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This appendix contains technical proofs. We first present the assumptions

and re-state the results for reference.

1 Assumptions

Assumption 1 (Smoothness and Moments).

a. Let {=t}t∈Z be a sequence of σ-fields that do not depend on θ and define F
:= σ(∪t∈Z=t). xt(θ) lies on a complete probability measure space (Ω,F , P ) and

is =t-measurable. All functions of xt(θ) satisfy Pollard (1984: Appendix C)’s

permissibility criteria.

b. xt(θ) is stationary, ergodic and thrice continuously differentiable with =t-
measurable stationary and ergodic derivatives gt(θ) and ht(θ).

c. Each wt (θ) ∈ {xt (θ) , gi,t (θ) , hi,j,t(θ)} is governed by a non-degenerate dis-

tribution that is absolutely continuous with respect to Lebesgue measure, with

uniformly bounded derivatives: supθ∈Θ supa∈R ||(∂/∂θ)P (wt (θ) ≤ a)|| < ∞ and

supθ∈Θ supa∈R{(∂/∂a)P (wt (θ) ≤ a)} < ∞. Further E[supθ∈Θ |wt(θ)|ι] < ∞ for

some tiny ι > 0.

We assume xt has support [0,∞) and has for each t a common regularly

varying distribution tail with tail index κ > 0:

P (xt > a) = a−κL(a) where a > 0 and L(a) is slowly varying. (1)

Assumption 2 (Regular Variation and Fractile Bound).
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a. There exists a neighborhood N0(δ) such that

lim
a→∞

sup
θ∈N0(δ)

∣∣∣∣∣ aκ(θ)

L(a, θ)
P (xt(θ) > a)− 1

∣∣∣∣∣ = 0. (2)

Note L(a, θ0) = L(a) in (1). The tail component L(a, θ) is slowly varying with re-

mainder in a, uniformly on Θ, that is supθ∈N0(δ) |L(λa, θ)/L(a, θ)−1| = O(h(a))

as a→∞ for any λ > 0 where h is a measurable function on (0,∞) with bounded

increase: there exist 0 < D, z0 < ∞, and τ ≤ 0 such that h(ϑz)/h(z) ≤ Dϑτ

some for ϑ ≥ 1 and z ≥ z0 Goldie and Smith (1987). Further m
1/2
n h(cn)

→ 0. Moreover, the tail index κ(θ) is locally bounded infθ∈N0(δ) κ(θ) > 0 and

supθ∈N0(δ) κ(θ) < ∞, and is twice differentiable with locally bounded derivatives

and a Lipschitz first derivative: ||(∂/∂θ)κ(θ)|| < ∞, ||(∂/∂θ)2κ(θ)|| < ∞, and

||(∂/∂θ)κ(θ) − (∂/∂θ)κ(θ̃)|| ≤ K||θ − θ̃|| for each θ, θ̃ ∈ N0(δ).

b. mn → ∞ and mn = o(n/ ln(n)).

Assumption 3 (mixing). Let N0(δ) be the neighborhood of θ0 defined in

Assumption 2.a. Then xt(θ) is β-mixing for each θ ∈ N0(δ) with summable co-

efficients. Hence βl := supA⊂=+∞
t+l

E|P (A|=t−∞) − P (A)| where
∑∞

l=1 βl < ∞.

Assumption 4 (Plug-In). There exists a unique point θ0 ∈ Θ such that

m
1/2
n ln(n)(θ̂n − θ0) = op(1).

2 Main Results

The main result Theorem 2.1 is proved in Section 2.1.

Theorem 2.1 Under Assumptions 1-4 m
1/2
n (κ̂−1

mn
(θ̂n) − κ−1)/σmn

d→ N(0, 1)

where σ2
mn

:= E(m
1/2
n (κ̂−1

mn
− κ−1))2.

The main supporting lemma is proved in Section 2.2. Recall

In,t(θ) :=

(
n

mn

)1/2

{I (|xt(θ)| ≤ cn(θ))− E [I (|xt(θ)| ≤ cn(θ))]} .

Lemma 2.2 Under Assumptions 1-3 there exists a Gaussian process {I(θ) : θ

∈ N0(δ)} with uniformly bounded and uniformly continuous sample paths with
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respect to || · ||2 such that:

a. {n−1/2
∑n

t=1 In,t(θ) : θ ∈ N0(δ)} =⇒∗ {I(θ) : θ ∈ N0(δ)}.

b. supθ∈N0(δ) |m
1/2
n ln(x(mn+1)(θ)/cn(θ)) − κ−1n−1/2

∑n
t=1 In,t(θ)|

p→ 0.

c. {m1/2
n ln(x(mn+1)(θ)/cn(θ)) : θ ∈ N0(δ)} =⇒∗ {κ−1I(θ) : θ ∈ N0(δ)}.

2.1 Proof of Theorem 2.1

In order to prove Theorem 2.1 we require several preliminary results. Drop θ0

and write xt = xt(θ
0), cn = cn(θ0), κ̂mn = κ̂mn(θ0). Throughout N0(δ) denotes

the neighborhood of θ0 ∈ Θ ⊂ Rk defined by Assumption 2.a. Also, for two

sequences of real numbers {an} and {bn} we write an ∼ bn to imply an/bn → 1

(or an → 0 if bn = 0 ∀n).

