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Denote F = (fd+1, . . . , fn)T with ft = (εt−1, . . . , εt−d)
T , and E = (ed+1, . . . , en)T

with et = (ε̂t−1, . . . , ε̂t−d)
T , where ε̂t is the estimated residual in the initial step

when the profile least squares method is implemented. Define ∆ = E− F. Our

proof follows a similar strategy to that used in Fan and Huang (2005) and Li

and Li (2009). Note that the proof of Fan and Huang (2005) is for iid data, and

the proof of Li and Li (2009) is for nonparametric regression models rather than

varying coefficient models. The following conditions are imposed to facilitate the

proof and are adopted from Fan and Huang (2005). They are not the weakest

possible conditions.

A. The random variable {ut} has a bounded support Ω. Its density function

g(·) is Lipschitz continuous with order γ ≥ 2 and bounded away from 0 on

its support. That is,

|g(x1)− g(x2)| ≤ C|x1 − x2|γ ,

for some constants C > 0.

B. There is an s > 2 such that E||ft||2s < ∞ and E||Xt||2s < ∞ and for some

(1− s−1)/2 < ξ < 2− s−1 such that n1−2s−1−2ξh→∞.

C. The p × p matrix E(XtX
T
t |ft) is non-singular for each ft ∈ Ω. E(XtX

T
t |ft)

and E(XtX
T
t |ft)−1 are all Lipschitz continuous with order γ ≥ 2.

D. {αj(·), j = 0, . . . , p} have continuous second derivatives in u ∈ Ω.
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E. The kernel function K(·) is a bounded symmetric density function with

bounded support [−κ, κ], satisfying a Lipschitz condition.

F. nh8 → 0 and nh2/(log n)2 →∞.

G. suput∈Ω |α̃j(ut)− αj(ut)| = op(n
− 1

4 ) for all j = 0, . . . , p, where α̃j(ut) is the

local linear estimator pretending that data are i.i.d..

H. The sequence of random vectors (ut,X
T
t , εt), t = 1, 2, · · · , is strictly station-

ary (Fan and Yao (2003)) and satisfies the following conditions for α-mixing

processes (Fan and Yao (2003)):∑
l

la[α(l)]1−2/δ <∞, E|ε1|δ <∞, E|X1X
T
1 |δ <∞,

gu1|ε1(u|ε) ≤ C1 <∞, gu1|X1
(u|X) ≤ C2 <∞

with some δ > 2, a > 1− 2/δ and positive constants C1 and C2, where

α(n) = sup
A∈F0

−∞,B∈F∞n
|P (A)P (B)− P (AB)|. (A.1)

with F0
−∞ being a σ-field generated by {(ut,XT

t , εt) : t ≤ 0} and F∞n a

σ-field generated by {(ut,XT
t , εt) : t ≥ n}.

Lemma 1. Let (u1, ε1), . . . , (un, εn) be a strictly stationary sequence satisfying

the mixing condition α(l) ≤ cl−τ for some c > 0 and τ > 5/2. Assume further

that for some s > 2 and interval [a, b],

E|εt|s <∞ and sup
∀x∈[a,b]

∫
|εt|sg(u, ε)dε <∞,

where g(·, ·) denotes the joint density of (ut, εt).

In addition, Condition H holds, and the conditional density gu1,ul|ε1,εl(u1, ul|ε1, εl) ≤
A2 <∞,∀l ≥ 1. Let K satisfy Condition E. Then

sup
u∈[a,b]

| 1
n

n∑
i=1

{Kh(ui − u)εi − E[Kh(ui − u)εi]}| = Op(

{
log n

nh

}1/2

)

provided that h→ 0, for some ξ > 0, n1−2s−1−2ξh→∞ and n(τ+1.5)(s−1+ξ)−τ/2+5/4h−τ/2−5/4 →
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0.

This lemma is extracted from Fan and Yao (2003) and will be used in our

proof repeatedly.

