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Denote F = (f5,1,...,f,)T withf; = (g,_1,...,61-q)7, and E = (eqy1,...,en)"
with e; = (§,_1,...,8—q)", where & is the estimated residual in the initial step

when the profile least squares method is implemented. Define A = E — F. Our
proof follows a similar strategy to that used in Fan and Huang (2005) and Li
and Li (2009). Note that the proof of Fan and Huang (2005) is for iid data, and
the proof of Li and Li (2009) is for nonparametric regression models rather than
varying coefficient models. The following conditions are imposed to facilitate the
proof and are adopted from Fan and Huang (2005). They are not the weakest

possible conditions.

A. The random variable {u;} has a bounded support Q. Its density function
g(+) is Lipschitz continuous with order v > 2 and bounded away from 0 on

its support. That is,
lg(z1) — g(x2)] < Clz1 — 2|7,
for some constants C > 0.

B. There is an s > 2 such that E||f;||** < co and E||X;||** < oo and for some
(1-51)/2<¢&<2— s such that n'=2 " ~%h — oo,

C. The p x p matrix E(X;X7|f;) is non-singular for each f; € Q. B(X;X]|f;)
and E(X;XT|f;)~" are all Lipschitz continuous with order v > 2.

D. {o;(:),7=0,...,p} have continuous second derivatives in u € 2.
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E. The kernel function K(-) is a bounded symmetric density function with

bounded support [—x, k], satisfying a Lipschitz condition.
F. nh® — 0 and nh?/(logn)? — oo.

G. sup,,cq |a;(u) — aj(ug)| = op(n_%) for all j =0,...,p, where &;(u;) is the

local linear estimator pretending that data are i.i.d..

H. The sequence of random vectors (us, X} ,&;), t = 1,2,-- -, is strictly station-
ary (Fan and Yao (2003)) and satisfies the following conditions for a-mixing
processes (Fan and Yao (2003)):

S a0 <00, Ela|’ < oo, E[XiXT|’ < oo,
l
Guy ey (ule) < C1 <00, g, x, (uX) < Cy < oo
with some § > 2, a > 1 —2/§ and positive constants C; and Cq, where

a(n) = sup |P(A)P(B) — P(AB)|. (A1)
AeFO _,BEFE
with FO_ being a o-field generated by {(us, X7,e;) : ¢t < 0} and F° a
o-field generated by {(us, XI, &) : t > n}.

Lemma 1. Let (u1,€1),..., (un,&n) be a strictly stationary sequence satisfying
the mizing condition a(l) < cl™7 for some ¢ > 0 and T > 5/2. Assume further

that for some s > 2 and interval [a,b],

Ele]® <00 and  sup /|5t|sg(u,5)d5 < 00,
Vze(a,b]

where g(-,-) denotes the joint density of (ut,eq).
In addition, Condition H holds, and the conditional density gy, v, ¢ (W1, /€1, 1) <
Ay < 00,Vl > 1. Let K satisfy Condition E. Then

n oo n 1/2
sup [ 380 — w)es — Bl (s~ we)| = 0 5 )

provided that h — 0, for some & > 0,n17257 =26} — o0 and n(TH18)(s7 +O)-7/245/4p—7/2-5/4 _,
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This lemma is extracted from Fan and Yao (2003) and will be used in our

proof repeatedly.

Lemma 2. Suppose that Conditions A—H hold. It follows that

%ET(I — 8T (I—SNE D B, (A2)
%ET(I — ST (I —S3)M = O, ({h* + /log(n) /nh}?) (A.3)
%ET(I —Sp)" (I = Sp)AB = o, (n~ V' Y{h? + /log(n) /nh}?)  (A4)

Proof To prove (A.2), we first show that

%FT( 1—8)T(I —SuF 5 B(efT). (A.5)

Denote W, to be a (n — d) x (n — d) diagonal matrix with i-th diagonal
element Kp(u; —u) and

Ud41—U
Xd+1 h Xd+1
Dy, = >
T Un—u~NT
Xn nh Xn

Then the smoothing matrix S;, for the local linear regression can be expressed as

[X5+17 ]{Dud+1 W“d+1 Dud+1 } ngd-H Wud+1

Sy, = : )

where

DIW. D, — E?:d-i-l XlszKh(uz —u) Zz =d+1 X, XT(ul ) Kn(u; — )
u u — L _ )
h S g XX (M) Ky (w — ) Y gy XaXT (U5)2 Ky (us — u)