Define indicator functions

În,t(θ) := I
(
xt(θ) ≥ x(mn+1)(θ)

)
and In,t(θ) := I (xt(θ) ≥ cn(θ))

and sample and population Jacobia

Ĵn(θ) :=
1

mn

n∑
t=1

∂

∂θ
ln (xt(θ))× În,t(θ)

Jn(θ) :=
n

mn
E

[
∂

∂θ
ln (xt(θ))× In,t(θ)

]
.

Lemma 2.3 Let θ, θ̃ ∈ N0(δ) be arbitrary.

a. 1/m
1/2
n
∑n

t=1{ln(xt(θ))În,t(θ) − ln(xt(θ̃))În,t(θ̃)} = m
1/2
n Ĵn(θ∗)

′(θ − θ̃) +

op(1) where θ∗ satisfies ||θ∗ − θ̃|| ≤ ||θ − θ̃||.

b. 1/m
1/2
n
∑n

t=1{In,t(θ) − In,t(θ̃)} = op(m
1/2
n ||θ − θ̃||).

Proof.

Claim (a): Let θ, θ̃ ∈ N0(δ), and define yt(θ) := ln(xt(θ)), ŷn,t(θ) := yt(θ)În,t(θ),

yn,t(θ) := yt(θ)In,t(θ), and Jt(θ) = [Ji,t(θ)] := (∂/∂θ)yt(θ). By power law As-

sumption 2.a yt(θ) is uniformly L1-bounded, and by Corollary 2.6, below, Ji,t(θ)

is uniformly L1-bounded.
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By the Mean Value Theorem ŷn,t(θ) = {yt(θ̃) + Jt(θ∗)
′(θ − θ̃)} × În,t (θ) for

some θ∗ that satisfies ||θ∗ − θ̃|| ≤ ||θ − θ̃||, hence

1

m
1/2
n

n∑
t=1

ŷn,t(θ)−
1

m
1/2
n

n∑
t=1

ŷn,t(θ̃)

=
1

m
1/2
n

n∑
t=1

Jt(θ∗)
′ × În,t(θ∗)×

(
θ − θ̃

)
+

1

m
1/2
n

n∑
t=1

yt(θ)×
{
În,t (θ)− În,t(θ̃)

}
+

1

m
1/2
n

n∑
t=1

Jt(θ∗)
′ ×
{
În,t (θ)− În,t(θ∗)

}
× (θ − θ̃)

=
1

m
1/2
n

n∑
t=1

Jt(θ∗)
′ × În,t(θ∗)× (θ − θ̃) + E1,n(θ, θ̃) + E2,n(θ, θ̃).

It suffices to show E1,n(θ, θ̃) = op(1) since a similar argument extends to E2,n(θ, θ̃).

The indicator function I(u) := I(u ≥ 0) can be approximated by a smooth

regular sequence {In(u)}, cf. Lighthill (1958). Let {Nn} be a sequence of fi-

nite positive numbers, Nn → ∞, the rate to be chosen below. Define In(u) :=∫∞
−∞ I($)S(Nn($ − u))Nne−$

2/N 2
nd$ where S(ξ) = e−1/(1−ξ2)/

∫ 1
−1 e

−1/(1−w2)dw

if |ξ| < 1 and S(ξ) = 0 if |ξ| ≥ 1. Note In(u) is uniformly bounded in u, and

continuous and differentiable. I(u) is differentiable, except at 0, with derivative

δ(u) = (∂/∂u)I(u) = 0 ∀u 6= 0, the Dirac delta function, hence δ(u) has a regular

sequence Dn(u) := (Nn/π)1/2 exp{−Nnu2}. See Lighthill (1958: p. 22).

Now define X̂n,t(θ) := xt(θ) − x(mn+1)(θ), hence by definition În,t (θ) =

I(X̂n,t(θ)). Since the rate Nn → ∞ can be made to be as fast as we chose, it can

be set to ensure

1

m
1/2
n

n∑
t=1

yt(θ)×
{
În,t (θ)− În,t(θ̃)

}

=
1

m
1/2
n

n∑
t=1

yt(θ)×
{
In(X̂n,t(θ))− In(X̂n,t(θ̃))

}
+ op (1) .

In view of supθ∈N0(δ) |x(mn+1)(θ)/cn(θ) − 1| = Op(1/m
1/2
n ) be Lemma 2.2 and
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the Mean Value Theorem, we may similarly write for some θ∗, ||θ∗ − θ|| ≤ ||θ −
θ̃||

1

m
1/2
n

n∑
t=1

yt(θ)×
{
In(X̂n,t(θ))− In(X̂n,t(θ̃))

}

=
1

m
1/2
n

n∑
t=1

yt(θ)×Dn(X̂n,t(θ∗))×
(
xt(θ)− xt(θ̃)

)
+Op

(
1

mn

n∑
t=1

yt(θ)×Dn(X̂n,t(θ∗))× cn(θ)

)

+Op

(
1

mn

n∑
t=1

yt(θ)×Dn(X̂n,t(θ∗))× cn(θ̃)

)

− 1

m
1/2
n

n∑
t=1

yt(θ)×Dn(X̂n,t(θ∗))×
(
cn(θ)− cn(θ̃)

)
+ op (1)

=

4∑
i=1

Ai,n(θ, θ∗, θ̃) + op (1) .

