
Partially Linear Additive Models 1

Supplemental Materials for “Separation of Covariates into Nonparametric and

Parametric Parts in High-Dimensional Partially Linear Additive Models”

by Heng Lian, Hua Liang and David Ruppert

Nanyang Technological University, George Washington University, and Cornell

University

Proofs of Main Results

In this Appendix, we present the conditions, prepare several preliminary results, and

give the proofs of the main results.

A.1 Notations and assumptions

We first introduce some notations and additional definitions. In our proofs,C de-

notes a generic positive constant that might assume different values at different places.

b0 = (bT
01, . . . , b

T
0p)

T denotes apK-dimensional vector that satisfies‖f0j − bT
0jBj‖ =

O(K−d) for 1 ≤ j ≤ p1 and f0j = bT
0jBj for j > p1. Due to Proposition 1,

we will frequently use centered covariateXij −
∑

i Xij/n. For simplicity in nota-

tion, we assume such centering has been done and we still useXij to denote it. Let

Z(1) = (Z1, . . . , Zp1) be then × p1K submatrix ofZ containing the columns corre-

sponding to truly nonparametric components, and similarly letZ(2) be the submatrix

corresponding to parametric components andZ(3) the submatrix corresponding to zero

components. In the same spirit, we can defineX(1), X(2), X(3) as suitable submatrices

of then× p covariate matrixX . Similar notations are also applied to other vectors such

asb = (b(1)T , b(2)T , b(3)T)T .

LetA denote the subspace of functions onRp1 that take an additive form

A := {h(x(1)) : h(x(1)) = h1(x1) + · · ·+ hp1(xp1), Ehj(Xj)2 < ∞ andEhj(Xj) = 0}

and for any random variableW with E(W 2) < ∞, letEA(W ) denote the projection of

W ontoA in the sense that

E
[
{W − EA(W )}{W − EA(W )}T

]
= inf

h∈A
E
[
{W − h(X(1))}{W − h(X(1))}T

]
.
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Definition of EA(W ) trivially extends to the caseW is a random vector by component-

wise projection.

In the theoretical studies of our estimator, we will use the decomposition

X(2) = θ(X(1)) + U = θ(X(1))− h(X(1)) + h(X(1)) + U, (A.1)

with θ(X(1)) = E(X(2)|X(1)), h(X(1)) = EA(X(2)) andU = X(2) − E(X(2)|X(1)).

In the decomposition above, eachcomponentofh(X(1)) = (h(1)(X(1)), . . . , h(p2)(X
(1)))T

can be written in the formh(s)(x) =
∑p1

j=1 h(s)j(xj) for someh(s)j ∈ S0
j .

Note that since the conditional expectationE(X(2)|X(1)) can be interpreted as pro-

jection onto the space{h(X(1)) : Eh2 < ∞} of whichA is a subspace, we see that we

also haveh(X(1)) = EA(θ(X(1))). LetΞ = E{X(2) − h(X(1))}⊗2.

In some of the proofs below we will make use of the concept of subdifferential and

thus we first mention the following frequently used fact. For any matrixA and vectorb

(as long as the dimensions are compatible), the subdifferential of||Ab|| is

∂||Ab|| =
{

{AT Ab/||Ab||} if Ab 6= 0

{ATAa : ||Aa|| ≤ 1} if Ab = 0.

Note that the subdifferential is a set and its elements are called subgradients. WhenAb =

0 the subgradient is not unique. In the following we will use the same notation∂||Ab||
to denote either subdifferential or subgradient, when the specific element selected has

no significance in our proofs.

The following regularity conditions are used.

(c1) The covariate vectorX has a continuous density supported on[0, 1]p. Further-

more, the marginal densities forXj , 1 ≤ j ≤ p are all bounded from below and

above by two fixed positive constants respectively.

(c2) The noisesεi are independent of covariates, have mean zero, varianceσ2, and have

sub-Gaussian tails.

(c3) The number of nonzero componentss is fixed.Efj(Xj) = 0, 1 ≤ j ≤ s. fj(x) is

linear inx for p1 + 1 ≤ j ≤ s, andfj ≡ 0 for j > s.

(c4) Forg = fj , 1 ≤ j ≤ p1 or g = h(s)j , 1 ≤ s ≤ p2, 1 ≤ j ≤ p1, g satisfies a

Lipschitz condition of orderd > 1/2: |g(bdc)(t) − g(bdc)(s)| ≤ C|s − t|d−bdc,



Partially Linear Additive Models 3

wherebdc is the biggest integer strictly smaller thand andg(bdc) is the bdc-th
derivative ofg. The order of the B-spline used satisfiesq ≥ d + 2.

(c5) For some fixed positive constantsc, C, c ≤ λmin(Aj) ≤ λmax(Aj) ≤ C, where

λmin(.) andλmax(.) denote the smallest and largest eigenvalue respectively.

(c6) For anyb ∈ RK , ‖b‖Dj = 0 if and only if bTBj(x) is a linear function.Dj is

nonnegative definite, of rankK − 1, and all itsK − 1 nonzero eigenvalues are

bounded and bounded away from zero. With abuse of notation, we useλmin(Dj)
to denote its minimalpositiveeigenvalue.

(c7)
√

n/K{
√

log(pK)+
√

K + n/K2d+
√

nK(λ1||w0
1||+λ2||w0

2||)} = op(nλ2w2j)

for p1 +1 ≤ j ≤ s and
√

n/K{
√

log(pK)+
√

K + n/K2d +
√

nK(λ1||w0
1||+

λ2||w0
2||)} = op(nλ1w1j) for s + 1 ≤ j ≤ p.

(c8) The eigenvalues ofΞ are bounded away from zero and infinity.

(c9) min1≤j≤s ‖f0j‖ andmin1≤j≤p1 infa,b∈R ‖f0j(x) − ax − b‖2 are bounded away

from zero.

Most of the assumptions are standard in the literature. We assumeds is fixed in

(c3) as in Huang et al. (2010). Some discussions on relaxing this are contained in

the Supplementary Material. Assumption (c4) is used to control approximation error.

Assumption (c7) looks quite complicated. These expressions roughly require that the

weightsw1j , j > s associated with zero components and the weightsw2j, p1 < j ≤ s

associated with parametric components should be sufficiently large. When the weights

are defined by the initial lasso estimator, the expressions in (c7) can be made clearer as

discussed in Section 2.3. Assumption (c8) is necessary for identifiability of the linear

components, as argued in Li (2000) for partially linear additive models. Assumption

(c9) roughly speaking imposes condition to distinguish different types of components.

