NON-ASYMPTOTIC ORACLE INEQUALITIES FOR THE HIGH-DIMENSIONAL COX REGRESSION VIA LASSO

Shengchun Kong and Bin Nan
University of Michigan

Abstract

We consider finite sample properties of the regularized high-dimensional Cox regression via lasso. Existing literature focuses on linear models or generalized linear models with Lipschitz loss functions, where the empirical risk functions are the summations of independent and identically distributed (iid) losses. The summands in the negative log partial likelihood function for censored survival data, however, are neither iid nor Lipschitz. We first approximate the negative log partial likelihood function by a sum of iid non-Lipschitz terms, then derive the nonasymptotic oracle inequalities for the lasso penalized Cox regression using pointwise arguments to tackle the difficulties caused by lacking iid Lipschitz losses.

Key words and phrases: Cox regression, finite sample, lasso, oracle inequality, variable selection.

1. Introduction

Since it was introduced by Tibshiranil ([1996), the lasso regularized method for high-dimensional regression models with sparse coefficients has received a great deal of attention in the literature. Properties of interest for such regression models include the finite sample oracle inequalities. Among the extensive literature of the lasso method, Bunea, Tsybakov, and Wegkamp (20107) and Bickel, Ritov, and Tsybakov (2009) derived the oracle inequalities for prediction risk and estimation error in a general nonparametric regression model, including the high-dimensional linear regression as a special example, and van de Geer (2008) provided oracle inequalities for the generalized linear models with Lipschitz loss functions, e.g., logistic regression and classification with hinge loss. Bunea (2008) and Bach (2010) also considered the lasso regularized logistic regression. For censored survival data, the lasso penalty has been applied to the regularized Cox regression in the literature, see e.g., Tibshiranil ([1997) and Gui and Lil (2017.5), among others. Recently, Bradic, Fan, and Jiang (201) studied the asymptotic properties of the lasso regularized Cox model. However, its finite sample nonasymptotic statistical properties have not yet been established in the literature to the best of our knowledge, largely due to lacking iid Lipschitz losses from the
partial likelihood. Nonetheless, the lasso approach has been studied extensively in the literature for other models, see e.g., Martinussen and Scheike (2009) and Gaiffas and Guilloux (2012), among others, for the additive hazards model.

We consider the non-asymptotic statistical properties of the lasso regularized high-dimensional Cox regression. Let T be the survival time and C the censoring time. Suppose we observe a sequence of iid observations $\left(\mathbf{X}_{i}, Y_{i}, \Delta_{i}\right), i=1, \ldots, n$, where $\mathbf{X}_{i}=\left(X_{i 1}, \ldots, X_{i m}\right)$ are the m-dimensional covariates in $\mathscr{X}, Y_{i}=T_{i} \wedge C_{i}$, and $\Delta_{i}=I_{\left\{T_{i} \leq C_{i}\right\}}$. Due to a large amount of parallel material, we follow closely the notation in van de Geer (2008). Let

$$
\mathscr{F}=\left\{f_{\theta}(\mathbf{x})=\sum_{k=1}^{m} \theta_{k} x_{k}, \theta \in \Theta \subset \mathbf{R}^{\mathbf{m}}\right\} .
$$

Consider the Cox model (Cox (1972)):

$$
\lambda(t \mid \mathbf{X})=\lambda_{0}(t) e^{f_{\theta}(\mathbf{X})}
$$

where θ is the parameter of interest and λ_{0} is the unknown baseline hazard function. The negative \log partial likelihood function for θ is

$$
\begin{equation*}
l_{n}(\theta)=-\frac{1}{n} \sum_{i=1}^{n}\left\{f_{\theta}\left(\mathbf{X}_{i}\right)-\log \left[\frac{1}{n} \sum_{j=1}^{n} 1\left(Y_{j} \geq Y_{i}\right) e^{f_{\theta}\left(\mathbf{X}_{j}\right)}\right]\right\} \Delta_{i} . \tag{1.1}
\end{equation*}
$$

The corresponding estimator with lasso penalty is denoted by

$$
\hat{\theta}_{n}:=\underset{\theta \in \Theta}{\arg \min }\left\{l_{n}(\theta)+\lambda_{n} I(\theta)\right\}
$$

where $I(\theta):=\sum_{k=1}^{m} \sigma_{k}\left|\theta_{k}\right|$ is the weighted l_{1} norm of the vector $\theta \in \mathbf{R}^{\mathbf{m}}$. van de (Geer (2008) considered σ_{k} to be the square-root of the second moment of the k th covariate X_{k}, either at the population level (fixed) or at the sample level (random). For normalized $X_{k}, \sigma_{k}=1$. We consider fixed weights σ_{k}, $k=1, \ldots, m$. The results for random weights can be easily obtained from the case with fixed weights following van de Geer (2008), and we leave the detailed calculation to interested readers.

Clearly the negative log partial likelihood ([.]) is a sum of non-iid random variables. For ease of calculation, consider an intermediate function as a "replacement" of the negative log partial likelihood function

$$
\begin{equation*}
\tilde{l}_{n}(\theta)=-\frac{1}{n} \sum_{i=1}^{n}\left\{f_{\theta}\left(\mathbf{X}_{i}\right)-\log \mu\left(Y_{i} ; f_{\theta}\right)\right\} \Delta_{i} \tag{1.2}
\end{equation*}
$$

that has the iid structure, but with an unknown population expectation

$$
\mu\left(t ; f_{\theta}\right)=E_{\mathbf{X}, Y}\left\{1(Y \geq t) e^{f_{\theta}(\mathbf{X})}\right\}
$$

The negative log partial likelihood function (ㄴ.]) can then be viewed as a "working" model for the empirical loss function ($\mathbb{L 2}$). The corresponding loss function is

$$
\begin{equation*}
\gamma_{f_{\theta}}=\gamma\left(f_{\theta}(\mathbf{X}), Y, \Delta\right):=-\left\{f_{\theta}(\mathbf{X})-\log \mu\left(Y ; f_{\theta}\right)\right\} \Delta \tag{1.3}
\end{equation*}
$$

with expected loss

$$
\begin{equation*}
l(\theta)=-E_{Y, \Delta, \mathbf{X}}\left[\left\{f_{\theta}(\mathbf{X})-\log \mu\left(Y ; f_{\theta}\right)\right\} \Delta\right]=P \gamma_{f_{\theta}}, \tag{1.4}
\end{equation*}
$$

where P denotes the distribution of (Y, Δ, \mathbf{X}). Define the target function \bar{f} as

$$
\bar{f}:=\underset{f \in \mathscr{F}}{\arg \min } P \gamma_{f}:=f_{\bar{\theta}},
$$

where $\bar{\theta}=\arg \min _{\theta \in \Theta} P \gamma_{f_{\theta}}$. It is well-known that $P \gamma_{f_{\theta}}$ is convex with respect to θ for the regular Cox model, see for example, Andersen and (iill ([1982), thus the above minimum is unique if the Fisher information matrix of θ at $\bar{\theta}$ is nonsingular. Define the excess risk of f by

$$
\mathcal{E}(f):=P \gamma_{f}-P \gamma_{\bar{f}}
$$

It is desirable to show similar non-asymptotic oracle inequalities for the Cox regression model as in, for example, van de Geer (2008) for generalized linear models. That is, with large probability,

$$
\mathcal{E}\left(f_{\hat{\theta}_{n}}\right) \leq \text { const. } \times \min _{\theta \in \Theta}\left\{\mathcal{E}\left(f_{\theta}\right)+\mathcal{V}_{\theta}\right\} .
$$

Here \mathcal{V}_{θ} is called the "estimation error", which is typically proportional to λ_{n}^{2} times the number of nonzero elements in θ.