Each element of matrix Dg WDy, is a kernel regression. Denote G = %D;‘f WyD,,.
Let X be a p 4+ 1-dimensional random vector whose distribution is the same as
that of X;. With Lemma [I| and the symmetry of kernel function K (-), it holds

uniformly in u that G equals a diagonal matrix with the 1st and 2nd diagonal
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elements g(u)E(XXT|u)(1 4+ Op(h% + \/log(n)/nh)) and pog(u)E(XXT|u)(1 +
Op(h? + /log(n)/nh)), respectively. Thus the inverse of G is also a diagonal
matrix with the Ist and 2nd diagonal elements being [g(u)E(XXT|u)]~ (1 +
Op(h2 + /5™ )) and [pag(u) E(XXT|u)] 71 (1 + Op(h2 + /221 respectively.

By the independence assumption of (u, X7 ) and &, we get E(Xf] |u) = 0.

1 \/ l%ghn )

Op(
~pIw,F=|""
" Oy 5)

holds uniformly in u. Consequently,

Following a similar argument, we have

logn
nh

[(XT, 0{ Dy W Du} ™ H{Dy WuF} = X g(u) E(XXT |u)] ™' O )(L+0p(1))

Substituting this result into the smoothing matrix S, we have

_ 1
[Xg—&-lv 0]{ng+1wud+1Dud+1} 1D54+1WU,1+1F Op( (:1ghn>
S, F = =
X, 01{ DX, W, Dy, } = DI, W, F 0, (/22
Thus,

logn
F—S,F = F{1+0,(/ %)}.

Finally, by the stationarity and ergodicity,

1 1 — logn
~FT(1-8,)" (I = Sp)F = (n 3y fﬁ?) {1+ 0y( 7%)} £ B(efT)
i=d+1

Thus, (A.5) holds.

Note that A = E—F, and the generic element of A is of the form ZZ;:O (& (ug)wy—
a;j(us)xej]. By condition F: sup,cq |&;(ut) — aj(ug)| = op(n_%) and the assump-
tion that z;; is bounded, A is of order op(nfl/ 4) uniformly in u. We observe
that

1
“EN(I-8,)T(I -Sp)E=—(F+A)T(I—-S,)T(I -8,)(F+A).
n

1
n
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By using an argument similar to the proof of ({A.5)), it can be shown that
1 1
—ET(I-8,)T(I-S,)E=~-FI(I-8,)T(I-S,)F + op(n_1/4).
n n

Thus, (A.2)) follows by (A.5]).
We next show ({A.3]). To this end, we first show that

%FT(I — ST (I - Sp)M = 0, ({h* + \/log(n) /nh}?). (A.6)

It is noted that

%FT(I —Su)7(I—s)M (A7)
= % i [£i — (Suf)i][X] () — (X7, 0{ Dy, W, Doy, } ' Dy Wi, M.

i=d+1

Similar to the argument in the proof of (A.5)), we can show that

(X, 0Dy WuDu} “H{Dy WM} = X ax(u) (1 + Op(h* + y/log(n) /nh))

holds uniformly in u € €. Plugging this into (A.7), we have (f; — (Spf);)T =
7' (1 + 0,(y/log(n)/nh)). Hence, it follows that

1
—F'(I —8p)"(I - Sp)M
n

= % > [ = (ShDil[XT e(ui) = XT au(u;) (1 + Op(h* + \/log(n) /nh)]
i=d+1

:% Z £;X7 a(u;)[1 + Oy(y/log(n) /nh)]Oy(h* + \/log(n) /nh)
i=d+1
= Op([h” + v/log(n) /nh]?)

Note that E{f;X?a(u;)} = 0 because of the independence between f; and
(u;, XT), and covariance matrix for {£;X7 a(u;)} is finite. This leads to
LS50 g1 £XT au;) = Op(1/4/n) Thus, the last equation holds by Condition F.

Thus, (A.6]) holds
Since E = F + A, we can break %ET(I —Su)T(I — S,)M into two terms:



6 Chen, Li AND Li

LFT(1—-85,)7 (I —Sp)M, which is 0,(1) by (A.6), and LAT(I —S,)T(I —S,)M,
which is also 0,(1) as A = 0,(n~/*). Thus, (A.3) holds.
The proof of Lemma [2| is completed since (A.4)) is a direct result from the

proof of (A.3]).