Assumptions (c5) and (c6) may seem more restrictive than they really are. What is re-

ally meant is that the maximum and minimum positive eigenvalues ofAj andDj are

of the same asymptotic order. For example, if the(k, k′) entry of Aj is
∫

BkBk′ , its

minimum and maximum eigenvalues are of order1/K (Huang et al. (2010)). A simple

multiplication byK makesAj satisfy the assumption. In practice, this kind of rescaling

is of course unnecessary and assuming eigenvalues to be bounded and bounded away
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from zero, instead of that they are of the same order, is only used for convenience in

proof.

A.2 Proof of Proposition 1

If ‖bj‖Dj = 0 then by the stated assumption we havebT
j Bj(x) ≡ ajx + cj for some

aj , cj ∈ R. SincebT
j Bj(x) is centered (that is,bT

j Bj(x) ∈ S0
j ), we havecj = −ajX̄j,

and thus‖bj‖2/K ∼ ‖bT
j Bj(x)‖2 = ‖aj(x−X̄j)‖2 ∼ a2

j . The linearity of the mapping

is obvious. The uniqueness is also easy to show sinceBjk , k = 1, . . . , K are assumed

to be linearly independent. The other direction is obvious.

Equivalence between (ii) and (iii) is trivial. We also note that suchξj is unique and

‖ξj‖ ∼
√

K by part (ii). �

A.3 Some preliminary results on regularized oracle estimator

The strategy of proof for our main results is by way of considering the following “regu-

larized oracle estimator”. If we had the additional knowledge regarding which compo-

nents are zero or linear, we could take into account this information and instead mini-

mize the following constrained problem:

min
b

1
2
||Y − Zb||2 + nλ1

p∑

j=1

w1j||bj||Aj + nλ2

p∑

j=1

w2j ||bj||Dj , (A.2)

s.t. ‖bj‖Aj = 0, j = s + 1, . . . , p and ‖bj‖Dj = 0, j = p1 + 1, . . . , s.

We will show in Section A.4 that the solutions to (1.4) and (A.2) are the same with

probability approaching one under appropriate conditions, and thus useb̂ to denote the

minimizer for both. As an immediate corollary, the zero and linear components are

correctly identified with probability approaching one, and the convergence rates and

asymptotic normality results stated below for (A.2) also apply to estimators obtained

from (1.4).

The following lemma is the key to our theoretical investigations, which characterize

the solution to the regularized oracle estimator.

Lemma A.1 A sufficient and necessary condition forb = (b(1)T , b(2)T , b(3)T)T to be
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the solution of (A.2) is that

0 ∈ −ZT
j (Y − Zb) + nλ1w1j∂‖bj‖Aj + nλ2w2j∂‖bj‖Dj , j = 1, . . . , p1, (A.3)

−ZT
j (Y − Zb) + nλ1w1j∂‖bj‖Aj ∈ span(Dj), j = p1 + 1, . . . , s, and (A.4)

b(3) = 0, ‖bj‖Dj = 0, j = p1 + 1, . . . , s,

wherespan(Dj) is the linear subspace ofRK spanned by columns ofDj .

Proof. DenoteZ(1,2) = (Z(1), Z(2)) and similarlyb(1,2) = (b(1)T , b(2)T)T . Due to

the constraints, (A.2) is obviously equivalent tob(3) = 0 together with the following

minimization problem forb(1,2):

min
b

Q(b) =
1
2
||Y − Z(1,2)b(1,2)||2 + nλ1

s∑

j=1

w1j||bj||Aj + nλ2

p1∑

j=1

w2j||bj||Dj ,(A.5)

s.t. ‖bj‖Dj = 0, j = p1 + 1, . . . , s.

DenoteF : RK → R ∪ {∞} with F (x) = 0 if x = 0 and∞ otherwise. NoteF is

a convex function (see for example section III.4 in Ekeland and Turnbull (1983) for the

definition of convex function that can take value∞). UsingF , the constrained problem

(A.5) can be written as an unconstrained convex problem

min
b(1,2)

1
2
‖Y −Z(1,2)b(1,2)‖2 + λ1

s∑

j=1

w1j‖bj‖Aj + λ2

p1∑

j=1

w2j‖bj‖Dj +
s∑

j=p1+1

F (Djbj).

Using the KKT condition (Proposition III.3.1 in Ekeland and Turnbull (1983)), a suffi-

cient and necessary condition forb(1,2) to be its solution is that

0 ∈ −ZT
j (Y − Z(1,2)b(1,2)) + nλ1w1j∂‖bj‖Aj + nλ2w2j∂‖bj‖Dj , j = 1, . . . , p1(A.6)

0 ∈ −ZT
j (Y − Z(1,2)b(1,2)) + nλ1w1j∂‖bj‖Aj + ∂F (Djbj), j = p1 + 1, . . . , s.(A.7)

Furthermore, we have, by Proposition III.2.12 in Ekeland and Turnbull (1983),

∂F (Djbj) =

{
span(Dj) if Djbj = 0,

∅ otherwise.

and thus (A.7) is same as (A.4) together withDjbj = 0, j = p1 + 1, . . . , s. �
We present the following two results regarding the convergence of the regularized
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oracle estimator. These are obviously the same as those stated in Theorems 2 and 3

respectively for the doubly penalized estimator.

Lemma A.2 (Convergence rates) Under conditions (c1)–(c6) and thatK logK/n →
0, K → ∞, the estimator obtained from (A.2) satisfies

s∑

j=1

||f̂j − f0j ||2 = Op

(
K

n
+

1
K2d

+ (λ2
1||w0

1||2 + λ2
2||w0

2||2)K
)

.

For the parametric components, under the additionalassumption (c8) and that
√

n/K2d →
0, we have the faster rate

s∑

j=p1+1

(β̂j − β0j)2 = Op

(
1
n

+ (λ2
1||w0

1||2 + λ2
2||w0

2||2)K
)

.

Proof. The first part is relatively easy to establish.