Note that the summands in the negative log partial likelihood function ([.]) are not iid, and the intermediate loss function $\gamma(\cdot, Y, \Delta)$ given in $(\mathbb{L} 3)$ is not Lipschitz. Hence the general result of van de Geer (20108) that requires iid Lipschitz loss functions does not apply to the Cox regression. We tackle the problem using pointwise arguments to obtain the oracle bounds of two types of errors: one is between empirical loss ($\mathbb{L} \cdot \mathbf{2})$ and expected loss ($\mathbb{L} \mathbb{L})$ without involving the Lipschitz requirement of van de Geer (2008), and one is between the negative log partial likelihood ([.\|) and empirical loss ((L.2) which establishes the iid approximation of non-iid losses. These steps distinguish our work from that of van de (Geer (2008); we rely on the Mean Value Theorem with van de Geer's Lipschitz condition replaced by the similar, but much less restrictive, boundedness assumption for regression parameters in Bühlmann (2006).

The article is organized as follows. In Section 2, we provide assumptions that are used throughout the paper. In Section 3, we define several useful quantities
followed by the main result. We then provide a detailed proof in Section 4 by introducing a series of lemmas and corollaries useful for deriving the oracle inequalities for the Cox model. To avoid duplicate material as much as possible, we refer to the preliminaries and some results in van de Geer (20018) from place to place in the proofs without providing much detail.

2. Assumptions

We impose five basic assumptions. Let $\|\cdot\|$ be the $L_{2}(P)$ norm and $\|\cdot\|_{\infty}$ the sup norm.

Assumption A. $K_{m}:=\max _{1 \leq k \leq m}\left\{\left\|X_{k}\right\|_{\infty} / \sigma_{k}\right\}<\infty$.
Assumption B. There exists an $\eta>0$ and strictly convex increasing G, such that for all $\theta \in \Theta$ with $\left\|f_{\theta}-\bar{f}\right\|_{\infty} \leq \eta$, one has $\mathcal{E}\left(f_{\theta}\right) \geq G\left(\left\|f_{\theta}-\bar{f}\right\|\right)$.

In particular, G can be chosen as a quadratic function with some constant C_{0}, i.e., $G(u)=u^{2} / C_{0}$, then the convex conjugate of function G, denoted by H, such that $u v \leq G(u)+H(v)$ is also quadratic.

Assumption C. There exists a function $D(\cdot)$ on the subsets of the index set $\{1, \ldots, m\}$, such that for all $\mathscr{K} \subset\{1, \ldots, m\}$, and for all $\theta \in \Theta$ and $\tilde{\theta} \in \Theta$, we have $\sum_{k \in \mathscr{K}} \sigma_{k}\left|\theta_{k}-\tilde{\theta}_{k}\right| \leq \sqrt{D(\mathscr{K})}\left\|f_{\theta}-f_{\tilde{\theta}}\right\|$. Here, $D(\mathscr{K})$ is chosen to be the cardinal number of \mathscr{K}.

Assumption D. $L_{m}:=\sup _{\theta \in \Theta} \sum_{k=1}^{m}\left|\theta_{k}\right|<\infty$.
Assumption E. The observation time stops at a finite time $\tau>0$, with $\xi:=$ $P(Y \geq \tau)>0$.

Assumptions A, B, and C are identical to those in van de Geer (2018) with her ψ_{k} the identity function. Assumptions B and C can be easily verified for the random design setting where \mathbf{X} is random (van de Geer (2008)) together with the usual assumption of non-singular Fisher information matrix at $\bar{\theta}$ (and its neighborhood) for the Cox model. Assumption D has a similar flavor to the assumption (A2) in Bühlmann (2006) for the persistency property of boosting method in high-dimensional linear regression models, but is much less restrictive in the sense that L_{m} is allowed to depend on m in contrast with the fixed constant in Bühlmann (2006). Here it replaces the Lipschitz assumption in van de Geer (2008). Assumption E is commonly used for survival models with censored data, see for example, Andersen and Gill ([1982). A straightforward extension of Assumption E is to allow τ (thus ξ) to depend on n.

From Assumptions A and D, we have, for any $\theta \in \Theta$,

$$
\begin{equation*}
e^{\left|f_{\theta}\left(\mathbf{X}_{i}\right)\right|} \leq e^{K_{m} L_{m} \sigma_{(m)}}:=U_{m}<\infty \tag{2.1}
\end{equation*}
$$

for all i, where $\sigma_{(m)}=\max _{1 \leq k \leq m} \sigma_{k}$. Note that U_{m} is allowed to depend on m.

3. Main Result

Let $I(\theta):=\sum_{k=1}^{m} \sigma_{k}\left|\theta_{k}\right|$ be the l_{1} norm of θ. For any θ and $\tilde{\theta}$ in Θ, denote

$$
I_{1}(\theta \mid \tilde{\theta}):=\sum_{k: \tilde{\theta}_{k} \neq 0} \sigma_{k}\left|\theta_{k}\right|, \quad I_{2}(\theta \mid \tilde{\theta}):=I(\theta)-I_{1}(\theta \mid \tilde{\theta}) .
$$

Consider the estimator

$$
\hat{\theta}_{n}:=\underset{\theta \in \Theta}{\arg \min }\left\{l_{n}(\theta)+\lambda_{n} I(\theta)\right\} .
$$

3.1. Useful quantities

We first define a set of useful quantities that are involved in the oracle inequalities.

- $\bar{a}_{n}=4 a_{n}, \quad a_{n}=\sqrt{2 K_{m}^{2} \log (2 m) / n}+K_{m} \log (2 m) / n$.
- $r_{1}>0, b>0, d>1$, and $1>\delta>0$ are arbitrary constants.
- $d_{b}:=d([(b+d) /[(d-1) b]] \vee 1)$.
- $\bar{\lambda}_{n, 0}=\bar{\lambda}_{n, 0}^{A}+\bar{\lambda}_{n, 0}^{B}$, where

$$
\begin{aligned}
& \bar{\lambda}_{n, 0}^{A}:=\bar{\lambda}_{n, 0}^{A}\left(r_{1}\right):=\bar{a}_{n}\left(1+2 r_{1} \sqrt{2\left(K_{m}^{2}+\bar{a}_{n} K_{m}\right)}+\frac{4 r_{1}^{2} \bar{a}_{n} K_{m}}{3}\right), \\
& \bar{\lambda}_{n, 0}^{B}:=\bar{\lambda}_{n, 0}^{B}\left(r_{1}\right):=\frac{2 K_{m} U_{m}^{2}}{\xi}\left(2 \bar{a}_{n} r_{1}+\sqrt{\frac{\log (2 m)}{n}}\right) .
\end{aligned}
$$

- $\lambda_{n}:=(1+b) \bar{\lambda}_{n, 0}$.
- $\delta_{1}=(1+b)^{-N_{1}}$ and $\delta_{2}=(1+b)^{-N_{2}}$ are arbitrary constants for some N_{1} and N_{2}, where $N_{1} \in \mathbf{N}:=\{1,2, \ldots\}$ and $N_{2} \in \mathbf{N} \cup\{0\}$.
- $d\left(\delta_{1}, \delta_{2}\right)=1+\left\{\left[1+\left(d^{2}-1\right) \delta_{1}\right] /\left[(d-1)\left(1-\delta_{1}\right)\right]\right\} \delta_{2}$.
- W is a fixed constant given in Lemma 3 for a class of empirical processes.
- $D_{\theta}:=D\left(\left\{k: \theta_{k} \neq 0, k=1, \ldots, m\right\}\right)$ is the number of nonzero θ_{k} 's, where $D(\cdot)$ is given in Assumption C.
- $\mathcal{V}_{\theta}:=2 \delta H\left(2 \lambda_{n} \sqrt{D_{\theta}} / \delta\right)$, where H is the convex conjugate of function G defined in Assumption B.
- $\theta_{n}^{*}:=\arg \min _{\theta \in \Theta}\left\{\mathcal{E}\left(f_{\theta}\right)+\mathcal{V}_{\theta}\right\}$.
- $\epsilon_{n}^{*}:=(1+\delta) \mathcal{E}\left(f_{\theta_{n}^{*}}\right)+\mathcal{V}_{\theta_{n}^{*}}$.
- $\zeta_{n}^{*}:=\epsilon_{n}^{*} / \bar{\lambda}_{n, 0}$.
- $\theta\left(\epsilon_{n}^{*}\right):=\arg \min _{\theta \in \Theta, I\left(\theta-\theta_{n}^{*}\right) \leq d_{b} \zeta_{n}^{*} / b}\left\{\delta \mathcal{E}\left(f_{\theta}\right)-2 \lambda_{n} I_{1}\left(\theta-\theta_{n}^{*} \mid \theta_{n}^{*}\right)\right\}$.