Lemma 2. Suppose that Conditions A—H hold. It follows that

1

n
ET (I − Sh)T (I − Sh)E

P→ E(f fT ). (A.2)

1

n
ET (I − Sh)T (I − Sh)M = Op({h2 +

√
log(n)/nh}2) (A.3)

1

n
ET (I − Sh)T (I − Sh)∆β = op(n

−1/4{h2 +
√

log(n)/nh}2) (A.4)

Proof To prove (A.2), we first show that

1

n
FT (I − Sh)T (I − Sh)F

P→ E(f fT ). (A.5)

Denote Wu to be a (n − d) × (n − d) diagonal matrix with i-th diagonal

element Kh(ui − u) and

Du =


XT
d+1

ud+1−u
h XT

d+1
...

...

XT
n

un−u
h XT

n

 ,

Then the smoothing matrix Sh for the local linear regression can be expressed as

Sh =


[XT

d+1, 0]{DT
ud+1

Wud+1
Dud+1

}−1DT
ud+1

Wud+1

...

[XT
n , 0]{DT

unWunDun}−1DT
unWun

 ,

where

DT
uWuDu =

( ∑n
i=d+1 XiX

T
i Kh(ui − u)

∑n
i=d+1 XiX

T
i (ui−uh )Kh(ui − u)∑n

i=d+1 XiX
T
i (ui−uh )Kh(ui − u)

∑n
i=d+1 XiX

T
i (ui−uh )2Kh(ui − u)

)
,

Each element of matrixDT
uWuDu is a kernel regression. DenoteG = 1

nD
T
uWuDu.

Let X be a p + 1-dimensional random vector whose distribution is the same as

that of Xt. With Lemma 1 and the symmetry of kernel function K(·), it holds

uniformly in u that G equals a diagonal matrix with the 1st and 2nd diagonal
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elements g(u)E(XXT |u)(1 + Op(h
2 +

√
log(n)/nh)) and µ2g(u)E(XXT |u)(1 +

Op(h
2 +

√
log(n)/nh)), respectively. Thus the inverse of G is also a diagonal

matrix with the 1st and 2nd diagonal elements being [g(u)E(XXT |u)]−1(1 +

Op(h
2 +

√
log(n)
nh )) and [µ2g(u)E(XXT |u)]−1(1 +Op(h

2 +

√
log(n)
nh )), respectively.

By the independence assumption of (ut,X
T
t ) and εt, we get E(Xtf

T
t |u) = 0.

Following a similar argument, we have

1

n
DT
uWuF =

Op(√ logn
nh )

Op(
√

logn
nh )


holds uniformly in u. Consequently,

[XT , 0]{DT
uWuDu}−1{DT

uWuF} = XT [g(u)E(XXT |u)]−1Op(

√
log n

nh
)(1 + op(1))

Substituting this result into the smoothing matrix Sh, we have

ShF =


[XT

d+1, 0]{DT
ud+1

Wud+1
Dud+1

}−1DT
ud+1

Wud+1
F

...

[XT
n , 0]{DT

unWunDun}−1DT
unWunF

 =


Op(

√
logn
nh )

...

Op(
√

logn
nh )

 .

Thus,

F− ShF = F{1 +Op(

√
log n

nh
)}.

Finally, by the stationarity and ergodicity,

1

n
FT (I − Sh)T (I − Sh)F =

(
1

n

n∑
i=d+1

fif
T
i

)
{1 +Op(

√
log n

nh
)} P→ E(f fT )

Thus, (A.5) holds.

Note that ∆ = E−F, and the generic element of ∆ is of the form
∑p

j=0[α̃j(ut)xtj−
αj(ut)xtj ]. By condition F: supu∈Ω |α̃j(ut)−αj(ut)| = op(n

− 1
4 ) and the assump-

tion that xtj is bounded, ∆ is of order op(n
−1/4) uniformly in u. We observe

that

1

n
ET (I − Sh)T (I − Sh)E =

1

n
(F + ∆)T (I − Sh)T (I − Sh)(F + ∆).
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By using an argument similar to the proof of (A.5), it can be shown that

1

n
ET (I − Sh)T (I − Sh)E =

1

n
FT (I − Sh)T (I − Sh)F + op(n

−1/4).