Using (A.5) and the definition of̂b, we have

0 ≥ Q(b̂) − Q(b0)

≥ ||Y − Z(1,2)b̂(1,2)||2/2− ||Y − Z(1,2)b
(1,2)
0 ||2/2

−nλ1

s∑

j=1

w1j||̂bj − b0j||Aj − nλ2

p1∑

j=1

w2j ||̂bj − b0
j ||Dj

= (Y − Z(1,2)b
(1,2)
0 )TZ(1,2)(b(1,2)

0 − b̂(1,2)) + ||Z(1,2)(b(1,2)
0 − b̂(1,2))||2/2

−nλ1

s∑

j=1

w1j||̂bj − b0j||Aj − nλ2

p1∑

j=1

w2j ||̂bj − b0j ||Dj . (A.8)

Let η = PZ(1,2)(Y −Z(1,2)b
(1,2)
0 ), wherePZ(1,2) = Z(1,2)(Z(1,2)TZ(1,2))−1Z(1,2)T

is the matrix of projection onto the columns ofZ(1,2). Denoteri =
∑p1

j=1 f0j(Xij) and

r = (r1, . . . , rn)T . We haveY −Zb0 = ε + (r−Z(1)b
(1)
0 ) and||η||2 ≤ 2||PZ(1,2)ε||2 +

2||r−Z(1)b
(1)
0 ||2. By the approximation property of splines,||r−Z(1)b

(1)
0 ||2 = Op(n/K2d).

Also, E||PZ(1,2)ε||2 = E(εTPZ(1,2)ε) = σ2tr(PZ(1,2)) = Op(K) and an application of

Markov inequality gives

‖η‖2 = Op(K + n/K2d). (A.9)
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Using the Cauchy-Schwartz inequality, equation (A.8) can be continued as

0 ≥ −|Op(K + n/K2d)|+ 1
4
||Z(1,2)(b(1,2)

0 − b̂(1,2))||2

−nλ1

s∑

j=1

w1j||̂bj − b0
j ||Aj − nλ2

p1∑

j=1

w2j ||̂bj − b0
j ||Dj . (A.10)

Using now properties of the matrixZ as in Huang et al. (2010), we get||Z(1,2)(b(1,2)
0 −

b̂(1,2))||2 ∼ (n/K)||b(1,2)
0 −b̂(1,2)||2. Furthermore, since‖b(1,2)

0 −b̂(1,2)‖Aj ≤ C‖b(1,2)
0 −

b̂(1,2)‖, it follows from Cauchy-Schwartz inequality that, for a sufficiently largeC > 0,

n

s∑

j=1

λ1w1j ||b(1,2)
0 − b̂(1,2)||Dj ≤

CKn

4

s∑

j=1

(λ1w1j)2 + (n/CK)||b(1,2)
0 − b̂(1,2)||2

n

p1∑

j=1

λ2w2j ||b(1,2)
0 − b̂(1,2)||Dj ≤

CKn

4

s∑

j=1

(λ1w1j)2 + (n/CK)||b(1,2)
0 − b̂(1,2)||2,

which along with (A.10) implies||b(1,2)
0 −b̂(1,2)||2 = Op(K2/n+1/K2d−1+(λ2

1

∑s
j=1 w2

1j+
λ2

2

∑p1
j=1 w2

2j)K
2). Using the definition ofb0, we get the rates given in (1.5).

Now consider the faster convergence rates for the parametric components, which

we show by profiling outb(1) in (A.5). For any givenb(2) that satisfies‖b(2)‖Dj = 0, let

b̂(1)(b(2)) be the minimizer of (A.5) whenb(2) is fixed. By the KKT condition, we know

that b̂(1)(b(2)) satisfies

0 ∈ −ZT
j (Y −Z(1)b(1)−Z(2)b(2))+nλ1w1j∂||bj||Aj +nλ2w2j∂||bj||Dj , j = 1, . . . , p1.

By Proposition 1, there exists a uniquep2−dimensional vectorβ such thatZ(2)b(2) =

X(2)β, and thus we can writêb(1)(β) instead of̂b(1)(b(2)). By this change of notation

usingβ, in the rest of the proof we writêb, b, b̂(β) in place of b̂(1) b(1), b̂(1)(β) for

simplicity.

From the above displayed expression we get

b̂(β) = (Z(1)TZ(1))−1Z(1)T (Y − X(2)β) + (Z(1)TZ(1))−1v(β), (A.11)

wherev(β) is ap1K-dimensional vector with its componentsgiven bynλ1w1j∂||̂bj(β)||Aj+

nλ2w2j∂||̂bj(β)||Dj , 1 ≤ j ≤ p1.

Let β0 be the true slope parameter for the linear components and under the corre-
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spondence given in Proposition 1 we have someb
(2)
0 that satisfiesZ(2)b

(2)
0 = X(2)β0.

Consider anŷb(2) ∈ Rp2K given byb
(2)
0 +γub with γ = C

√
K(
√

1/n+
√

K(λ1‖w0
1‖+

λ2‖w0
2‖) and‖ub‖ = 1, ‖ub‖Dj = 0. Again by Proposition 1, we can write this equiv-

alently in terms ofp2-dimensional vectorŝβ = β0 + γ1u under the correspondence,

whereγ1 = C(
√

1/n +
√

K(λ1||w0
1||+ λ2||w0

2||)) for someC > 0, and||u|| = 1. We

will show thatinf ||u||=1 Q(b̂(β̂), β̂) − Q(b̂(β0), β0) > 0 with probability approaching 1

for C large enough and (1.6) will follow.

Using the closed-form expression forb̂(β), we get

Q(b̂(β̂), β̂) − Q(b̂(β0), β0)

= −(Ỹ − X̃(2)β0)(γ1X̃
(2)u + Z(1)(Z(1)TZ(1))−1v(β̂))

+(1/2)||γ1X̃
(2)u + Z(1)(Z(1)TZ(1))−1v(β̂)||2

+(Ỹ − X̃(2)β0)TZ(1)(Z(1)TZ(1))−1v(β0) − (1/2)||Z(1)(Z(1)TZ(1))−1v(β0)||2

+nλ1

p1∑

j=1

w1j||̂bj(β̂)||Aj + nλ2

p1∑

j=1

w2j||̂bj(β̂)||Dj + nλ1

s∑

j=p1+1

w1j |‖b̂j‖Aj

−nλ1

p1∑

j=1

w1j||̂bj(β0)||Aj − nλ2

p1∑

j=1

w2j||̂bj(β0)||Dj − nλ1

s∑

j=p1+1

w1j|‖b0j‖Aj ,

(A.12)

where for any random matrixW with n rows, we setW̃ = QZ(1)W = W − PZ(1)W

to be the projection of columns ofW onto the orthogonal complement of the column

space ofZ(1), wherePZ(1) = Z(1)(Z(1)TZ(1))−1Z(1)T .