Lemma 3. Suppose that Conditions A—H hold. It follows that
VBT (1= 80)T (I = $,)E]'ET (1 = 8,)7(I = Sp)n = N(0,0*{E(££7)} 1)

Proof By Lemma LET(I - 8,)7(I — S,)E & E(ffT). Using the Slutsky
theorem, it suffices to show that n=/2ET (I-8,)T(I-Sy)n E N(0,02{E(ffl)}).
Since E = F 4+ A, we may write

EL(I —8,)T(I —Sp)n=F (1 —-S)T(I-Sy)n+ATT -S,)"(I—-Su)n.

Note that A = op(n*1/4) by Condition G, it can be shown that

nV2AT (1 —8,)T(I —Sp)n

- ]

= 0 Y Al (XE (DL WD) D W1+ 0,0/ )

imdy1 "

_ " log(n) _

= 03T MmO,y =N = opn

i=d+1

Thus, it is enough to show that
1
ﬁFT(I —Su)T (I —Sp)n — N(0,02E(ff1)). (A.8)

We observe that

F'(1—8,)"(I—Su)n = Zn: fi[mi — (X, 0{ Dy, Wy, Doy, } " Dot W [1+ 0, (1)].
i=d+1
(A.9)

By using Lemma [I|on {u;,7;}, we can show that

X7, 0{DIW, Dy} {DIWum} = X7 [g(w) E(XX |u)] 10, ( loiglnv
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Then n; — (X7, 0{DI Wy, Dy, } ' DI W,,n = ni{1 + 0,(1)}. Plugging this in
(A.9), we obtain that

FI(I—8,)"(I=Spm= Y fin{l+o0,(1)}.
i=d+1
Since E(fin;) = 0, Var(fn;) = o?{E(ff")} < oo, and E(fmi(f;n;)T) = 0
for ¢ # j since n; is independent of f;. By Central Limit Theorem for strictly

stationary sequence (see Theorem 2.21 of Fan and Yao, 2003),

BT 8,)7 (1= Su)n 5 N(0.* B,

This completes the proof of Lemma,

Proof of Theorem 1

Let us first show the asymptotic normality of B Denote

Ar=/n [{ET(I = S,)" (I = Sp)E} 'ET(I - 8,)" (I — S;)M],
Ao=v/n [{ET(I - S;)T(I — Sp)E} 'ET (I — S,)T (I — S,)AB],
Az=yn[{ET(I - S)" (I - Sp)E} "E"(I - S,)" (I — Sp)n).

According to the expression in B in (2.5), we have

V(B — B) = Ay + Ay + A3,

Lemma [2] shows that A; = op(1) and Ay = 0,(1). Moreover, Lemma
states that Ag weakly converges to N(0,02{E(ffT)}~1). Thus, we establish the
asymptotic normality of B

Next we derive the asymptotic bias and variance of @;(-). By (2.6) and the

arguments in Lemmas [2] and [3] we have
aj(UOa:@) = €?+1{D50WUODUO}71D50WUO(y —EB), j=0,....p

where efﬂ is a 2(p + 1) x 1 vector consisting of 0’s except 1 at the (j + 1)t

element. By the matrix format of semiparametric varying coefficient partially
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linear model (2.2) and [|8 — 8|| = Op(n_%), it follows
aj(uo, B) = e?—Fl{DgQWUODUO}_ID’ZQWUO M+ n){1+0,(1)}, j=0,...,p

Using techniques used in the proof of Lemma 2 and techniques to derive the

asymptotic bias of local linear regression, we can show that under Conditions
A—G,

1
~ 20 (ug)h? + 0, ().

e?+1{D$0WUODuO}71D$OWuOM = OCJ(UO) + 9

By assumption that n is independent of {uy,--- ,u,} and {Xy,---,X,}, we can
show that under Conditions A—G, Ele ]H{DT WoDuo} " 1DI W, uOn] =0 and

, o?
Var[GJTH{DgoWuoDUO} 1D50Wu07ﬂ = nhg(uo)/KQ(u) du{l + 0,(1)}

by using similar techniques related to the proof of Lemma 2. Furthermore, as
LD WyoDuy — g(ug) E(XXT |uy = ug) ®

shown in the proof of Lemma 2, -

diag{1, u2} in probability, where ® stands for the Kronecker product of two
matrices and diag{1, us} is a 2 x 2 diagonal matrix with diagonal element 1 and
po. Since 1; are independent and identically distributed with mean zero and
variance o2, it follows that the asymptotic normality of \/Z—hDgo Wy,m can be
established by using the CLT for a-mixing process. The proof of Theorem 1(B)

is completed by using the Slutsky theorem and noting that vy = [ K*( 2(u) du.
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