In the above, the dependence of θ_{n}^{*} on the sample size n is through \mathcal{V}_{θ} that involves the tuning parameter λ_{n}. We also impose conditions as in van de Geer (2008):

Condition $\mathbf{I}(b, \delta) . \quad\left\|f_{\theta_{n}^{*}}-\bar{f}\right\|_{\infty} \leq \eta$.
Condition II $(b, \delta, d) .\left\|f_{\theta\left(\epsilon_{n}^{*}\right)}-\bar{f}\right\|_{\infty} \leq \eta$.
In both conditions, η is given in Assumption B.

3.2. Oracle inequalities

We now provide our theorem on oracle inequalities for the Cox model lasso estimator, with detailed proof given in the next section. The key idea of the proof is to find bounds of differences between empirical errors of the working model (L.2) and between approximation errors of the partial likelihood, denoted as Z_{θ} and R_{θ} in the next section.

Theorem 1. Suppose Assumptions A - E and Conditions $I(b, \delta)$ and $I I(b, \delta, d)$ hold. With

$$
\Delta\left(b, \delta, \delta_{1}, \delta_{2}\right):=d\left(\delta_{1}, \delta_{2}\right) \frac{1-\delta^{2}}{\delta b} \vee 1,
$$

we have, with probability at least

$$
1-\left\{\log _{1+b} \frac{(1+b)^{2} \Delta\left(b, \delta, \delta_{1}, \delta_{2}\right)}{\delta_{1} \delta_{2}}\right\}\left\{\left(1+\frac{3}{10} W^{2}\right) \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)+2 \exp \left(-\frac{n \xi^{2}}{2}\right)\right\}
$$

that

$$
\mathcal{E}\left(f_{\hat{\theta}_{n}}\right) \leq \frac{1}{1-\delta} \epsilon_{n}^{*} \quad \text { and } \quad I\left(\hat{\theta}_{n}-\theta_{n}^{*}\right) \leq d\left(\delta_{1}, \delta_{2}\right) \frac{\zeta_{n}^{*}}{b}
$$

4. Proofs

4.1. Preparations

Denote the empirical probability measure based on the sample $\left\{\left(\mathbf{X}_{i}, Y_{i}, \Delta_{i}\right)\right.$: $i=1, \ldots n\}$ by P_{n}. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be a Rademacher sequence, independent of the training data $\left(\mathbf{X}_{1}, Y_{1}, \Delta_{1}\right), \ldots,\left(\mathbf{X}_{n}, Y_{n}, \Delta_{n}\right)$. For some fixed $\theta^{*} \in \Theta$ and some $M>0$, denote $\mathscr{F}_{M}:=\left\{f_{\theta}: \theta \in \Theta, I\left(\theta-\theta^{*}\right) \leq M\right\}$. Later we take $\theta^{*}=\theta_{n}^{*}$, which is the case of interest. For any θ where $I\left(\theta-\theta^{*}\right) \leq M$, denote

$$
Z_{\theta}(M):=\left|\left(P_{n}-P\right)\left[\gamma_{f_{\theta}}-\gamma_{f_{\theta^{*}}}\right]\right|=\left|\left[\tilde{l}_{n}(\theta)-l(\theta)\right]-\left[\tilde{l}_{n}\left(\theta^{*}\right)-l\left(\theta^{*}\right)\right]\right| .
$$

Note that van de Geer (20008) sought to bound $\sup _{f \in \mathscr{F}_{M}} Z_{\theta}(M)$, thus the contraction theorem of Ledoux and Talagrand ([1991) (Theorem A. 3 in van de Geer (2008)) was needed, which holds for Lipschitz functions. We find that the calculation in van de Geer (20018) does not apply to the Cox model due to the lack of Lipschitz property. However, the pointwise argument is adequate for our purpose because only the lasso estimator or the difference between the lasso estimator $\hat{\theta}_{n}$ and the oracle θ_{n}^{*} is of interest. Note the notational difference between an arbitrary θ^{*} in the above $Z_{\theta}(M)$ and the oracle θ_{n}^{*}.

Lemma 1. Under Assumptions A, D, and E, for all θ satisfying $I\left(\theta-\theta^{*}\right) \leq M$, we have $E Z_{\theta}(M) \leq \bar{a}_{n} M$.

Proof. By the symmetrization theorem, see e.g., van der Vaart and Wellner (11996) or Theorem A. 2 in van de Geer (2008), for a class of only one function we have

$$
\begin{aligned}
E Z_{\theta}(M) \leq & 2 E\left(\left|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}\left\{\left[f_{\theta}\left(\mathbf{X}_{i}\right)-\log \mu\left(Y_{i} ; f_{\theta}\right)\right] \Delta_{i}-\left[f_{\theta^{*}}\left(\mathbf{X}_{i}\right)-\log \mu\left(Y_{i} ; f_{\theta^{*}}\right)\right] \Delta_{i}\right\}\right|\right) \\
\leq & 2 E\left(\left|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}\left\{f_{\theta}\left(\mathbf{X}_{i}\right)-f_{\theta^{*}}\left(\mathbf{X}_{i}\right)\right\} \Delta_{i}\right|\right) \\
& +2 E\left(\left|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}\left\{\log \mu\left(Y_{i} ; f_{\theta}\right)-\log \mu\left(Y_{i} ; f_{\theta^{*}}\right)\right\} \Delta_{i}\right|\right) \\
= & A+B
\end{aligned}
$$

For A we have

$$
A \leq 2\left(\sum_{k=1}^{m} \sigma_{k}\left|\theta_{k}-\theta_{k}^{*}\right|\right) E\left(\max _{1 \leq k \leq m}\left|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \Delta_{i} \frac{X_{i k}}{\sigma_{k}}\right|\right)
$$

Applying Lemma A. 1 in van de Geer (2008), we obtain

$$
E\left(\max _{1 \leq k \leq m}\left|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \Delta_{i} \frac{X_{i k}}{\sigma_{k}}\right|\right) \leq a_{n}
$$

Thus we have

$$
\begin{equation*}
A \leq 2 a_{n} M \tag{4.1}
\end{equation*}
$$

For B, instead of using the contraction theorem that requires Lipschitz, we use the Mean Value Theorem:

$$
\begin{aligned}
& \left|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}\left\{\log \mu\left(Y_{i} ; f_{\theta}\right)-\log \mu\left(Y_{i} ; f_{\theta^{*}}\right)\right\} \Delta_{i}\right| \\
& \quad=\left|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \Delta_{i} \sum_{k=1}^{m} \frac{1}{\mu\left(Y_{i} ; f_{\theta^{* *}}\right)} \int_{Y_{i}}^{\infty} \int_{\mathscr{X}}\left(\theta_{k}-\theta_{k}^{*}\right) x_{k} e^{f_{\theta^{* *}}(x)} d P_{\mathbf{X}, Y}(\mathbf{x}, y)\right| \\
& \quad=\left|\sum_{k=1}^{m} \sigma_{k}\left(\theta_{k}-\theta_{k}^{*}\right) \frac{1}{n} \sum_{i=1}^{n} \frac{\varepsilon_{i} \Delta_{i}}{\mu\left(Y_{i} ; f_{\theta^{* *}}\right) \sigma_{k}} \int_{Y_{i}}^{\infty} \int_{\mathscr{X}} x_{k} e^{f_{\theta^{* *}}(x)} d P_{\mathbf{X}, Y}(\mathbf{x}, y)\right| \\
& \quad \leq\left|\sum_{k=1}^{m} \sigma_{k}\left(\theta_{k}-\theta_{k}^{*}\right)\right| \max _{1 \leq k \leq m}\left|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \Delta_{i} F_{\theta^{* *}}\left(k, Y_{i}\right)\right|
\end{aligned}
$$

$$
\leq M \max _{1 \leq k \leq m}\left|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \Delta_{i} F_{\theta^{* *}}\left(k, Y_{i}\right)\right|,
$$

where $\theta^{* *}$ is between θ and θ^{*}, and

$$
\begin{equation*}
F_{\theta^{* *}}(k, t)=\frac{E\left[1(Y \geq t) X_{k} e^{f_{\theta^{* *}}(\mathbf{X})}\right]}{\mu\left(t ; f_{\theta^{* *}}\right) \sigma_{k}} \tag{4.2}
\end{equation*}
$$

satisfying

$$
\left|F_{\theta^{* *}}(k, t)\right| \leq \frac{\left(\left\|X_{k}\right\|_{\infty} / \sigma_{k}\right) E\left[1(Y \geq t) e^{f_{\theta^{* *}}(\mathbf{X})}\right]}{\mu\left(t ; f_{\theta^{* *}}\right)} \leq K_{m}
$$