Using thatZ(1)(Z(1)TZ(1))−1Z(1)Tv(β) is inside the column space ofZ(1), while

all variables with˜ are orthogonal to it, the first four terms in (A.12) are simplified to

−(Ỹ − X̃(2)β0)T (γ1X̃
(2)u) + (1/2)||γ1X̃

(2)u||2 + (1/2)||Z(1)(Z(1)TZ(1))−1v(β̂)||2

−(1/2)||Z(1)(Z(1)TZ(1))−1v(β0)||2.

We will derive the orders in three steps for these four terms: (i)||(Ỹ−X̃(2)β0)T (X̃(2)u)|| =
Op(

√
n), (ii) ||Z(1)(Z(1)TZ(1))−1v(β)|| = Op(

√
nK(λ1||w0

1|| + λ2||w0
2||)), (iii) the

terms in the last two terms in (A.12) involving the penalty terms are of orderOp(n
√

Kλ1||w0
1||γ1+

nK(λ2
1||w0

1||2 + λ2
2||w0

2||2)).
Step 1. Proof of ||(Ỹ − X̃(2)β0)T (X̃(2)u)|| = Op(

√
n). We first write down the de-
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composition

X(2) = Θ − H + H + U.

The above uppercase letters representn× p2 matrices, and correspond to the decompo-

sition in (A.1) evaluated atn observations. After projection, we havẽX(2) = Θ̃ − H̃ +
H̃ + Ũ . Together with the decompositioñY − X̃(2)β0 = ε̃ + ˜(r − Z(1)b0) (same as in

the proof of Lemma A.2,r = (r1, . . . , rn)T with ri =
∑p1

j=1 f0j(Xij), b0 contains the

spline coefficients that achieve optimal approximation off0j , 1 ≤ j ≤ p1), the bound

for ||(Ỹ − X̃(2)β0)T X̃(2)|| is obtained from the following expressions.

||εTQZ(1)X(2)|| = Op(
√

n), (A.13a)

||(r − Z(1)b0)TQZ(1)(Θ − H)|| = Op(
√

n

K2d
), (A.13b)

||(r− Z(1)b0)TQZ(1)U || = Op(
√

n

K2d
), (A.13c)

||(r − Z(1)b0)TQZ(1)H || = Op(
n

K2d
) = Op(

√
n), (A.13d)

where (A.13a) is obvious from condition (c8), (A.13b) is based on that entries ofΘ−H

have mean zero and are orthogonal toA while entries of(r − Z(1)b0)T andZ(1) are

insideA and thus we can calculate the bound by considering its variance, (A.13c) is

obtained similarly, and finally(A.13d) is obtained from‖r−Z(1)b0‖ = Op(
√

n/K2d)

and||QZ(1)H || = Op(
√

n/K2d) by condition (c4).

Step 2. Proof of ||Z(1)(Z(1)TZ(1))−1v(β)|| = Op(
√

nK(λ1||w0
1|| + λ2||w0

2||)). Us-

ing the fact that∂||̂bj||Aj and ∂||̂bj||Dj have l2 norm bounded byλmax(A
1/2
j ) and

λmax(D
1/2
j ) respectively, it easily follows from the definition ofv(β) that ||v(β)||2 =

Op(n2(λ2
1||w0

1||2 + λ2
2||w0

2||2)).
Step 3. Proof for that the last two lines in (A.12) involving the penalty terms is of order

Op(n
√

Kλ1||w0
1||γ1 + nK(λ2

1||w0
1||2 + λ2

2||w0
2||2)). We have

nλ1

p1∑

j=1

w1j ||̂bj(β̂) − b̂j(β0)||Aj ≤ Cnλ1||w0
1|| · ||̂b(β̂) − b̂(β0)||

≤ Cnλ1||w0
1|| · (||(Z(1)TZ(1))−1Z(1)T (β̂ − β0)||+ ||(Z(1)TZ(1))−1(v(β̂) − v(β0))||)

= Cnλ1||w0
1||(γ1

√
K/n + K(λ1||w0

1||+ λ2||w0
2||)

= Op(
√

nKλ1||w0
1||γ1 + nK(λ2

1||w0
1||2 + λ2

2||w0
2||2)),
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where in the 1st line above we used Cauchy-Schwartz inequality, in the 2nd line we

used (A.11), in the 3rd line we used (ii) above. We can boundnλ2
∑p1

j=1 w2j||̂bj(β̂) −
b̂j(β0)||Dj in a similar way. Finally, we havenλ1

∑s
j=p1+1 w1j‖b̂j−b0j‖Aj ≤ Cnλ1

√
K‖w0

1‖γ1

using Cauchy-Schwartz inequality.

Since the eigenvalues of̃X(2)TX̃(2)/n are bounded away from zero as shown in

part I in the proof of Theorem 1 in Li (2000),Q(b̂(β̂), β̂)−Q(b̂(β0), β0) is bounded be-

low by C1nγ2
1−C2anγ1−C3bn, for some positive constantsC1, C2, C3 andan =

√
n+

n
√

Kλ1‖w0
1‖, bn = nK(λ2

1‖w0
1‖2 + λ2

2‖w0
2‖2). Thus ifγ1 = C max{an/n,

√
bn/n}

for C > 0 sufficiently large, the above displayed expression will be positive. The ex-

pressionmax{an/n,
√

bn/n} is exactly the same as
√

1/n+
√

K(λ1||w0
1||+λ2||w0

2||)
as in the statement of the Theorem. �

Lemma A.3 (Asymptotic normality) Under the same assumption as in Lemma A.2, and

that
√

nK(λ1‖w0
1‖ + λ2‖w0

2‖) → 0,
√

n(β̂ − β0) → N(0, σ2Ξ−1) in distribution.

Proof. Lemma A.1 states that the KKT conditions for (A.2) are

0 ∈ −ZT
j (Y − Z(1)b(1) − Z(2)b(2)) + nλ1w1j∂||bj||Aj + nλ2w2j∂||bj||Dj , j ≤ p1,(A.14)

−ZT
j (Y − Z(1)b(1) − Z(2)b(2)) + nλ1w1j∂‖bj‖Aj ∈ span(Dj), j = p1 + 1, . . . , s.(A.15)

By pre-multiplying the second equation above byξT
j which is defined in Proposition

1, (A.15) becomes−XT
j (Y − Z(1)b(1) − Z(2)b(2)) + nλ1w1jξ

T
j ∂‖bj‖Aj = 0, j =

p1 + 1, . . . , s.