Distribution continuity implies X̂n,t(θ) 6= 0 a.s. for any θ ∈ Θ. Hence by con-

struction the rate at which Dn(X̂n,t(θ∗))
p→ 0 can be made so fast by choice of

{Nn} that E|Dn(X̂n,t(θ∗))|ι → 0 as fast as we choose for tiny ι > 0 by dominated

convergence. Therefore by Loéve and Hölder inequalities and dominated conver-

gence, each E|Ai,n(θ, θ∗, θ̃)|ι → 0 for tiny ι > 0, hence Ai,n(θ, θ∗, θ̃) = op(1) by

Markov’s inequality.

Claim (b): Define Xn,t(θ) := xt(θ) − cn(θ). Throughout θ∗ satisfies ||θ∗

− θ|| ≤ ||θ − θ̃|| and may be different in different places. Repeat the above

argument to obtain for some θ∗

1

m
1/2
n

n∑
t=1

{
In,t(θ)− In,t(θ̃)

}

=
1

m
1/2
n

n∑
t=1

Dn(Xn,t(θ∗))×
(
xt(θ)− xt(θ̃)

)
− 1

m
1/2
n

n∑
t=1

Dn(Xn,t(θ∗))×
(
cn(θ)− cn(θ̃)

)
+ op (1) .
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By smoothness Assumption 1.b,c and the mean-value theorem: xt(θ) − xt(θ̃)

= gt(θ
∗)′(θ − θ̃) where gt(θ) is Lι-bounded for tiny ι > 0, and cn(θ) − cn(θ̃) =

dn(θ∗)′(θ − θ̃) for some sequence of finite vectors {dn(θ∗)} in Rk. Hence∣∣∣∣∣ 1

m
1/2
n

n∑
t=1

{
In,t(θ)− In,t(θ̃)

}∣∣∣∣∣
≤ 1

mn

n∑
t=1

|Dn(Xn,t(θ∗))| × ‖gt(θ∗)− dn(θ∗)‖ ×m1/2
n

∥∥∥θ − θ̃∥∥∥+ op (1) .

By the Claim (a) argument we can chose {Nn} to allow Dn(Xn,t(θ∗))
p→ 0 so

fast that 1/mn
∑n

t=1 |Dn(Xn,t(θ∗))| × ||gt(θ∗) − dn(θ∗)|| p→ 0, hence as claimed

1/m
1/2
n
∑n

t=1{In,t(θ) − In,t(θ̃)} = op(m
1/2
n ||θ − θ̃||). QED.

Lemma 2.4 1/m
1/2
n
∑n

t=1 ln(xt){În,t − In,t} = op (1).

Proof. The proof follows from the same arguments used to prove Lemma

2.3. QED.

Lemma 2.5 Let {i1, ..., id} be an arbitrary set of d ∈ {1, 2, 3} integers ij ∈
{1, ..., k}, and let θ ∈ N0(δ) be arbitrary.

a. If (∂/∂θ)κ = 0 then Ĵn(θ̂n)
p→ 0, and otherwise lim infn→∞ |Ji,n| > 0 and

Ĵi,n(θ̂n)/Ji,n
p→ 1 for each i = 1., , , .k;

b. Jn(θ) = − ln(n)(∂/∂θ) ln(κ(θ)) × (1 + o(1)) and (∂/∂θi1 · · · ∂θid)Jn(θ) =

− ln(n)(∂/∂θi1 · · · ∂θid) ln(κ(θ)) × (1 + o(1));

c. supθ∈N0(δ) ||Jn(θ)|| ∼ ln(n) × ||(∂/∂θ) lnκ(θ)|| and supθ∈N0(δ) |(∂/∂θi1 · · ·
∂θid)Jn(θ)| ∼ ln(n) × |(∂/∂θi1 · · · ∂θid) ln(κ(θ))|.

Proof.

Claim (a): We exploit notation and arguments from the proof of Lemma 2.3,

in particular In(·) and Nn. Recall Jn(θ) := (n/mn)E[(∂/∂θ) ln(xt(θ))In,t(θ)].
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We have

Ĵn(θ̂n)− Jn

=

(
1

n

n∑
t=1

n

mn

∂

∂θ
ln(xt(θ̂n))× In,t(θ̂n)− n

mn
E

[
∂

∂θ
ln (xt)× In,t

])

+
1

n

n∑
t=1

n

mn

∂

∂θ
ln(xt(θ̂n))×

{
În,t(θ̂n)− In,t(θ̂n)

}

= An + Bn.

The arguments used to prove Lemmas 2.3 and 2.4 can be straightforwardly gen-

eralized to show the second term is op(1) in view of Assumption 4 m
1/2
n ln(n)(θ̂n

− θ0) = op(1), and the Lemma 2.2 result supθ∈N0(δ) |x(mn+1)(θ)/cn(θ) − 1| =

Op(1/m
1/2
n ).