Since for all i,

$$
\begin{aligned}
& E\left[\varepsilon_{i} \Delta_{i} F_{\theta^{* *}}\left(k, Y_{i}\right)\right]=0, \quad\left\|\varepsilon_{i} \Delta_{i} F_{\theta^{* *}}\left(k, Y_{i}\right)\right\|_{\infty} \leq K_{m}, \text { and } \\
& \frac{1}{n} \sum_{i=1}^{n} E\left[\varepsilon_{i} \Delta_{i} F_{\theta^{* *}}\left(k, Y_{i}\right)\right]^{2} \leq \frac{1}{n} \sum_{i=1}^{n} E\left[F_{\theta^{* *}}\left(k, Y_{i}\right)\right]^{2} \leq E K_{m}^{2}=K_{m}^{2},
\end{aligned}
$$

following Lemma A. 1 in van de Geer (2008), we obtain

$$
\begin{equation*}
B \leq 2 a_{n} M \tag{4.3}
\end{equation*}
$$

Combining ($4 . .1$) and (4.3$)$), the upper bound for $E Z_{\theta}(M)$ is achieved.
We now can bound the tail probability of $Z_{\theta}(M)$ using the Bousquet's concentration theorem noted as Theorem A. 1 in van de Geer (2008).

Corollary 1. Under Assumptions A, D, and E, for all $M>0, r_{1}>0$ and all θ satisfying $I\left(\theta-\theta^{*}\right) \leq M$, it holds that

$$
P\left(Z_{\theta}(M) \geq \bar{\lambda}_{n, 0}^{A} M\right) \leq \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)
$$

Proof. Using the triangular inequality and the Mean Value Theorem, we obtain

$$
\begin{aligned}
\left|\gamma_{f_{\theta}}-\gamma_{f_{\theta^{*}}}\right| & \leq\left|f_{\theta}(\mathbf{X})-f_{\theta^{*}}(\mathbf{X})\right| \Delta+\left|\log \mu\left(Y ; f_{\theta}\right)-\log \mu\left(Y ; f_{\theta^{*}}\right)\right| \Delta \\
& \leq \sum_{k=1}^{m} \sigma_{k}\left|\theta_{k}-\theta_{k}^{*}\right| \frac{\left|X_{k}\right|}{\sigma_{k}}+\left|\log \mu\left(Y ; f_{\theta}\right)-\log \mu\left(Y ; f_{\theta^{*}}\right)\right| \\
& \leq M K_{m}+\sum_{k=1}^{m} \sigma_{k}\left|\theta_{k}-\theta_{k}^{*}\right| \max _{1 \leq k \leq m}\left|F_{\theta^{* *}}(k, Y)\right| \leq 2 M K_{m},
\end{aligned}
$$

where $\theta^{* *}$ is between θ and θ^{*}, and $F_{\theta^{* *}}(k, Y)$ is defined in (4.2). So we have

$$
\left\|\gamma_{f_{\theta}}-\gamma_{f_{\theta^{*}}}\right\|_{\infty} \leq 2 M K_{m}, \quad \text { and } \quad P\left(\gamma_{f_{\theta}}-\gamma_{f_{\theta^{*}}}\right)^{2} \leq 4 M^{2} K_{m}^{2}
$$

Therefore, in view of Bousquet's concentration theorem and Lemma 1, for all $M>0$ and $r_{1}>0$,
$P\left(Z_{\theta}(M) \geq \bar{a}_{n} M\left(1+2 r_{1} \sqrt{2\left(K_{m}^{2}+\bar{a}_{n} K_{m}\right)}+\frac{4 r_{1}^{2} \bar{a}_{n} K_{m}}{3}\right)\right) \leq \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)$.
Now for any θ satisfying $I\left(\theta-\theta^{*}\right) \leq M$, we bound

$$
\begin{aligned}
R_{\theta}(M): & =\left|\left[l_{n}(\theta)-\tilde{l}_{n}(\theta)\right]-\left[l_{n}\left(\theta^{*}\right)-\tilde{l}_{n}\left(\theta^{*}\right)\right]\right| \\
& =\frac{1}{n} \sum_{i=1}^{n}\left|\left[\log \frac{1}{n} \sum_{j=1}^{n} \frac{1\left(Y_{j} \geq Y_{i}\right) e^{f_{\theta}\left(\mathbf{X}_{j}\right)}}{\mu\left(Y_{i} ; f_{\theta}\right)}-\log \frac{1}{n} \sum_{j=1}^{n} \frac{1\left(Y_{j} \geq Y_{i}\right) e^{f_{\theta^{*}}\left(\mathbf{X}_{j}\right)}}{\mu\left(Y_{i} ; f_{\theta^{*}}\right)}\right] \Delta_{i}\right| \\
& \leq \sup _{0 \leq t \leq \tau}\left|\log \frac{1}{n} \sum_{j=1}^{n} \frac{1\left(Y_{j} \geq t\right) e^{f_{\theta}\left(\mathbf{X}_{j}\right)}}{\mu\left(t ; f_{\theta}\right)}-\log \frac{1}{n} \sum_{j=1}^{n} \frac{1\left(Y_{j} \geq t\right) e^{f_{\theta^{*}}\left(\mathbf{X}_{j}\right)}}{\mu\left(t ; f_{\theta^{*}}\right)}\right| .
\end{aligned}
$$

Here recall that τ is given in Assumption E. By the Mean Value Theorem, we have

$$
\begin{align*}
& R_{\theta}(M) \\
& \leq \sup _{0 \leq t \leq \tau} \left\lvert\, \sum_{k=1}^{m}\left(\theta_{k}-\theta_{k}^{*}\right)\left\{\frac{\sum_{j=1}^{n} 1\left(Y_{j} \geq t\right) e^{f_{\theta^{* *}}\left(\mathbf{X}_{j}\right)}}{\mu\left(t ; f_{\theta^{* *}}\right)}\right\}^{-1}\right. \\
& \left.\left\{\frac{\sum_{j=1}^{n} 1\left(Y_{j} \geq t\right) X_{j k} e^{f_{\theta^{* *}}\left(\mathbf{X}_{j}\right)}}{\mu\left(t ; f_{\theta^{* *}}\right)}-\frac{\sum_{j=1}^{n} 1\left(Y_{j} \geq t\right) e^{f_{\theta^{* *}}\left(\mathbf{X}_{j}\right)} E\left[1(Y \geq t) X_{k} e^{f_{\theta^{* *}}(\mathbf{X})}\right]}{\mu\left(t ; f_{\theta^{* *}}\right)^{2}}\right\} \right\rvert\, \\
& =\sup _{0 \leq t \leq \tau}\left|\sum_{k=1}^{m} \sigma_{k}\left(\theta_{k}-\theta_{k}^{*}\right)\left\{\frac{\sum_{j=1}^{n} 1\left(Y_{j} \geq t\right)\left(\frac{X_{j k}}{\sigma_{k}}\right) e^{f_{\theta^{* *}}\left(\mathbf{X}_{j}\right)}}{\sum_{j=1}^{n} 1\left(Y_{j} \geq t\right) e^{f_{\theta^{* *}}\left(\mathbf{X}_{j}\right)}}-\frac{E\left[1(Y \geq t)\left(\frac{X_{k}}{\sigma_{k}}\right) e^{f_{\theta^{* *}}(\mathbf{X})}\right]}{E\left[1(Y \geq t) e^{f_{\theta^{* *}}(\mathbf{X})}\right]}\right\}\right| \\
& \leq M \sup _{0 \leq t \leq \tau}\left[\frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq t\right) e^{f_{\theta^{* *}}\left(\mathbf{X}_{i}\right)}\right]^{-1} \\
& \sup _{0 \leq t \leq \tau}\left\{\max _{1 \leq k \leq m}\left|\frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq t\right)\left(\frac{X_{i k}}{\sigma_{k}}\right) e^{f_{\theta^{* *}}\left(\mathbf{X}_{i}\right)}-E\left[1(Y \geq t)\left(\frac{X_{k}}{\sigma_{k}}\right) e^{f_{\theta^{* * *}}(\mathbf{X})}\right]\right|\right. \\
& \left.\quad+K_{m}\left|\frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq t\right) e^{f_{\theta^{* *}}\left(\mathbf{X}_{i}\right)}-E\left[1(Y \geq t) e^{f_{\theta^{* * *}}(\mathbf{X})}\right]\right|\right\} \tag{4.4}
\end{align*}
$$