Since we have the constraint‖bj‖Dj = 0, j = p1 + 1, . . . , s, similar as in the

proof of Lemma A.2 we can use a change of parameter (and a similar simplification of

notation as in the proof of Lemma A.2) to write the above as

−XT
j (Y − Z(1)b − X(2)β) + χj = 0, (A.16)

whereχj = nλ1w1jξ
T
j ∂‖bj‖Aj and we note|χj | = Op(nλ1w1j

√
K) due to that‖ξj‖ =

O(
√

K).

SinceY = r + Xβ0 + ε wherer = (r1, . . . , rn)T with ri =
∑p1

j=1 f0j(Xij), and

denote byb0 the vector containing the spline coefficients that achieve optimal approxi-

mation off0j(x), 1 ≤ j ≤ p1, and seta = r − Z(1)b0, (A.16) is rewritten as−XT
j (ε +

a − Z(1)(b − b0) − X(2)(β − β0)) + χj = 0, j = p1 + 1, . . . , s. From (A.14), we get
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Z(1)(b−b0) = Z(1)(Z(1)TZ(1))−1Z(1)T (ε+a−X(2)(β−β0))+Z(1)(Z(1)TZ(1))−1v(β)

(v(β) defined right after equation (A.11)) and plug into the above displayed equation we

get

−XT
j (ε + a − Z(1)(Z(1)TZ(1))−1[Z(1)T (ε + a − X(2)(β − β0)) + v(β)]− X(2)(β − β0))

+χj = 0, j = p1 + 1, . . . , s,

that is,

−XT
j (ε̃ + a − X̃(2)(β − β0)− Z(1)(Z(1)TZ(1))−1v(β)) + χj = 0, j = p1 + 1, . . . , s,

from which we get

√
n(β̂ − β0)

=
√

n(X̃(2)TX̃(2))−1X̃(2)T(ε + a) +
√

n(X̃(2)TX̃(2))−1X(2)TZ(1)(Z(1)TZ(1))−1v(β)

+
√

n(X̃(2)TX̃(2))−1Λ, (A.17)

whereΛ is ap2−dimensional vector with componentsχj , j = p1+1, . . . , s. By part (1)

in the proof of Theorem 1 in Li (2000), we can replace(X̃(2)TX̃(2)/n)−1 by Ξ−1 which

only results in a multiplicative factor1+ op(1) and thus does not disturb the asymptotic

distribution.

Using||X̃(2)Ta|| = Op(
√

n/K2d + n/K2d) (combining (A.13b)-(A.13d)) and

||X(2)TZ(1)(Z(1)TZ(1))−1v(β)|| = Op(n
√

K(λ1||w0
1|| + λ2||w0

2||)) ((ii) in the proof

of Lemma A.2) and||Λ|| = Op(nλ1

√
K||w0

1||), all terms in (A.17) areop(1) ex-

cept
√

n(X̃(2)TX̃(2))−1X̃(2)Tε, which can be shown to converge toN(0, σ2Ξ−1) by

Lindeberg-Feller central limit theorem using standard arguments. �.

A.4 Proofs of the main results

Proofs of Theorems 1-3. As explained before, we only need to show that the solution

b̂ = (b̂(1), b̂(2), b̂(3)) to (A.2) is also the solution to (1.4). Sinceb̂ solves the optimization
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problem (A.5), by Lemma A.1 we have

−ZT
j (Y − Z(1)b̂(1) − Z(2)b̂(2)) + nλ1w1j∂||̂bj||Aj + nλ2w2j∂||̂bj||Dj = 0, j = 1, . . . , p1,

(A.18)

−ZT
j (Y − Z(1)b̂(1) − Z(2)b̂(2)) + nλ1w1j∂||̂bj||Aj ∈ span(Dj), j = p1 + 1, . . . , s. (A.19)

We remind the readers that these equations mean “there exists some subgradient that

makes the left hand side satisfy the condition”, in case the subgradient is not unique.

In order to show that thepK-dimensional vector̂b is also the solution to (1.4), we

only need to verify the corresponding KKT conditions

−ZT
j (Y −Z(1)b̂(1)−Z(2)b̂(2)−Z(3)b̂(3))+nλ1w1j∂||̂bj||Aj+nλ2w2j∂||̂bj||Dj = 0, j = 1, . . . , p.

(A.20)

First, for1 ≤ j ≤ p1, (A.20) is obviously the same as (A.18) and there is nothing

to show.

Next, forp1 + 1 ≤ j ≤ s, we first show that

||ZT
j (Y − Zb̂)||+ nλ1w1j = op(nλ2w2j). (A.21)

In fact, we have||ZT
j (Y − Zb̂)|| ≤ ||ZT

j ε|| + ||ZT
j Z(1,2)(b̂(1,2) − b

(1,2)
0 )|| + ||ZT

j (r −
Z(1)b

(1)
0 )||, wherer is as defined as in the proof of Lemma A.2. Using exactly the

same arguments as in showing (A.9) and Theorem 1 of Huang et al. (2010), we have

maxj ||ZT
j ε|| = Op(

√
(n/K) log(pK)). Besides, using Lemma A.2 we obtain||ZT

j Z(1,2)(b̂(1,2)−
b
(1,2)
0 )||+||ZT

j (r−Z(1)b
(1)
0 )|| = Op

(√
(n/K)(K + n/K2d + nK(λ2

1||w0
1||2 + λ2

2||w0
2||2))

)
.

Thus,||ZT
j (Y −Zb̂)|| = op(nλ2w2j) by assumption (c7). Finally, assumption (c7) also

trivially implies thatλ1w1j ≤ λ1||w0
1|| = op(λ2w2j), p1 + 1 ≤ j ≤ s, and (A.21) is

proved. Sincêb satisfies (A.19), we can write

−ZT
j (Y − Z(1)b̂(1) − Z(2)b̂(2) − Z(3)b̂(3)) + nλ1w1j∂||̂bj||Aj + D

1/2
j a = 0 (A.22)

for somea ∈ RK , whereD
1/2
j is the matrix square root ofDj (note thatspan(Dj)

is the same asspan(D1/2
j )) and furthermore by (A.21) we have‖D1/2

j a‖/(nλ2w2j) =

op(1). Let PD be the projection matrix onto the column span ofDj , obviously we have

D
1/2
j PDa = D

1/2
j a. Then‖PDa‖ ≤ ‖D1/2

j PDa‖/λmin(Dj) = ‖D1/2
j a‖/λmin(Dj) =
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op(nλ2w2j). Settingã = D
1/2
j PDa/(nλ2w2j), (A.22) can be rewritten as

−ZT
j (Y − Z(1)b̂(1) − Z(2)b̂(2) − Z(3)b̂(3)) + nλ1w1j∂||̂bj||Aj + nλ2w2j ã = 0,

which can be seen to verify (A.20) forp1+1 ≤ j ≤ s since it is easy to seẽa ∈ ∂‖b̂j‖Dj .