Consider the first term. We have:

1

n

n∑
t=1

n

mn

{
∂

∂θ
ln(xt(θ̂n))× In,t(θ̂n)− E

[
∂

∂θ
ln (xt)× In,t

]}

=
1

mn

n∑
t=1

{
∂

∂θ
ln(xt(θ̂n))× In(Xn,t(θ̂n))− E

[
∂

∂θ
ln (xt)× In(Xn,t)

]}
+ op(1),

where Xn,t(θ) := xt(θ) − cn(θ). Define

Hn,t(θ) = [Hi,j,n,t(θ)] :=

[
n

mn

∂

∂θi

∂

∂θj
ln(xt(θ))× In(Xn,t(θ))

]

Jn,t = [Ji,n,t] :=

[
n

mn

∂

∂θi
ln(xt)× In(Xn,t)

]
,

and note ||E[Jn,t] − Jn|| → 0 as fast as we choose by choice of {Nn}. Now expand

around θ0. Use m
1/2
n ln(n)(θ̂n − θ0) = op(1), and (∂/∂θ)In(Xn,t(θ∗))

p→ 0 as fast

as we choose by choice of the sequence {Nn}, to deduce for some θ∗, ||θ∗ − θ0||
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≤ ||θ̂n − θ0||:

1

mn

n∑
t=1

∂

∂θ
ln(xt(θ̂n))× In(Xn,t(θ̂n)) (3)

=
1

n

n∑
t=1

Jn,t + op

(∥∥∥∥∥ 1

m
1/2
n ln(n)

× 1

n

n∑
t=1

Hn,t(θ∗)

∥∥∥∥∥
)
.

Consider the first term in (3). Suppose (∂/∂θ)κ = 0. By (b) Jn = 0 hence

E[Jn,t] → 0 as fast as we choose, therefore 1/n
∑n

t=1 Jn,t = op(1) in view of

stationarity and ergodicity of xt. Conversely, if (∂/∂θ)κ 6= 0 then |Ji,n|/ ln(n)

→ (0,∞) by (b). In view of E[Ji,n,t]/Ji,n → 1 and the fact that Ji,n,t is β-mixing

with summable coefficients, it follows 1/n
∑n

t=1 Ji,n,t/Ji,n
p→ 1 by Theorem 2 and

Example 4 in Andrews (1988).

It remains to prove the second term in (3) is op(1). By (b) and twice differ-

entiability of κ(θ) it follows for any θ ∈ N0(δ):

E [Hn,t(θ)] =
n

mn
E

[
∂

∂θ

∂

∂θ′
ln (xt(θ))× In(Xn,t(θ))

]
∼ − ln(n)× ∂

∂θ

∂

∂θ′
κ.

Hence pointwise (n ln(n))−1
∑n

t=1{Hn,t(θ) − E[Hn,t(θ)]}
p→ 0 by Theorem 2 in

Andrews (1988) given integrability and stationary β-mixing of Hn,t(θ) on N0(δ).

Further, since Hn,t(θ)/ ln(n) is uniformly L1-bounded by (c) it belongs to a sepa-

rable Banach space, hence the L1-bracketing numbers satisfy N[ ](ε,Θ, ||·||1) <∞
(Dudley (1999: Proposition 7.1.7)). Therefore supθ∈Θ |(n ln(n))−1

∑n
t=1{Hn,t(θ)

− E[Hn,t(θ)]}|
p→ 0 by Theorem 7.1.5 of Dudley (1999), hence the second term

in (3) is op(1).

Claim (b): Under measure space Assumption 1.a it follows by Leibniz’s the-

orem

E

[
∂

∂θ
ln (xt(θ))× In,t(θ)

]
=

∂

∂θ
E [ln (xt(θ)/cn(θ))× In,t(θ)]

+
∂

∂θ
{ln (cn(θ))× P (xt(θ) ≥ cn(θ))} .

By construction P (xt(θ) ≥ cn(θ)) = mn/n and by uniform regular variation

Assumption 2.a E[ln(xt(θ)/cn(θ))In,t(θ)] = (mn/n)κ(θ)−1 × (1 + o(1)) where
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o(1) is not a function of θ (Hsing (1991: eq. (1.5))). Moreover, (∂/∂θ)κ(θ) exists

for each θ ∈ N0(δ). We will prove below for each θ ∈ N0(δ)

∂

∂θ
ln (cn(θ)) = − ∂

∂θ
lnκ(θ)× ln (n)× (1 + o (1)) . (4)

Therefore, as claimed, for each θ ∈ N0(δ):

Jn(θ) =
n

mn
E

[
∂

∂θ
ln (xt(θ))× In,t(θ)

]

=
∂

∂θ
κ(θ)−1 +

∂

∂θ
ln (cn(θ)) = − ln (n)× ∂

∂θ
lnκ(θ)× (1 + o (1)) .

By the same argument it can similarly be shown (∂/∂θi1 · · · ∂θid)Jn(θ) =

− ln(n)(∂/∂θi1 · · · ∂θid) ln(κ(θ)) × (1 + o(1)) for any set {i1, ..., id} of integers

ij ∈ {1, ..., k} with index d ∈ {1, 2, 3}, where o(1) is not a function of θ.

We now prove (4). Note by Assumption 2.a P (xt(θ)≥ cn(θ)) = c
−κ(θ)
n (θ)L (cn(θ), θ)

and by constructionmn/n= P (xt(θ)≥ cn(θ)) and cn(θ) = {(n/mn)L (cn(θ), θ)}1/κ(θ).