Thus, (A.2) follows by (A.5).

We next show (A.3). To this end, we first show that

1

n
FT (I − Sh)T (I − Sh)M = Op({h2 +

√
log(n)/nh}2). (A.6)

It is noted that

1

n
FT (I − Sh)T (I − Sh)M (A.7)

=
1

n

n∑
i=d+1

[fi − (Shf)i][X
T
i α(ui)− [XT

i , 0]{DT
uiWuiDui}−1DT

uiWuiM].

Similar to the argument in the proof of (A.5), we can show that

[XT , 0]{DT
uWuDu}−1{DT

uWuM} = XTα(u)(1 +Op(h
2 +

√
log(n)/nh))

holds uniformly in u ∈ Ω. Plugging this into (A.7), we have (fi − (Shf)i)
T =

fTi (1 +Op(
√

log(n)/nh)). Hence, it follows that

1

n
FT (I − Sh)T (I − Sh)M

=
1

n

n∑
i=d+1

[fi − (Shf)i][X
T
i α(ui)−XT

i α(ui)(1 +Op(h
2 +

√
log(n)/nh)]

=
1

n

n∑
i=d+1

fiX
T
i α(ui)[1 +Op(

√
log(n)/nh)]Op(h

2 +
√

log(n)/nh)

= Op([h
2 +

√
log(n)/nh]2)

Note that E{fiXT
i α(ui)} = 0 because of the independence between fi and

(ui,X
T
i ), and covariance matrix for {fiXT

i α(ui)} is finite. This leads to
1
n

∑n
i=d+1 fiX

T
i α(ui) = Op(1/

√
n) Thus, the last equation holds by Condition F.

Thus, (A.6) holds

Since E = F + ∆, we can break 1
nET (I − Sh)T (I − Sh)M into two terms:
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1
nFT (I−Sh)T (I−Sh)M, which is op(1) by (A.6), and 1

n∆T (I−Sh)T (I−Sh)M,

which is also op(1) as ∆ = op(n
−1/4). Thus, (A.3) holds.

The proof of Lemma 2 is completed since (A.4) is a direct result from the

proof of (A.3).

Lemma 3. Suppose that Conditions A—H hold. It follows that

√
n [ET (I − Sh)T (I − Sh)E]−1ET (I − Sh)T (I − Sh)η

L→ N(0, σ2{E(f fT )}−1)

Proof By Lemma 2, 1
nET (I − Sh)T (I − Sh)E

P→ E(ffT ). Using the Slutsky

theorem, it suffices to show that n−1/2ET (I−Sh)T (I−Sh)η
L→ N(0, σ2{E(f fT )}).

Since E = F + ∆, we may write

ET (I − Sh)T (I − Sh)η = FT (I − Sh)T (I − Sh)η + ∆T (I − Sh)T (I − Sh)η.

Note that ∆ = op(n
−1/4) by Condition G, it can be shown that

n−1/2∆T (I − Sh)T (I − Sh)η

= n−1/2
n∑

i=d+1

∆i[ηi − [XT
i , 0]{DT

uiWuiDui}−1DT
uiWuiη][1 +Op(

√
log(n)

nh
)]

= n−1/2
n∑

i=d+1

∆iηi[1 +Op(

√
log(n)

nh
)] = op(n

−1/4)

Thus, it is enough to show that

1√
n

FT (I − Sh)T (I − Sh)η → N(0, σ2E(f fT )). (A.8)

We observe that

FT (I−Sh)T (I−Sh)η =
n∑

i=d+1

fi[ηi− [XT
i , 0]{DT

uiWuiDui}−1DT
uiWuiη][1 +op(1)].