For s + 1 ≤ j ≤ p, using similar arguments, we only need to verify‖ZT
j (Y −

Zb̂)‖ = op(nλ1w1j), which can be shown in the same way as before. �
Proof of Theorem 4. For any given pair of regularization parametersλ = (λ1, λ2), we

denote bŷbλ the minimizer of (1.4), and bŷb the minimizer when the optimal sequence

of regularization parameters is chosen such thatb̂ results in a consistent model selection.

We consider the underfitting and overfitting case separately below.

Case 1. Underfitting.We only consider the case where some nonparametric components

are estimated as nonzero parametric component inb̂λ (other cases, such as estimating a

nonzero linear component as zero, are similar). Similar to the calculations performed in

the proof of Lemma A.2, we have

1
2n

||Y − Zb̂λ||2 −
1
2n

||Y − Zb̂||2 ≥ − 1
n
||PZ(Y − Zb̂)||2 +

1
4n

||Z(b̂− b̂λ)||2.

Since there is some1 ≤ j ≤ p1 for which b̂j represents a nonparametric component

with convergence rate given by Lemma A.2, whileb̂λj satisfies‖b̂λj‖Dj = 0, it is easy

to show that||Z(b̂ − b̂λ)||2/n ≥ C||Zj(b̂j − b̂λj)||2/n is bounded away from zero by

condition (c9). Besides,||PZ(Y − Zb̂)||/n = op(1) (using the same arguments as in

proving (A.9) as well as the convergence rates stated in Lemma A.2) and the penalty

terms in BIC are all of orderop(1). Also note that it is easy to show12n ||Y − Zb̂||2 is

boundedaway from zero, which implies thatlog ||Y −Zb̂λ||2−log ||Y −Zb̂||2 ≥ Op(1).

Thus the eBIC whenλ is used is bigger than the eBIC when the optimal regularization

sequence is used.

Case 2. Overfitting.We only consider the case where some zero or linear compo-

nents are estimated as nonparametric inb̂λ. Let b̂∗ be the minimizer of the least square

||Y − Zb||2 under the additional constraint that the model identified byb̂λ is used when
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minimizing the least square. We have that

1
2n

||Y − Zb̂λ||2 −
1
2n

||Y − Zb̂||2 ≥ 1
2n

||Y − Zb̂∗||2 − 1
2n

||Y − Zb̂||2

=
1
n

(Y − Zb̂)TZ(b̂− b̂∗) +
1
2n

||Z(b̂− b̂∗)||2

≥ 1
n

(Y − Zb̂)TZ(b̂− b̂∗). (A.23)

By the definition of̂b∗ and the fact that we only search over models with size bounded

by some constant of orderO(1), the convergence rate ofb̂∗ can be obtained using similar

arguments as Lemma A.2 but without the terms involvingλ1 andλ2 appearing. Argu-

ments similar to those used in showing (A.21) in the proof of Theorem 1 can be used

to show that the (A.23) is bounded below by a negative term whose absolute value is of

order

1
n

√
(n log(pK) +

n2

K2d+1
) · (K2

n
+

1
K2d−1

) = o((log(n/K) + log p)/(n/K)).

Thus eBIC cannot select suchλ, similar as in Case 1. �

A discussion for the case s → ∞

The reason we need to assumes is fixed is that we need to use the property that the

eigenvalues ofZ(1,2) are of ordern/K in the proof. For fixeds, this property has been

shown in Lemma 3 of Huang et al. (2010). It is not clear how this lemma can be extended

to the cases → ∞. Ravikumar et al. (2009) assumed directly the order of eigenvalues of

Z(1,2) which is the reason why they can lets → ∞. As long as we assume eigenvalues

of Z(1,2) are of ordern/K, the proof can be straightforwardly modified in a few places

to allow s → ∞. We now briefly mention the changes required in the proof for the

theoretical results in Section 2.2.

To incorporate divergings, assumption (c7) is slightly changed to the following

(c7’)
√

n/K{
√

log(pK)+
√

Ks + ns/K2d+
√

nK(λ1||w0
1||+λ2||w0

2||)} = op(nλ2w2j)

for p1+1 ≤ j ≤ s and
√

n/K{
√

log(pK)+
√

Ks + ns/K2d+
√

nK(λ1||w0
1||+

λ2||w0
2||)} = op(nλ1w1j) for s + 1 ≤ j ≤ p.
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In Lemma A.2, the rates will now be

s∑

j=1

||f̂j − f0j ||2 = Op

(
Ks

n
+

s

K2d
+ (λ2

1||w0
1||2 + λ2

2||w0
2||2)K

)
.

s∑

j=p1+1

(β̂j − β0j)2 = Op

(p2

n
+ (λ2

1||w0
1||2 + λ2

2||w0
2||2)K

)
.

The appearance ofs in the first equation above comes from (A.9), which now will be

‖η‖2 = Op(Ks + ns/K2d).

For the rates of the parameter part (now we require
√

np2/K2d → 0), an additional
√

q2 factor will appear in the bounds (A.13a)-(A.13d). By changing the definitions ofγ

andγ1 (in the paragraph following (A.11)) to beγ = C
√

K(
√

p2/n +
√

K(λ1‖w0
1‖ +

λ2‖w0
2‖) andγ = C(

√
p2/n +

√
K(λ1‖w0

1‖ + λ2‖w0
2‖), the rates can be shown fol-

lowing the same lines.

For asymptotic normality, due to the diverging dimension ofβ, the asymptotic nor-

mality is more appropriately stated as

√
naTΞ1/2(β̂ − β0) → N(0, σ2) in distribution,

for any deterministicp2-vectora with ‖a‖ = 1, using basically the same proof as before.