Thus

0 =
∂

∂θ
P (xt(θ) ≥ cn(θ))

=
∂

∂θ
c−κ(θ)
n (θ)× L (cn(θ), θ) + c−κ(θ)

n (θ)
∂

∂θ
L (cn(θ), θ)

=
mn

n

(
∂

∂θ

1

c
κ(θ)
n (θ)

)
× cκ(θ)

n (θ) +
mn

n

1

c
κ(θ)
n (θ)

(
∂

∂θ
cκ(θ)
n (θ)

)

= −mn

n

1

cn(θ)
× ∂

∂θ
κ(θ) +

mn

n

(
∂

∂θ
κ(θ)× ln cn(θ) + κ(θ)

∂

∂θ
ln cn(θ)

)
hence

∂

∂θ
ln (cn(θ)) = − ln (cn(θ))× (1 + o (1))× ∂

∂θ
lnκ(θ).

Finally, since L(cn(θ), ·) is slowly varying it follows L(cn(θ), θ) = o(cn(θ)). Now

use cn(θ) = {(n/mn)L (cn(θ), θ)}1/κ(θ) to deduce

ln

(
n

mn

)
= κ(θ) ln cn(θ)− lnL (cn(θ), θ) = κ(θ) ln cn(θ)− o (ln cn(θ)) ,
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hence

ln cn(θ) = ln

(
n

mn

)
× (1 + o(1)) = ln(n)× (1 + o(1)) .

This completes the proof of (4).

Claim (c): In view of uniform tail properties Assumption 2.a the above argu-

ments can be easily generalized to prove supθ∈N0(δ) ||Jn(θ)|| ∼ ln(n)||(∂/∂θ) lnκ(θ)||
and supθ∈N0(δ) |(∂/∂θi1 · · · ∂θid)Jn(θ)| ∼ ln(n)|(∂/∂θi1 · · · ∂θid) ln(κ(θ))|. QED.

By Lemma 2.5.b it follows supθ∈N0(δ)E|(∂/∂θi) ln(xt(θ))In,t(θ)|=O(mn ln(n)/n).

In view of mn ln(n)/n = o(1) by Assumption 2.b and In,t(θ)
p→ 1 by construction,

it follows by dominated convergence (∂/∂θ) ln(xt(θ)) is uniformly L1-bounded on

N0(δ). This in turn helps us prove expansion Lemma 2.3 above.

Corollary 2.6 supθ∈N0(δ)E|(∂/∂θi) ln(xt(θ))| < ∞ for each i = 1, ..., k.

We now prove Theorem 2.1. We need only show m
1/2
n (κ̂−1

mn
(θ̂n) − κ̂−1

mn
)
p→ 0

since under Assumptions 2 and 3 m
1/2
n (κ̂−1

mn
− κ−1)/σmn

d→ N(0, 1) by Theorem

2 in Hill (2010), where σ2
mn

:= E(m
1/2
n (κ̂−1

mn
− κ−1))2.

Decompose

m1/2
n

(
κ̂−1
mn

(θ̂n)− κ̂−1
mn

)
=

1

m
1/2
n

n∑
t=1

{
ln(xt(θ̂n))În,t(θ̂n)− ln(xt)În,t

}
−m1/2

n

(
ln
(
x(mn+1)(θ̂n)

)
− ln

(
x(mn+1)

))

= An + Bn.

By Assumption 4 θ̂n
p→ θ0 hence θ̂n ∈ N0(δ) for any δ > 0 with probability

approaching one as n → ∞. Now use expansion Lemma 2.3.a, approximation

Lemma 2.4 and Jacobian limit Lemma 2.5.a to deduce An = m
1/2
n J ′n(θ̂n − θ0)(1

+ op(1)). In view of the Lemma 2.5.b Jacobian bound Jn = O(ln(n)), and

m
1/2
n ln(n)(θ̂n − θ0) = op(1) by Assumption 4, it follows An = op(1).

Next, for Bn apply uniform order statistic property Lemma 2.2.b to ln(x(mn+1)(θ))
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and ln(x(mn+1)) to deduce

Bn = κ−1

(
1

m
1/2
n

n∑
t=1

{
In,t(θ̂n)− In,t

})
− κ−1m1/2

n

n

mn

{
P
(
xt(θ̂n) ≥ cn(θ̂n)

)
− P (xt ≥ cn)

}
+ op (1)

= C1,n − C2,n + op (1) ,

say. By construction P (xt(θ̂n) ≥ cn(θ̂n)) = P (xt > cn) = mn/n hence C2,n = 0.

Finally, combine Lemma 2.3.b with m
1/2
n ln(n)(θ̂n − θ0) = op(1) to deduce C1,n

= Op(m
1/2
n ||θ̂n − θ0||) = op(1), hence Bn = op(1). This proves m

1/2
n (κ̂−1

mn
(θ̂n) −

κ̂−1
mn

)
p→ 0 which completes the proof. QED.