where $\theta^{* *}$ is between θ and θ^{*} and, by ([2.1), we have

$$
\begin{equation*}
\sup _{0 \leq t \leq \tau}\left[\frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq t\right) e^{f_{\theta^{* *}}\left(\mathbf{X}_{i}\right)}\right]^{-1} \leq U_{m}\left[\frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq \tau\right)\right]^{-1} \tag{4.5}
\end{equation*}
$$

Lemma 2. Under Assumption E, we have

$$
P\left(\frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq \tau\right) \leq \frac{\xi}{2}\right) \leq 2 e^{-n \xi^{2} / 2}
$$

Proof. This is obtained directly from Massart (1990) for the Kolmogorov statistic by taking $r=\xi \sqrt{n} / 2$ in the following:

$$
\begin{aligned}
P\left(\frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq \tau\right) \leq \frac{\xi}{2}\right) & \leq P\left(\sqrt{n}\left|\frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq \tau\right)-\xi\right| \geq r\right) \\
& \leq P\left(\sup _{0 \leq t \leq \tau} \sqrt{n}\left|\frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq t\right)-P(Y \geq t)\right| \geq r\right) \\
& \leq 2 e^{-2 r^{2}}
\end{aligned}
$$

Lemma 3. Under Assumptions A, D, and E, for all θ we have

$$
\begin{equation*}
P\left(\sup _{0 \leq t \leq \tau}\left|\frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq t\right) e^{f_{\theta}\left(\mathbf{X}_{i}\right)}-\mu\left(t ; f_{\theta}\right)\right| \geq U_{m} \bar{a}_{n} r_{1}\right) \leq \frac{1}{5} W^{2} e^{-n \bar{a}_{n}^{2} r_{1}^{2}} \tag{4.6}
\end{equation*}
$$

where W is a fixed constant.
Proof. For a class of functions indexed by $t, \mathscr{F}=\left\{1(y \geq t) e^{f_{\theta}(x)} / U_{m}: t \in\right.$ $\left.[0, \tau], y \in \mathbf{R}, e^{f_{\theta}(x)} \leq U_{m}\right\}$, we calculate its bracketing number. For any nontrivial ϵ satisfying $1>\epsilon>0$, let t_{i} be the i th $\lceil 1 / \varepsilon\rceil$ quantile of Y, so

$$
P\left(Y \leq t_{i}\right)=i \varepsilon, \quad i=1, \ldots,\left\lceil\frac{1}{\varepsilon}\right\rceil-1,
$$

where $\lceil x\rceil$ is the smallest integer that is greater than or equal to x. Furthermore, take $t_{0}=0$ and $t_{\lceil 1 / \varepsilon\rceil}=+\infty$. For $i=1, \ldots,\lceil 1 / \varepsilon\rceil$, define brackets $\left[L_{i}, U_{i}\right]$ with

$$
L_{i}(x, y)=1\left(y \geq t_{i}\right) \frac{e^{e_{\theta}(x)}}{U_{m}}, \quad U_{i}(x, y)=1\left(y>t_{i-1}\right) \frac{e^{f_{\theta}(x)}}{U_{m}}
$$

such that $L_{i}(x, y) \leq 1(y \geq t) e^{f_{\theta}(x)} / U_{m} \leq U_{i}(x, y)$ when $t_{i-1}<t \leq t_{i}$. Since

$$
\begin{aligned}
\left\{E\left[U_{i}-L_{i}\right]^{2}\right\}^{1 / 2} & \leq\left\{E\left[\frac{e^{f_{\theta}(\mathbf{X})}}{U_{m}}\left\{1\left(Y \geq t_{i}\right)-1\left(Y>t_{i-1}\right)\right\}\right]^{2}\right\}^{1 / 2} \\
& \leq\left\{P\left(t_{i-1}<Y \leq t_{i}\right)\right\}^{1 / 2}=\sqrt{\varepsilon}
\end{aligned}
$$

we have $N_{[]}\left(\sqrt{\varepsilon}, \mathscr{F}, L_{2}\right) \leq\lceil 1 / \varepsilon\rceil \leq 2 / \varepsilon$, which yields

$$
N_{[]}\left(\varepsilon, \mathscr{F}, L_{2}\right) \leq \frac{2}{\varepsilon^{2}}=\left(\frac{K}{\varepsilon}\right)^{2}
$$

where $K=\sqrt{2}$. Thus, from Theorem 2.14.9 in van der Vaart and Wellner (1996), we have for any $r>0$,

$$
P\left(\sqrt{n} \sup _{0 \leq t \leq \tau}\left|\frac{1}{n} \sum_{i=1}^{n} \frac{1\left(Y_{i} \geq t\right) e^{f_{\theta}\left(\mathbf{X}_{i}\right)}}{U_{m}}-\frac{\mu\left(t ; f_{\theta}\right)}{U_{m}}\right| \geq r\right) \leq \frac{1}{2} W^{2} r^{2} e^{-2 r^{2}} \leq \frac{1}{5} W^{2} e^{-r^{2}},
$$

where W is a constant that only depends on K. Note that $r^{2} e^{-r^{2}}$ is bounded by e^{-1}. With $r=\sqrt{n} \bar{a}_{n} r_{1}$, we obtain (4.6).
Lemma 4. Under Assumptions A, D, and E, for all θ we have

$$
\begin{align*}
& P\left(\sup _{0 \leq t \leq \tau} \max _{1 \leq k \leq m} \left\lvert\, \frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq t\right) \frac{X_{i k}}{\sigma_{k}} e^{f_{\theta}\left(\mathbf{X}_{i}\right)}\right.\right. \\
& \left.\quad \quad-E\left[1(Y \geq t) \frac{X_{k}}{\sigma_{k}} e^{f_{\theta}(\mathbf{X})}\right] \left\lvert\, \geq K_{m} U_{m}\left[\bar{a}_{n} r_{1}+\sqrt{\frac{\log (2 m)}{n}}\right]\right.\right) \\
& \quad \leq \frac{1}{10} W^{2} e^{-n \bar{a}_{n}^{2} r_{1}^{2}} \tag{4.7}
\end{align*}
$$

Proof. Consider the classes of functions indexed by t,

$$
\mathscr{G}^{k}=\left\{1(y \geq t) \frac{e^{f_{\theta}(x)} x_{k}}{\sigma_{k} K_{m} U_{m}}: t \in[0, \tau], y \in \mathbf{R},\left|\frac{e^{f_{\theta}(x)} x_{k}}{\sigma_{k}}\right| \leq K_{m} U_{m}\right\}, k=1, \ldots, m .
$$