Supplementary tables
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Table 1.4: Model identification results withn = 50

#N #NT #L #LT
n=50 BIC 29.962.6570 4.980.1414 00 00

p=50 EBIC 3.542.0723 2.381.1409 00 00

σ=0.2 BIC/BIC 14.943.0865 20 1.91.8763 0.220.5455

EBIC/EBIC 1.220.6788 1.140.3505 0.980.9792 0.860.8084

BIC/EBIC 2.420.8593 1.920.2740 3.281.7266 2.240.8609

n=50 BIC 31.383.1161 4.960.1979 00 00

p=50 EBIC 3.441.3273 2.460.9304 00 00

σ=0.5 BIC/BIC 17.762.2818 20 1.681.3915 0.280.6074

EBIC/EBIC 1.280.5360 1.180.3881 1.120.9176 0.960.7548

BIC/EBIC 1.70.7354 1.560.5014 3.262.4396 2.081.1400

n=50 BIC 37.867.6212 4.860.5349 00 00

p=100 EBIC 3.541.6189 2.281.0110 00 00

σ=0.2 BIC/BIC 15.65.1070 1.920.2740 2.321.7195 0.70.8864

EBIC/EBIC 1.240.4764 1.220.4185 0.980.9581 0.840.8657

BIC/EBIC 2.481.5151 1.80.4041 2.561.4450 2.20.9689

n=50 BIC 38.610.0306 4.580.9916 00 00

p=100 EBIC 4.262.0584 2.261.0461 00 00

σ=0.5 BIC/BIC 16.25.8310 1.80.4041 2.321.7893 0.460.6131

EBIC/EBIC 1.20.4518 1.160.3703 0.841.1132 0.680.7939

BIC/EBIC 1.440.6440 1.340.4785 1.461.4316 1.221.0934

n=50 BIC 25.8421.9920 3.121.6117 00 00

p=200 EBIC 4.782.3586 2.11.1294 00 00

σ=0.2 BIC/BIC 9.387.9972 1.540.5035 1.261.6880 0.340.6581

EBIC/EBIC 1.120.3854 1.10.3030 0.841.1493 0.560.7045

BIC/EBIC 1.260.5272 1.220.4185 1.62.2406 1.021.1865

n=50 BIC 7.084.8481 3.581.7853 00 00

p=200 EBIC 5.542.3142 2.040.7814 00 00

σ=0.5 BIC/BIC 10.28.3103 1.560.5014 1.221.2824 0.30.5803

EBIC/EBIC 10 10 0.560.8369 0.420.6091

BIC/EBIC 2.261.2906 1.70.4629 1.841.8335 1.41.3093
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Table 1.5: Root mean squared errors for the first six components withn = 50

Oracle Our Estimator Sparse Additive
n=50 f1 0.34850.05593 0.37210.08058 0.40750.09441

p=50 f2 0.11750.03685 0.22140.16259 0.25980.18056

σ=0.2 f3 0.06030.04675 0.09660.13139 0.23740.16736

f4 0.04700.03255 0.14200.14434 0.24470.16145

f5 0.05750.04406 0.13040.14230 0.24820.16582

f6 0.00000.00000 0.00140.00961 0.01810.05207

n=50 f1 0.36450.03977 0.47440.12462 0.48180.09948

p=50 f2 0.19300.07206 0.47560.24023 0.38170.18565

σ=0.5 f3 0.06870.05014 0.25510.29540 0.37580.20696

f4 0.08820.06131 0.29900.22895 0.35310.14074

f5 0.07420.06118 0.25820.21352 0.35040.12749

f6 0.00000.00000 0.00000.00000 0.01640.05671

n=50 f1 0.35480.03924 0.39630.09781 0.41410.07939

p=100 f2 0.11560.04314 0.28260.23158 0.30220.23694

σ=0.2 f3 0.04530.02931 0.14630.20384 0.31100.22518

f4 0.04640.03426 0.17500.18963 0.29000.17832

f5 0.04930.04085 0.21020.19378 0.33080.19054

f6 0.00000.00000 0.00000.00000 0.00000.00000

n=50 f1 0.38480.08284 0.55710.18669 0.53590.15456

p=100 f2 0.18230.06987 0.55800.23714 0.46290.23394

σ=0.5 f3 0.08390.06235 0.46980.34764 0.52940.27693

f4 0.08480.06894 0.43820.20924 0.45080.15754

f5 0.08200.05971 0.43110.21770 0.45280.17077

f6 0.00000.00000 0.00000.00000 0.00640.02569

n=50 f1 0.35210.03791 0.50910.14830 0.51440.14475

p=200 f2 0.11260.04105 0.61740.21791 0.62270.20919

σ=0.2 f3 0.06020.05229 0.52460.36954 0.66550.27089

f4 0.05640.04377 0.43920.21413 0.52820.12445

f5 0.05170.03874 0.45030.19922 0.52150.13808

f6 0.00000.00000 0.00000.00000 0.00000.00000

n=50 f1 0.33800.02206 0.37610.06544 0.37910.06867

p=200 f2 0.11390.04679 0.31520.27003 0.30380.26639

σ=0.5 f3 0.05770.03835 0.34230.37147 0.38080.34359

f4 0.05230.03508 0.26060.24863 0.30120.22242

f5 0.04830.03864 0.27840.25221 0.31790.21913

f6 0.00000.00000 0.00000.00000 0.00000.00000
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Table 1.6: Model identification results withn = 200

#N #NT #L #LT
n=200 BIC 5.480.6773 50 00 00

p=50 EBIC 5.760.9596 50 00 00

σ=0.2 BIC/BIC 2.260.5272 20 2.760.5175 2.740.5272

EBIC/EBIC 20 20 3.040.1979 30

BIC/EBIC 20 20 3.040.1979 30

n=200 BIC 10.622.3724 50 00 00

p=50 EBIC 7.262.2114 50 00 00

σ=0.5 BIC/BIC 2.180.6289 20 3.10.8631 2.840.5095

EBIC/EBIC 2.080.2740 20 2.920.2740 2.920.2740

BIC/EBIC 2.020.1414 20 3.040.2828 2.980.1414

n=200 BIC 6.21.2289 50 00 00

p=100 EBIC 5.961.1599 50 00 00

σ=0.2 BIC/BIC 2.340.6581 20 2.680.6833 2.660.6581

EBIC/EBIC 20 20 3.020.1414 30

BIC/EBIC 2.020.1414 20 30.2020 2.980.1414

n=200 BIC 11.364.6325 50 00 00

p=100 EBIC 5.421.2469 50 00 00

σ=0.5 BIC/BIC 2.160.3703 20 3.180.9409 2.840.3703

EBIC/EBIC 2.060.2399 20 2.940.2399 2.940.2399

BIC/EBIC 20 20 3.060.2399 30

n=200 BIC 7.641.8818 50 00 00

p=200 EBIC 7.381.5894 50 00 00

σ=0.2 BIC/BIC 2.220.6788 20 2.860.7562 2.780.6788

EBIC/EBIC 2.020.1414 20 3.020.2466 2.980.1414

BIC/EBIC 20 20 3.040.1979 30

n=200 BIC 7.34.6258 50 00 00

p=200 EBIC 5.060.6824 4.920.5656 00 00

σ=0.5 BIC/BIC 2.280.6402 20 2.720.6402 2.720.6402

EBIC/EBIC 1.980.1414 1.980.1414 2.940.4243 2.940.4243

BIC/EBIC 2.040.1979 20 2.980.2466 2.960.1979
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Table 1.7: Root mean squared errors for the first six components withn = 200