2.2 Proof of Lemma 2.2

Claim (a): By construction and Assumption 3, In,t(θ) is L2-bounded uni-

formly on 1 ≤ t ≤ n, n ≥ 1, and Θ, and is geometrically β-mixing on a compact

subsetN0(δ) of θ0. Further, {In,t(θ) : θ ∈ Θ} satisfies the metric entropy with L2-

bracketing bound
∫ 1

0 ln(N[ ](ε,Θ, ||·||2))dε <∞, where N[ ](ε,Θ, ||·||2) are the L2-

bracketing numbers. This follows since, by Assumption 1, xt(θ) has an absolutely

continuous and uniformly bounded distribution supθ∈Θ supa∈R ||(∂/∂θ)P (xt(θ) ≤
a)|| <∞, and by continuity cn(θ) is continuous. Therefore In,t(θ) is L2-Lipschitz

on Θ: E[(In,t(θ) − In,t(θ̃))2] ≤ K||θ − θ̃||. Proving
∫ 1

0 ln(N[ ](ε,Θ, || · ||2))dε <

∞ is then a classic exercise (e.g. Pollard (1984)).

We may therefore apply Doukhan, Massart and Rio’s (1995: Theorem 1, eq.

(2.17), Application 4) uniform central limit theorem to deduce {1/n1/2
∑n

t=1 In,t(θ)
: θ ∈ N0(δ)} =⇒∗ {I(θ) : θ ∈ N0(δ)}, a Gaussian process with a version that

has uniformly bounded and uniformly continuous sample paths with respect to

|| · ||2.

Claim (b): Write for arbitrary u ∈ R:

In(u, θ) :=
1

mn

n∑
t=1

I
(
xt(θ) > cn(θ)eu/m

1/2
n

)
.
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The following borrows arguments in Hsing (1991: p. 1553). By construction

m
1/2
n ln(x(mn+1)(θ)/cn(θ)) ≤ u for u ∈ R iff (if and only if ) In(u, θ) ≤ 1 hence iff

m1/2
n (In (u, θ)− E [In (u, θ)]) ≤ m1/2

n

(
1− n

mn
P
(
xt(θ) > cn(θ)eu/m

1/2
n

))

= m1/2
n

1−
P
(
xt(θ) > cn(θ)eu/m

1/2
n

)
P (xt(θ) > cn(θ))

 ,

since (n/mn)P (xt(θ) > cn(θ)) = 1. Exploit the uniform second order regular

variation Assumption 2.a to deduce

P
(
xt(θ) > cn(θ)eu/m

1/2
n

)
P (xt(θ) > cn(θ))

= e−κu/m
1/2
n

(
1 +

1

m
1/2
n

× o(1)

)
,

where by uniformity the term a(1) is not a function of θ. Hence by the Mean

Value Theorem

m1/2
n (In (u, θ)− E [In (u, θ)]) ≤ m1/2

n

(
1− e−κu/m

1/2
n

(
1 + o(1/m1/2

n ))
))

= m1/2
n

(
1− e−κu/m

1/2
n + o

(
1/m1/2

n

))

= κu+ o(1)

where the o(1) term is a non-random function that does not depend on θ. There-

fore In(u, θ) ≤ 1 iff κ−1m
1/2
n (In (u, θ) − E[In (u, θ)]) = u + o (1) hence

P
(
m1/2
n

∣∣ln (x(mn+1)(θ)/cn(θ)
)∣∣ ≤ u) (5)

= P
(
κ−1m1/2

n |In (u, θ)− E [In (u, θ)]| ≤ u+ o(1)
)
.

Claim (b) therefore follows since o(1) does not depend on θ.

Claim (c): Use (5), uniform indicator law Claim (a) and the mapping the-

orem to prove the claim. QED.
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3 Proofs of Lemmas for Examples

Write N0(δ) = N0 since the value of δ > 0 is not exploited in the arguments

below.

Throughout εt is an i.i.d. random variable with an absolutely continuous

distribution that is positive on R, and bounded supa∈R(∂/∂a)P (εt ≤ a) <∞. In

each example below we impose the following second order tail expansion for εt

(or a similar error) for brevity (cf. Hall (1982), Haeusler and Teugels (1985)):

P (|εt| > a) = da−κ
(

1 + ca−β
)
, β, c, d, κ ∈ (0,∞) . (6)

Let the fractile sequence {mn} satisfy

mn →∞ and mn = o(n2β̃/(2β̃+κ)) where β̃ := min{β/2, 2}. (7)

Lemma 3.1 Assumptions 1-3 hold. Further, in the general ARMA case, estima-

tors in Davis (1996), Mikosch, Gadrich, Klüppelberg, and Alder (1995) and Zhu

and Ling (2012) satisfy Assumption 4. Additionally, in the AR case estimators

in Hill (2013) and Davis, Knight, and Liu (1992) satisfy Assumption 4.

Proof. By construction and the fact that εt has finite moments of order less

than κ, Assumption 1 is easily verified. Let L be the backshift operator: Lpyt

= yt−p. Since yt is geometrically β-mixing so are the finite and infinite lags

a(L)yt = b(L)εt(θ) and yt = a(L)−1b(L)εt(θ), and therefore so is εt(θ). See, e.g.,

Mokkadem (1988: Theorem 1’), cf. Doukhan (1994: p. 99). Geometric mixing

implies mixing in the ergodic hence, and therefore ergodicity (see, e.g., Petersen

(1983)). Hence Assumption 3 holds.