(A.9)

By using Lemma 1 on {ui, ηi}, we can show that

[XT , 0]{DT
uWuDu}−1{DT

uWuη} = XT [g(u)E(XXT |u)]−1Op

(√
log(n)

nh

)
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Then ηi − [XT
i , 0]{DT

uiWuiDui}−1DT
uiWuiη = ηi{1 + op(1)}. Plugging this in

(A.9), we obtain that

FT (I − Sh)T (I − Sh)η =

n∑
i=d+1

fiηi{1 + op(1)}.

Since E(fiηi) = 0, Var(fiηi) = σ2{E(f fT )} < ∞, and E(fiηi(fjηj)
T ) = 0

for i 6= j since ηi is independent of fi. By Central Limit Theorem for strictly

stationary sequence (see Theorem 2.21 of Fan and Yao, 2003),

1√
n

FT (I − Sh)T (I − Sh)η
L→ N(0, σ2{E(f fT )}).

This completes the proof of Lemma 3.

Proof of Theorem 1

Let us first show the asymptotic normality of β̂. Denote

A1=
√
n [{ET (I − Sh)T (I − Sh)E}−1ET (I − Sh)T (I − Sh)M],

A2=
√
n [{ET (I − Sh)T (I − Sh)E}−1ET (I − Sh)T (I − Sh)∆β],

A3=
√
n [{ET (I − Sh)T (I − Sh)E}−1ET (I − Sh)T (I − Sh)η].

According to the expression in β̂ in (2.5), we have

√
n(β̂ − β) = A1 +A2 +A3.

Lemma 2 shows that A1 = op(1) and A2 = op(1). Moreover, Lemma 3

states that A3 weakly converges to N(0, σ2{E(f fT )}−1). Thus, we establish the

asymptotic normality of β̂.

Next we derive the asymptotic bias and variance of α̂j(·). By (2.6) and the

arguments in Lemmas 2 and 3, we have

α̂j(u0, β̂) = eTj+1{DT
u0Wu0Du0}−1DT

u0Wu0(y−Eβ̂), j = 0, . . . , p

where eTj+1 is a 2(p + 1) × 1 vector consisting of 0’s except 1 at the (j + 1)th

element. By the matrix format of semiparametric varying coefficient partially
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linear model (2.2) and ||β̂ − β|| = Op(n
− 1

2 ), it follows

α̂j(u0, β̂) = eTj+1{DT
u0Wu0Du0}−1DT

u0Wu0(M + η){1 + op(1)}, j = 0, . . . , p

Using techniques used in the proof of Lemma 2 and techniques to derive the

asymptotic bias of local linear regression, we can show that under Conditions

A—G,

eTj+1{DT
u0Wu0Du0}−1DT

u0Wu0M = αj(u0) +
1

2
µ2α

′′
j (u0)h2 + op(h

2).

By assumption that η is independent of {u1, · · · , un} and {X1, · · · ,Xn}, we can

show that under Conditions A—G, E[eTj+1{DT
u0Wu0Du0}−1DT

u0Wu0η] = 0 and

Var[eTj+1{DT
u0Wu0Du0}−1DT

u0Wu0η] =
σ2

nhg(u0)

∫
K2(u) du{1 + op(1)}

by using similar techniques related to the proof of Lemma 2. Furthermore, as

shown in the proof of Lemma 2, 1
nD

T
u0Wu0Du0 → g(u0)E(XXT |ut = u0) ⊗

diag{1, µ2} in probability, where ⊗ stands for the Kronecker product of two

matrices and diag{1, µ2} is a 2× 2 diagonal matrix with diagonal element 1 and

µ2. Since ηt are independent and identically distributed with mean zero and

variance σ2, it follows that the asymptotic normality of 1√
nh
DT
u0Wu0η can be

established by using the CLT for α-mixing process. The proof of Theorem 1(B)

is completed by using the Slutsky theorem and noting that ν0 =
∫
K2(u) du.
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