Using the argument in the proof of Lemma 3, we have

$$
N_{[]}\left(\varepsilon, \mathscr{G}^{k}, L_{2}\right) \leq\left(\frac{K}{\varepsilon}\right)^{2}
$$

where $K=\sqrt{2}$, and then for any $r>0$,

$$
P\left(\sqrt{n} \sup _{0 \leq t \leq \tau}\left|\frac{1}{n} \sum_{i=1}^{n} \frac{1\left(Y_{i} \geq t\right) e^{f_{\theta}\left(\mathbf{X}_{i}\right)} X_{i k}}{\sigma_{k} K_{m} U_{m}}-E\left[\frac{1(Y \geq t) e^{f_{\theta}(\mathbf{X})} X_{k}}{\sigma_{k} K_{m} U_{m}}\right]\right| \geq r\right) \leq \frac{1}{5} W^{2} e^{-r^{2}}
$$

Thus we have

$$
\begin{aligned}
& P\left(\sqrt{n} \sup _{0 \leq t \leq \tau} \max _{1 \leq k \leq m}\left|\frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq t\right) \frac{e^{f_{\theta}\left(\mathbf{X}_{i}\right)} X_{i k}}{\sigma_{k} U_{m} K_{m}}-E\left[1(Y \geq t) \frac{e^{f_{\theta}(\mathbf{X})} X_{k}}{\sigma_{k} U_{m} K_{m}}\right]\right| \geq r\right) \\
& \leq P\left(\bigcup_{k=1}^{m} \sqrt{n} \sup _{0 \leq t \leq \tau}\left|\frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq t\right) \frac{e^{f_{\theta}\left(\mathbf{X}_{i}\right)} X_{i k}}{\sigma_{k} U_{m} K_{m}}-E\left[1(Y \geq t) \frac{e^{f_{\theta}(\mathbf{X})} X_{k}}{\sigma_{k} U_{m} K_{m}}\right]\right| \geq r\right) \\
& \leq m P\left(\sqrt{n} \sup _{0 \leq t \leq \tau}\left|\frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq t\right) \frac{e^{f_{\theta}\left(\mathbf{X}_{i}\right)} X_{i k}}{\sigma_{k} U_{m} K_{m}}-E\left[1(Y \geq t) \frac{e^{f_{\theta}(\mathbf{X})} X_{k}}{\sigma_{k} U_{m} K_{m}}\right]\right| \geq r\right) \\
& \leq \frac{m}{5} W^{2} e^{-r^{2}}=\frac{1}{10} W^{2} e^{\log (2 m)-r^{2}} .
\end{aligned}
$$

Let $\log (2 m)-r^{2}=-n \bar{a}_{n}^{2} r_{1}^{2}$, so $r=\sqrt{n \bar{a}_{n}^{2} r_{1}^{2}+\log (2 m)}$. Since

$$
\sqrt{\bar{a}_{n}^{2} r_{1}^{2}+\frac{\log (2 m)}{n}} \leq \bar{a}_{n} r_{1}+\sqrt{\frac{\log (2 m)}{n}},
$$

we obtain (4.7).

Corollary 2. Under Assumptions A, D, and E, for all $M>0, r_{1}>0$, and all θ that satisfy $I\left(\theta-\theta^{*}\right) \leq M$, we have

$$
\begin{equation*}
P\left(R_{\theta}(M) \geq \bar{\lambda}_{n, 0}^{B} M\right) \leq 2 \exp \left(-\frac{n \xi^{2}}{2}\right)+\frac{3}{10} W^{2} \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right) . \tag{4.8}
\end{equation*}
$$

Proof. From (4.4) and (4.5) we have

$$
P\left(R_{\theta}(M) \leq \bar{\lambda}_{n, 0}^{B} \cdot M\right) \geq P\left(E_{1}^{c} \cap E_{2}^{c} \cap E_{3}^{c}\right),
$$

where the events E_{1}, E_{2} and E_{3} are defined as

$$
\begin{aligned}
E_{1}= & \left\{\frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq \tau\right) \leq \frac{\xi}{2}\right\}, \\
E_{2}= & \left\{\sup _{0 \leq t \leq \tau}\left|\frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq t\right) e^{f_{\theta^{* *}}\left(\mathbf{X}_{i}\right)}-\mu\left(t ; f_{\theta^{* *}}\right)\right| \geq U_{m} \bar{a}_{n} r_{1}\right\}, \\
E_{3}= & \left\{\max _{1 \leq k \leq m} \sup _{0 \leq t \leq \tau}\left|\frac{1}{n} \sum_{i=1}^{n} 1\left(Y_{i} \geq t\right) \frac{X_{i k}}{\sigma_{k}} e^{f_{\theta^{* *}}\left(\mathbf{X}_{i}\right)}-E\left[1(Y \geq t) \frac{X_{k}}{\sigma_{k}} e^{f_{\theta^{* *}}(\mathbf{X})}\right]\right|\right. \\
& \left.\geq K_{m} U_{m}\left(\bar{a}_{n} r_{1}+\sqrt{\frac{\log (2 m)}{n}}\right)\right\} .
\end{aligned}
$$

Thus

$$
P\left(R_{\theta}(M) \geq \bar{\lambda}_{n, 0}^{B} \cdot M\right) \leq P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right),
$$

and the result follows from Lemmas 2,3 and 4.
Now with $\theta^{*}=\theta_{n}^{*}$, we have the following results.
Lemma 5. Suppose Conditions $I(b, \delta)$ and $I I(b, \delta, d)$ are met. Under Assumptions B and C, for all $\theta \in \Theta$ with $I\left(\theta-\theta_{n}^{*}\right) \leq d_{b} \zeta_{n}^{*} / b$, it holds that

$$
2 \lambda_{n} I_{1}\left(\theta-\theta_{n}^{*}\right) \leq \delta \mathcal{E}\left(f_{\theta}\right)+\epsilon_{n}^{*}-\mathcal{E}\left(f_{\theta_{n}^{*}}\right) .
$$

Proof. The proof is exactly the same as that of Lemma A. 4 in van de Geer (2008), with the λ_{n} defined in Subsection 3.1.

Lemma 6. Suppose Conditions $I(b, \delta)$ and $I I(b, \delta, d)$ are met. Consider any random $\tilde{\theta} \in \Theta$ with $l_{n}(\tilde{\theta})+\lambda_{n} I(\tilde{\theta}) \leq l_{n}\left(\theta_{n}^{*}\right)+\lambda_{n} I\left(\theta_{n}^{*}\right)$. Let $1<d_{0} \leq d_{b}$. It holds that

$$
\begin{aligned}
P\left(I\left(\tilde{\theta}-\theta_{n}^{*}\right) \leq d_{0} \frac{\zeta_{n}^{*}}{b}\right) \leq & P\left(I\left(\tilde{\theta}-\theta_{n}^{*}\right) \leq\left(\frac{d_{0}+b}{1+b}\right) \frac{\zeta_{n}^{*}}{b}\right) \\
& +\left(1+\frac{3}{10} W^{2}\right) \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)+2 \exp \left(-n \frac{\xi^{2}}{2}\right)
\end{aligned}
$$

Proof. The idea is similar to the proof of Lemma A. 5 in van de Geer (20008). Let $\tilde{\mathcal{E}}=\mathcal{E}\left(f_{\tilde{\theta}}\right)$ and $\mathcal{E}^{*}=\mathcal{E}\left(f_{\theta_{n}^{*}}\right)$. We will use short notation: $I_{1}(\theta)=I_{1}\left(\theta \mid \theta_{n}^{*}\right)$ and $I_{2}(\theta)=I_{2}\left(\theta \mid \theta_{n}^{*}\right)$. Since $l_{n}(\tilde{\theta})+\lambda_{n} I(\tilde{\theta}) \leq l_{n}\left(\theta_{n}^{*}\right)+\lambda_{n} I\left(\theta_{n}^{*}\right)$, on the set where $I\left(\tilde{\theta}-\theta_{n}^{*}\right) \leq d_{0} \zeta_{n}^{*} / b$ and $Z_{\tilde{\theta}}\left(d_{0} \zeta_{n}^{*} / b\right) \leq d_{0} \zeta_{n}^{*} / b \cdot \bar{\lambda}_{n, 0}^{A}$, we have