Since we can write a(L)yt =
∑∞

i=0 ψ̃i(a)εt−i for some ψ̃i : A → R, ψ̃i(a) =

O(ρi), it follows by invertibility εt(θ) = b(L)−1a(L)yt =
∑∞

i=0 ψ̊i(θ)εt−i where ψ̊i :

Θ→ R is continuous and differentiable with a uniformly bounded derivative, and

compactness of the parameter space ensures supθ∈N0
|ψ̊i(θ)| = O(ρi). Therefore

εt(θ) satisfies the second order power law property (6) with the same tail indices

κ and β and some tail scales c(θ), d(θ) > 0 (Geluk, de Haan, Resnick, and Stărică

(1997: Theorem 3.2)), and by construction c(θ0) = c and d(θ0) = d. By proper-

ties of regularly varying functions it must be the case d(θ) =
∑∞

i=0 |ψ̊i(θ)|κ, cf.
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BrockCline (1985).

In order to see that the filter xt(θ) = (ε2t (θ) + ε)1/2 for small ε > 0 satisfies

Assumption 2.a, use the fact that εt(θ) has tail (6) to obtain for large a:

P (xt(θ) ≥ a) = P
(
|εt(θ)| ≥ a

(
1− ε/a2

)1/2)

= d(θ)a−κ ×
((

1− ε/a2
)−κ/2

+ c (θ) a−β/2
(
1− ε/a2

)−κ/2−β/2)
.

By the Mean Value Theorem, for some ε∗ ∈ [0, ε]:

P (xt(θ) ≥ a)

= d(θ)a−κ
{

1 +
c (θ)

aβ/2
+
κc (θ)

2a2
ε
(

1− ε∗
a2

)−κ/2−1

+

(
κ+ β

2a2

)
c (θ)

aβ/2
ε
(

1− ε∗
a2

)−κ/2−β/2−1
}

= d(θ)a−κ
(

1 + c̃ (θ) a−β̃
)

for some c̃(θ) > 0 and β̃ := min{β/2, 2}. This tail class with fractile bound mn =

o(n2β̃/(2β̃+κ)) by (7) satisfies Assumption 2.a (Hall (1982), Haeusler and Teugels

(1985: Section 5)), while mn → ∞ and mn = o(n2β̃/(2β̃+κ)) imply Assumption

2.b.

Now consider the Assumption 4 plug-in requirement m
1/2
n ln(n)(θ̂n − θ0) =

op (1). Since mn = o(n/ ln(n)) holds under (7), any n1/2-convergent plug-in is

valid. See Mikosch, Gadrich, Klüppelberg, and Alder (1995) and Davis (1996)

for various estimators. If the model is a pure AR then a large class of smooth

M-estimators (e.g. OLS) and LAD are also valid Davis, Knight, and Liu (1992).

Finally, Zhu and Ling (2012)’s weighted LAD estimator is n1/2-convergent and

Hill (2013)’s Least Tail-Trimmed Squares estimator is at least n1/2-convergent

under our stated error properties. QED.

Lemma 3.2 Assumptions 1-3 hold, and the OLS estimator satisfies Assumption
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4.

Proof. Since yt =
∑∞

i=0 ψiεt−i is geometrically β-mixing by assumption and

vt(θ) := yt −
∑p

i−1 θiyt−i is an infinite order lag function of i.i.d. εt, the arguments

used to prove Lemma 3.1 carry over verbatim to prove Assumptions 1-3 hold.

Now consider plug-in Assumption 4, assume an AR(1) model yt = θ0yt−1

+ vt for notational economy, and define θ0 :=
∑∞

i=0 ψiψi−1/
∑∞

i=0 ψ
2
i . Since

the least squares estimator θ̂n =
∑n

t=2 ytyt−1/
∑n

t=2 y
2
t−1 is identically the first

order sample autocorrelation, Theorem 4.4 of Davis and Resnick (1986) applies:

(n/ ln(n))1/κ(θ̂n − θ0) = Op(1) if κ ∈ (1, 2], and if κ > 2 then n1/2(θ̂n − θ0) =

Op(1). Assumption 4 therefore holds since κ > 1. QED.

Lemma 3.3 Assumptions 1-3 hold, and Log-LAD, Quasi-Maximum Tail-Trimmed

Likelihood and weighted Laplace QML satisfy Assumption 4. QML satisfies As-

sumption 4 when κ > 4, and when κ ∈ (2, 4] provided mn = o(n2−4/κ).

Proof. Define St(θ) := σt/σt(θ) hence εt(θ) = εtSt(θ). By the mixing prop-

erty of {yt, σt} it follows σ2
t (θ) is stationary geometrically β-mixing on some

neighborhoodN0 of θ0 (see Doukhan (1994: Chapter 2.4)), hence εt(θ) = yt/σt(θ)

is stationary geometrically β-mixing on N0. This verifies Assumption 3.

