ in probability for each t, and hence $H_{t}^{(m)}$ will converge to $\left(\sigma_{t}^{2}-e^{-\theta(1+\phi)} \sigma_{t-1}^{2}-\omega\left(1-e^{-\theta(1+\phi)}\right) /(1+\phi)\right) /(\theta \phi)$ in probability, which however contradicts Proportion 4.1.

Table 1: Small sample property of various estimators, GARCH Diffusion The table displays estimation of $\alpha_{m}, \beta_{m}, \gamma_{m}$ (and g for the MEM estimation procedure) of a GARCH diffusion process appearing in equation $9(\eta=0)$ with sample size 500 (Panel I:III) and sample size 1000 (Panel IV:VI), where the true values of $\alpha_{m}, \beta_{m}, \gamma_{m}$ are shown in the first line of each panel. The estimators considered are: $m d r v$, defined in (4), and the companion estimator $m d r 2$, replacing $R V$ by R^{2}, as well as (quasi-)likelihoodbased estimators $\operatorname{lh} r 2$, defined in (6), and $\operatorname{lhr} v$, defined in (7). The table also includes the mem method described in subsection 3.2 .2 The numbers in the parenthesis are MSE for lhr2, relative MSE (with respect to $l h r 2$) for $l h r v, m d r 2, m d r v, m e m$. For g, we only report sample variance.

	α_{m}	β_{m}	γ_{m}	g
	Panel I: $\mathrm{m}=24, \mathrm{~T}=500$			
True Value	0.021560	0.606483	0.452303	
lhr2	0.028485 (0.000239)	0.574957 (0.021370)	0.519297 (0.078285)	
lhrv	0.027866 (0.299575)	0.592717 (0.085556)	0.463234 (0.055312)	
mdr2	0.047512 (14.672334)	0.554378 (2.350239)	0.624201 (8.267090)	
mdrv	0.029201 (0.731973)	0.603333 (0.153910)	0.444092 (0.097035)	
mem	0.003728 (1.825360)	0.639632 (0.163212)	0.439080 (0.295075)	7.793987 (0.312895)
Panel II: $\mathrm{m}=144, \mathrm{~T}=500$				
True Value	0.020402	0.294540	1.161865	
lhr2	0.045201 (0.003203)	0.283460 (0.043350)	1.658002 (2.818349)	
lhrv	0.026274 (0.098454)	$0.285434(0.044476)$	1.183518 (0.006573)	
mdr2	0.068484 (2.404729)	0.277976 (1.392734)	2.723028 (8.974830)	
mdrv	0.029991 (0.060709)	0.289406 (0.070331)	1.166936 (0.012388)	
mem	0.002005 (0.150026)	0.308290 (0.038025)	1.159722 (0.004771)	26.320110 (5.386544)
Panel III: $\mathrm{m}=288, \mathrm{~T}=500$				
True Value	0.019472	0.177589	1.659011	
lhr2	0.043392 (0.003154)	0.192863 (0.040788)	3.269031 (22.558997)	
lhrv	0.023372 (0.026421)	0.172963 (0.020106)	1.680080 (0.001080)	
mdr2	0.072641 (2.886375)	0.195808 (1.321687)	6.074646 (7.459430)	
mdrv	0.028927 (0.060610)	0.175222 (0.047458)	1.667509 (0.002766)	
mem	0.020868 (0.738234)	0.175481 (0.062443)	1.935688 (0.176230)	35.562272 (100.568095)
Panel IV: $\mathrm{m}=24, \mathrm{~T}=1000$				
True Value	0.021560	0.606483	0.452303	
lhr2	0.027721 (0.000070)	0.582393 (0.011110)	0.493834 (0.037197)	
lhrv	0.027869 (0.808425)	0.590124 (0.101996)	0.465888 (0.064436)	
mdr2	0.038240 (23.955470)	0.568033 (3.269306)	0.579447 (12.799811)	
mdrv	0.026646 (1.013888)	0.603776 (0.184239)	0.447793 (0.134316)	
mem	0.002638 (6.866083)	0.640964 (0.235021)	0.434746 (0.068354)	7.730200 (0.187919)
Panel V: m $=144, \mathrm{~T}=1000$				
True Value	0.020402	0.294540	1.161865	
lhr2	0.031422 (0.001167)	0.299256 (0.031683)	1.353009 (0.707128)	
lhrv	0.023179 (0.112965)	0.290395 (0.029173)	1.171383 (0.012677)	
mdr2	0.053584 (3.304682)	0.288688 (1.653277)	2.071579 (17.816284)	
mdrv	0.026522 (0.078156)	0.291540 (0.056826)	1.162984 (0.028757)	
mem	0.000591 (0.355572)	0.310927 (0.029184)	1.150915 (0.008941)	26.387767 (2.853065)
Panel VI: $\mathrm{m}=288, \mathrm{~T}=1000$				
True Value	0.019472	0.177589	1.659011	
lhr2	0.034068 (0.001155)	0.197662 (0.028785)	2.132745 (3.979507)	
lhrv	0.021192 (0.029212)	0.175443 (0.016039)	1.669002 (0.003373)	
mdr2	0.058739 (4.439753)	0.200768 (1.623452)	4.015785 (20.044682)	
mdrv	0.025429 (0.075973)	0.175460 (0.044330)	1.668098 (0.010440)	
mem	0.014977 (0.189630)	0.177831 (0.064847)	1.960999 (1.213615)	35.716633 (92.418742)

Bibliography

Berkes, I., L. Horvath, and P. Kokoszka (2003). GARCH processes: structure and estimation. Bernoulli, 201-227.

Bougerol, P. (1993). Kalman filtering with random coefficients and contractions. SIAM Journal on Control and Optimization 31, 942.

Davidson, J. (1992). A central limit theorem for globally nonstationary near-epoch dependent functions of mixing processes. Econometric theory 8(3), 313-329.

Drost, F. C. and B. J. Werker (1996). Closing the gap: Continuous time garch modeling. Journal of Econometrics 74, 31-57.

Gallant, A. and H. White (1988). A unified theory of estimation and inference for nonlinear dynamic models. Basil Blackwell Oxford.

Goncalves, S. and H. White (2004). Maximum likelihood and the bootstrap for nonlinear dynamic models. Journal of Econometrics 119(1), 199-219.

Protter, P. (2004). Stochastic integration and differential equations. Springer Verlag.
Straumann, D. and T. Mikosch (2006). Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach. Annals of Statistics 34 (5), 2449.