$$
\begin{align*}
R_{\tilde{\theta}}\left(d_{0} \frac{\zeta_{n}^{*}}{b}\right) \geq & {\left[l_{n}\left(\theta_{n}^{*}\right)+\lambda_{n} I\left(\theta_{n}^{*}\right)\right]-\left[l_{n}(\tilde{\theta})+\lambda_{n} I(\tilde{\theta})\right]-\lambda_{n} I\left(\theta_{n}^{*}\right)+\lambda_{n} I(\tilde{\theta}) } \\
& -\left[\tilde{l}_{n}\left(\theta_{n}^{*}\right)-\tilde{l}_{n}(\tilde{\theta})\right] \\
\geq & -\lambda_{n} I\left(\theta_{n}^{*}\right)+\lambda_{n} I(\tilde{\theta})-\left[\tilde{l}_{n}\left(\theta_{n}^{*}\right)-\tilde{l}_{n}(\tilde{\theta})\right] \\
\geq & -\lambda_{n} I\left(\theta_{n}^{*}\right)+\lambda_{n} I(\tilde{\theta})-\left[l\left(\theta_{n}^{*}\right)-l(\tilde{\theta})\right]-d_{0} \frac{\zeta_{n}^{*}}{b} \cdot \bar{\lambda}_{n, 0}^{A} \\
\geq & -\lambda_{n} I\left(\theta_{n}^{*}\right)+\lambda_{n} I(\tilde{\theta})-\mathcal{E}^{*}+\tilde{\mathcal{E}}-d_{0} \bar{\lambda}_{n, 0}^{A} \frac{\zeta_{n}^{*}}{b} . \tag{4.9}
\end{align*}
$$

By (4.8) we know that $R_{\tilde{\theta}}\left(d_{0} \zeta_{n}^{*} / b\right)$ is bounded by $d_{0} \bar{\lambda}_{n, 0}^{B} \zeta_{n}^{*} / b$ with probability at least $1-\frac{3}{10} W^{2} \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)-2 \exp \left(-n \xi^{2} / 2\right)$, then we have

$$
\tilde{\mathcal{E}}+\lambda_{n} I(\tilde{\theta}) \leq \bar{\lambda}_{n, 0}^{B} d_{0} \frac{\zeta_{n}^{*}}{b}+\mathcal{E}^{*}+\lambda_{n} I\left(\theta_{n}^{*}\right)+\bar{\lambda}_{n, 0}^{A} d_{0} \frac{\zeta_{n}^{*}}{b}
$$

Since $I(\tilde{\theta})=I_{1}(\tilde{\theta})+I_{2}(\tilde{\theta})$ and $I\left(\theta_{n}^{*}\right)=I_{1}\left(\theta_{n}^{*}\right)$, using the triangular inequality, we obtain

$$
\begin{align*}
\tilde{\mathcal{E}}+(1+b) \bar{\lambda}_{n, 0} I_{2}(\tilde{\theta}) & \leq \bar{\lambda}_{n, 0} d_{0} \frac{\zeta_{n}^{*}}{b}+\mathcal{E}^{*}+(1+b) \bar{\lambda}_{n, 0} I_{1}\left(\theta_{n}^{*}\right)-(1+b) \bar{\lambda}_{n, 0} I_{1}(\tilde{\theta}) \\
& \leq \bar{\lambda}_{n, 0} d_{0} \frac{\zeta_{n}^{*}}{b}+\mathcal{E}^{*}+(1+b) \bar{\lambda}_{n, 0} I_{1}\left(\tilde{\theta}-\theta_{n}^{*}\right) \tag{4.10}
\end{align*}
$$

Adding $(1+b) \bar{\lambda}_{n, 0} I_{1}\left(\tilde{\theta}-\theta_{n}^{*}\right)$ to both sides and from Lemma 5 ,

$$
\begin{aligned}
\tilde{\mathcal{E}}+(1+b) \bar{\lambda}_{n, 0} I\left(\tilde{\theta}-\theta_{n}^{*}\right) & \leq \bar{\lambda}_{n, 0} d_{0} \frac{\zeta_{n}^{*}}{b}+\mathcal{E}^{*}+2(1+b) \bar{\lambda}_{n, 0} I_{1}\left(\tilde{\theta}-\theta_{n}^{*}\right) \\
& \leq\left(\bar{\lambda}_{n, 0} d_{0}+b \bar{\lambda}_{n, 0}\right) \frac{\zeta_{n}^{*}}{b}+\delta \tilde{\mathcal{E}} \\
& =\left(d_{0}+b\right) \bar{\lambda}_{n, 0} \frac{\zeta_{n}^{*}}{b}+\delta \tilde{\mathcal{E}}
\end{aligned}
$$

Because $0<\delta<1$, it follows that

$$
I\left(\tilde{\theta}-\theta_{n}^{*}\right) \leq \frac{d_{0}+b}{1+b} \frac{\zeta_{n}^{*}}{b}
$$

Hence,

$$
\begin{aligned}
& P\left(\left\{I\left(\tilde{\theta}-\theta_{n}^{*}\right) \leq d_{0} \frac{\zeta_{n}^{*}}{b}\right\} \cap\left\{Z_{\tilde{\theta}}\left(d_{0} \frac{\zeta_{n}^{*}}{b}\right) \leq d_{0} \bar{\lambda}_{n, 0}^{A} \frac{\zeta_{n}^{*}}{b}\right\} \cap\left\{R_{\tilde{\theta}}\left(d_{0} \frac{\zeta_{n}^{*}}{b}\right) \leq d_{0} \bar{\lambda}_{n, 0}^{B} \frac{\zeta_{n}^{*}}{b}\right\}\right) \\
& \quad \leq P\left(I\left(\tilde{\theta}-\theta_{n}^{*}\right) \leq \frac{d_{0}+b}{1+b} \frac{\zeta_{n}^{*}}{b}\right),
\end{aligned}
$$

which yields the desired result.

Corollary 3. Suppose Conditions $I(b, \delta)$ and $I I(b, \delta, d)$ are met. Consider any random $\tilde{\theta} \in \Theta$ with $l_{n}(\tilde{\theta})+\lambda_{n} I(\tilde{\theta}) \leq l_{n}\left(\theta_{n}^{*}\right)+\lambda_{n} I\left(\theta_{n}^{*}\right)$. Let $1<d_{0} \leq d_{b}$. It holds that

$$
\begin{aligned}
P\left(I\left(\tilde{\theta}-\theta_{n}^{*}\right) \leq d_{0} \frac{\zeta_{n}^{*}}{b}\right) \leq & P\left(I\left(\tilde{\theta}-\theta_{n}^{*}\right) \leq\left[1+\left(d_{0}-1\right)(1+b)^{-N}\right] \frac{\zeta_{n}^{*}}{b}\right) \\
& +N\left\{\left(1+\frac{3}{10} W^{2}\right) \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)+2 \exp \left(-n \frac{\xi^{2}}{2}\right)\right\} .
\end{aligned}
$$

Proof. Repeat Lemma $6 N$ times.
Lemma 7. Suppose Conditions $I(b, \delta)$ and $I I(b, \delta, d)$ hold. If $\tilde{\theta}_{s}=s \hat{\theta}_{n}+(1-s) \theta_{n}^{*}$, where

$$
s=\frac{d \zeta_{n}^{*}}{d \zeta_{n}^{*}+b I\left(\hat{\theta}_{n}-\theta_{n}^{*}\right)},
$$

then for any integer N, with probability at least

$$
1-N\left\{\left(1+\frac{3}{10} W^{2}\right) \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)+2 \exp \left(-n \frac{\xi^{2}}{2}\right)\right\}
$$

we have

$$
I\left(\tilde{\theta}_{s}-\theta_{n}^{*}\right) \leq\left(1+(d-1)(1+b)^{-N}\right) \frac{\zeta_{n}^{*}}{b}
$$

Proof. Since the negative \log partial likelihood $l_{n}(\theta)$ and the lasso penalty are both convex with respect to θ, applying Corollary 3 , we obtain the above inequality. This proof is similar to the proof of Lemma A. 6 in van de Geer (20008).