Oracle Our Estimator Sparse Additive
n=200 f1 0.31800.00631 0.31930.00718 0.31810.00632

p=50 f2 0.05920.01535 0.06820.01832 0.06100.01585

σ=0.2 f3 0.02380.01989 0.02350.01939 0.04800.02082

f4 0.01900.01782 0.01860.01730 0.04870.01755

f5 0.02370.01850 0.02210.01834 0.05440.01753

f6 0.00000.00000 0.00000.00000 0.00000.00000

n=200 f1 0.32330.01070 0.32610.01165 0.32380.01087

p=50 f2 0.08580.02775 0.11210.04732 0.08930.02958

σ=0.5 f3 0.03870.02630 0.03960.02703 0.08230.02861

f4 0.03040.02401 0.03260.02399 0.07940.03167

f5 0.03620.02498 0.03960.03214 0.07510.03022

f6 0.00000.00000 0.00000.00000 0.00000.00000

n=200 f1 0.31690.00640 0.31840.00736 0.31710.00622

p=100 f2 0.05680.01452 0.07090.02163 0.05840.01491

σ=0.2 f3 0.01990.01731 0.01870.01751 0.04810.02285

f4 0.02450.01816 0.02420.01714 0.05220.01769

f5 0.02280.01855 0.02390.01849 0.05100.02038

f6 0.00000.00000 0.00000.00000 0.00000.00000

n=200 f1 0.32310.00907 0.32490.01008 0.32280.00864

p=100 f2 0.08230.03117 0.10070.03671 0.08370.03341

σ=0.5 f3 0.03310.02828 0.03270.02958 0.08040.02941

f4 0.03060.02241 0.03340.02503 0.08090.03025

f5 0.02890.02232 0.03130.02738 0.07940.03067

f6 0.00000.00000 0.00000.00000 0.00000.00000

n=200 f1 0.31640.01045 0.31800.00974 0.31680.01047

p=200 f2 0.05960.01189 0.07860.02325 0.06040.01303

σ=0.2 f3 0.02180.02014 0.02270.02022 0.05450.02163

f4 0.02530.02066 0.02560.01809 0.05440.01828

f5 0.01750.01577 0.01770.01447 0.04840.01697

f6 0.00000.00000 0.00000.00000 0.00000.00000

n=200 f1 0.32460.01130 0.32730.01200 0.32550.01192

p=200 f2 0.08210.02770 0.12250.05857 0.08450.02767

σ=0.5 f3 0.03440.02430 0.03660.02661 0.08480.03164

f4 0.02730.02206 0.02880.02602 0.07560.03741

f5 0.04170.03403 0.04260.03486 0.08830.03286

f6 0.00000.00000 0.00000.00000 0.00000.00000
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Table 1.8: Prediction errors for the three estimators on independent simulated test data.

n p σ Oracle Our Estimator Sparse Additive
50 50 0.2 0.809 0.958 1.257
50 50 0.5 0.950 1.754 2.092
50 100 0.2 0.819 1.181 1.461
50 100 0.5 0.876 2.155 2.201
50 200 0.2 0.710 2.252 2.464
50 200 0.5 0.775 1.463 1.497
100 50 0.2 0.416 0.429 0.443
100 50 0.5 0.620 0.633 0.709
100 100 0.2 0.366 0.425 0.438
100 100 0.5 0.646 0.776 0.839
100 200 0.2 0.468 0.698 0.714
100 200 0.5 0.581 1.051 1.114
200 50 0.2 0.303 0.287 0.291
200 50 0.5 0.481 0.485 0.494
200 100 0.2 0.276 0.290 0.296
200 100 0.5 0.515 0.521 0.533
200 200 0.2 0.288 0.290 0.296
200 200 0.5 0.520 0.541 0.544
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Table 1.9: Standard errors of the estimators on the linear coefficients.

β̂3 β̂4 β̂5

n p σ SD SE SD SE SD SE
50 50 0.2 0.557 0.192(0.054) 0.302 0.182(0.050) 0.464 0.172(0.050)
50 50 0.5 0.604 0.327(0.064) 0.559 0.245(0.077) 0.648 0.234(0.075)
50 100 0.2 0.481 0.227(0.084) 0.383 0.182(0.052) 0.482 0.179(0.048)
50 100 0.5 0.808 0.375(0.143) 0.588 0.244(0.137) 0.782 0.260(0.133)
50 200 0.2 0.737 0.302(0.121) 0.390 0.192(0.073) 0.525 0.237(0.129)
50 200 0.5 0.750 0.398(0.095) 0.932 0.255(0.114) 0.926 0.374(0.176)
100 50 0.2 0.144 0.134(0.017) 0.183 0.126(0.016) 0.174 0.129(0.015)
100 50 0.5 0.290 0.204(0.025) 0.344 0.191(0.032) 0.228 0.198(0.026)
100 100 0.2 0.179 0.134(0.013) 0.151 0.131(0.013) 0.196 0.132(0.010)
100 100 0.5 0.225 0.205(0.028) 0.285 0.194(0.023) 0.288 0.192(0.026)
100 200 0.2 0.222 0.144(0.027) 0.161 0.131(0.016) 0.271 0.135(0.024)
100 200 0.5 0.286 0.248(0.069) 0.350 0.195(0.031) 0.366 0.207(0.045)
200 50 0.2 0.106 0.093(0.007) 0.091 0.094(0.006) 0.086 0.093(0.007)
200 50 0.5 0.148 0.145(0.010) 0.184 0.145(0.011) 0.172 0.146(0.010)
200 100 0.2 0.097 0.095(0.006) 0.090 0.094(0.006) 0.078 0.094(0.006)
200 100 0.5 0.153 0.147(0.012) 0.185 0.143(0.011) 0.168 0.145(0.011)
200 200 0.2 0.094 0.095(0.008) 0.086 0.094(0.007) 0.099 0.094(0.008)
200 200 0.5 0.156 0.149(0.013) 0.127 0.147(0.014) 0.133 0.149(0.015)