Further, under the stated parameter restrictions (ω0, ω)> 0 and (α0, α, β0, β)

∈ (0, 1) it follows E|St(θ)|p <∞ for each p > 0 and some compact neighborhood

N0 of θ0 that may depend on p (Francq and Zaköıan (2004: eq. (4.25))). There-

fore E[St(θ)
κ] <∞ on N0. But since εt has tail (6) it follows εt(θ) = εtSt(θ) also

satisfies (6) for each θ since by iterated expectations and independence

P (εtSt(θ) > a) = E [P (εt > a/St(θ)|St(θ))]

= a−κE [St(θ)
κ]
(

1 + caβE
[
St(θ)

κ−β
]
/E [St(θ)

κ]
)

= d (θ) a−κ
(

1 + c (θ) aβ
)
.

Francq and Zaköıan (2004: eq. (4.25)) prove E|St(θ)| < ∞ on some neighborhood of θ0. Their
argument generalizes to E|St(θ)|p < ∞ for any p > 0 and neighborhoods N0 of θ0 that may depend
on p: if p ∈ (0, 1) then use their (4.25) with Jensen’s inequality, and if p ≥ 1 then use Minkowski’s
inequality.
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See also Breiman (1965: Proposition 3). Since E[St(θ)
p] is bounded on N0, it

follows εt(θ) satisfies Assumption 2.a. Therefore xt(θ) := (ε2t (θ) + ε)1/2 satisfies

Assumption 2.a by the proof of Lemma 3.1. Assumption 2.b holds in view of

(7). Hence Assumption 1 holds by construction and the existence of a moment

or order less than κ.

Now consider Assumption 4. By assumption mn = o(n1−ι) necessarily holds

for tiny ι > 0 hence any n1/2−ι/2 ln(n)-convergent plug-in satisfies Assumption

4. QML, Log-LAD, Quasi-Maximum Tail-Trimmed Likelihood and weighted

Laplace QML have rate n1/2 if the error tail index κ > 4 (cf. Francq and Zaköıan

(2004), Peng and Yao (2003), Zhu and Ling (2011), Hill (2014a)).

If κ ∈ (2, 4] then Log-LAD and weighted Laplace QML have rate n1/2, and

Quasi-Maximum Tail-Trimmed Likelihood has rate n1/2/gn where {gn} is any

sequence of positive numbers satisfying gn → ∞ as slow as desired based on the

chosen number of trimmed GARCH errors for each n (see Hill (2014a)). Hence

these three satisfy Assumption 4. The QML rate is n1−2/κ/L(n) ≤ n1/2/L (n) for

some slowly varying L (n) → ∞ (Hall and Yao (2003)), so Assumption 4 holds

if mn = o(n2−4/κ) provided also the bound on mn in (7) holds. QED.

Lemma 3.4 Assumptions 1-3 hold and weighted Laplace QML satisfies Assump-

tion 4.

Proof. Define the subvector ψ := [ω, α]′ of θ = [φ, ω, α]′, where ψ lies in Ψ

a compact subset of (0,∞) × (0, 1). Both εt and yt are geometrically β-mixing

(Cline (2007)), hence the finite lag function

εt(θ) =

(
εt +

(
φ0 − φ

)
yt−1(

ω0 + α0y2
t−1

)1/2
)(

ω0 + α0y2
t−1

ω + αy2
t−1

)1/2

= (εt +At(φ))Bt(ψ)

is for any θ ∈ Θ geometrically β-mixing. This verifies Assumption 3. The

weighted Laplace QML estimator of θ0 is n1/2-convergent, hence it satisfies As-

sumption 4 (Zhu and Ling (2011)).

It remains to verify Assumption 2. Let K > 0 be a finite constant that may

be different in different places. By assumption εt is independent of At(φ) and

Bt(ψ), Bt(ψ) is bounded from below infψ∈ΨBt(ψ) ≥ K, and both are bounded

from above supφ∈(−1,1) |At(φ)| ≤ K and supψ∈ΨBt(ψ) ≤ K a.s. In view of the
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assumption that i.i.d. εt has tail (6) and is independent of bonded At(φ), it is

easy to show εt + At(φ) also satisfies (6) by exploiting the identity P (|εt + At(φ)|
> a) = E[P (εt > a − At(φ)|At(φ)] + E[P (εt < −a − At(φ)|At(φ)] and the proof

of Lemma 3.1. Moreover, since Bt(ψ) is bounded from below and above and is

independent of εt, it follows εt(θ) = (εt + At(φ))Bt(ψ) also satisfies (6) by the

proof of Lemma 3.1. Hence xt(θ) := (ε2t (θ) + ε)1/2 satisfies Assumption 2.a by

the proof of Lemma 3.1, and Assumption 2.b holds by (7). Hence Assumption 1

holds. QED.

Lemma 3.5 Assumptions 1 and 3 hold, and xt has tail P (|xt| > a) = da−κ(1

+ o(1)). If εt has a symmetric distribution then Hill (2014b))’s Generalized

Empirical Likelihood estimator satisfies Assumption 4.

Proof . The AR error ut = σtεt has a power law tail P (|ut| ≥ a) = da−κ(1 +

o(1)) under the assumed GARCH error properties (Basrak, Davis, and Mikosck

(2002: Theorem 3.2)) and {ut, σ2
t } is stationary and geometrically β-mixing

(Meitz and Saikkonen (2008: Theorem 1)). Finally, if the i.i.d. GARCH er-

ror εt has a symmetric distribution then Hill (2014b)’s class of GEL estimators

is n1/2-convergent hence Assumption 4 holds. QED.
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