Lemma 8. Suppose Conditions $I(b, \delta)$ and $I(b, \delta, d)$ are met. Let $N_{1} \in \mathbf{N}:=$ $\{1,2, \ldots\}$ and $N_{2} \in \mathbf{N} \cup\{0\}$. With $\delta_{1}=(1+b)^{-N_{1}}$ and $\delta_{2}=(1+b)^{-N_{2}}$, for any n, with probability at least

$$
1-\left(N_{1}+N_{2}\right)\left\{\left(1+\frac{3}{10} W^{2}\right) \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)+2 \exp \left(-n \frac{\xi^{2}}{2}\right)\right\}
$$

we have

$$
I\left(\hat{\theta}_{n}-\theta_{n}^{*}\right) \leq d\left(\delta_{1}, \delta_{2}\right) \frac{\zeta_{n}^{*}}{b}
$$

where

$$
d\left(\delta_{1}, \delta_{2}\right)=1+\frac{1+\left(d^{2}-1\right) \delta_{1}}{(d-1)\left(1-\delta_{1}\right)} \delta_{2} .
$$

Proof. The proof is the same as that of Lemma A. 7 in van de Geer (2008), with a slightly different probability bound.

4.2. Proof of Theorem 1

Proof. The proof follows the same ideas in the proof of Theorem A. 4 in van de Geer (2008), with exceptions of pointwise arguments and slightly different
probability bounds．Since this is our main result，we provide a detailed proof here despite the amount of overlaps．

Define $\hat{\mathcal{E}}:=\mathcal{E}\left(f_{\hat{\theta}_{n}}\right)$ and $\mathcal{E}^{*}:=\mathcal{E}\left(f_{\theta_{n}^{*}}\right)$ ；use the notation $I_{1}(\theta):=I_{1}\left(\theta \mid \theta_{n}^{*}\right)$ and $I_{2}(\theta):=I_{2}\left(\theta \mid \theta_{n}^{*}\right)$ ；set $c:=\delta b /\left(1-\delta^{2}\right)$ ．Consider the cases（a）$c<d\left(\delta_{1}, \delta_{2}\right)$ and （b）$c \geq d\left(\delta_{1}, \delta_{2}\right)$ ．
（a）$c<d\left(\delta_{1}, \delta_{2}\right)$ ．Let J be an integer satisfying $(1+b)^{J-1} c \leq d\left(\delta_{1}, \delta_{2}\right)$ and $\left.\overline{(1+b)^{J} c>d\left(\delta_{1},\right.} \delta_{2}\right)$ ．We consider the cases（a1）$c \zeta_{n}^{*} / b<I\left(\hat{\theta}_{n}-\theta_{n}^{*}\right) \leq d\left(\delta_{1}, \delta_{2}\right) \zeta_{n}^{*} / b$ and（a2）$I\left(\hat{\theta}_{n}-\theta_{n}^{*}\right) \leq c \zeta_{n}^{*} / b$ ．
$\underline{(\mathrm{a} 1)}$ ．If $c \zeta_{n}^{*} / b<I\left(\hat{\theta}_{n}-\theta_{n}^{*}\right) \leq d\left(\delta_{1}, \delta_{2}\right) \zeta_{n}^{*} / b$ ，then

$$
(1+b)^{j-1} c \frac{\zeta_{n}^{*}}{b}<I\left(\hat{\theta}_{n}-\theta_{n}^{*}\right) \leq(1+b)^{j} c \frac{\zeta_{n}^{*}}{b}
$$

for some $j \in\{1, \ldots, J\}$ ．Let $d_{0}=c(1+b)^{j-1} \leq d\left(\delta_{1}, \delta_{2}\right) \leq d_{b}$ ．From Corollary 1，with probability at least $1-\exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)$ we have $Z_{\hat{\theta}_{n}}\left((1+b) d_{0} \zeta_{n}^{*} / b\right) \leq$ $(1+b) d_{0} \bar{\lambda}_{n, 0}^{A} \zeta_{n}^{*} / b$ ．Since $l_{n}\left(\hat{\theta}_{n}\right)+\lambda_{n} I\left(\hat{\theta}_{n}\right) \leq l_{n}\left(\theta_{n}^{*}\right)+\lambda_{n} I\left(\theta_{n}^{*}\right)$ ，from（4．T）we have

$$
\hat{\mathcal{E}}+\lambda_{n} I\left(\hat{\theta}_{n}\right) \leq R_{\hat{\theta}_{n}}\left((1+b) d_{0} \frac{\zeta_{n}^{*}}{b}\right)+\mathcal{E}^{*}+\lambda_{n} I\left(\theta_{n}^{*}\right)+(1+b) \bar{\lambda}_{n, 0}^{A} d_{0} \frac{\zeta_{n}^{*}}{b}
$$

By（4．8），$R_{\hat{\theta}_{n}}\left((1+b) d_{0} \zeta_{n}^{*} / b\right)$ is bounded by $(1+b) \bar{\lambda}_{n, 0}^{B} d_{0} \zeta_{n}^{*} / b$ with probability at least

$$
1-\frac{3}{10} W^{2} \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)-2 \exp \left(-n \frac{\xi^{2}}{2}\right) .
$$

Then we have

$$
\begin{aligned}
\hat{\mathcal{E}}+(1+b) \bar{\lambda}_{n, 0} I\left(\hat{\theta}_{n}\right) & \leq(1+b) \bar{\lambda}_{n, 0}^{B} d_{0} \frac{\zeta_{n}^{*}}{b}+\mathcal{E}^{*}+(1+b) \bar{\lambda}_{n, 0} I\left(\theta_{n}^{*}\right)+(1+b) \bar{\lambda}_{n, 0}^{A} d_{0} \frac{\zeta_{n}^{*}}{b} \\
& \leq(1+b) \bar{\lambda}_{n, 0} I\left(\hat{\theta}_{n}-\theta_{n}^{*}\right)+\mathcal{E}^{*}+(1+b) \bar{\lambda}_{n, 0} I\left(\theta_{n}^{*}\right)
\end{aligned}
$$

Since $I\left(\hat{\theta}_{n}\right)=I_{1}\left(\hat{\theta}_{n}\right)+I_{2}\left(\hat{\theta}_{n}\right), I\left(\hat{\theta}_{n}-\theta_{n}^{*}\right)=I_{1}\left(\hat{\theta}_{n}-\theta_{n}^{*}\right)+I_{2}\left(\hat{\theta}_{n}\right)$ ，and $I\left(\theta_{n}^{*}\right)=I_{1}\left(\theta_{n}^{*}\right)$ ， by triangular inequality we obtain $\hat{\mathcal{E}} \leq 2(1+b) \bar{\lambda}_{n, 0} I_{1}\left(\hat{\theta}_{n}-\theta_{n}^{*}\right)+\mathcal{E}^{*}$ ．From Lemma $5, \hat{\mathcal{E}} \leq \delta \hat{\mathcal{E}}+\epsilon_{n}^{*}-\mathcal{E}^{*}+\mathcal{E}^{*}=\delta \hat{\mathcal{E}}+\epsilon_{n}^{*}$ ．Hence，$\hat{\mathcal{E}} \leq \epsilon_{n}^{*} /(1-\delta)$ ．
（a2）If $I\left(\hat{\theta}_{n}-\theta_{n}^{*}\right) \leq c \zeta_{n}^{*} / b$ ，from（4．（⿴囗⿰丨丨⿱一𫝀口$)$ with $d_{0}=c$ ，with probability at least

$$
1-\left\{\left(1+\frac{3}{10} W^{2}\right) \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)+2 \exp \left(-n \frac{\xi^{2}}{2}\right)\right\}
$$

we have

$$
\hat{\mathcal{E}}+(1+b) \bar{\lambda}_{n, 0} I\left(\hat{\theta}_{n}\right) \leq \frac{\delta}{1-\delta^{2}} \bar{\lambda}_{n, 0} \zeta_{n}^{*}+\mathcal{E}^{*}+(1+b) \bar{\lambda}_{n, 0} I\left(\theta_{n}^{*}\right) .
$$

By the triangular inequality and Lemma 5,

$$
\begin{aligned}
\hat{\mathcal{E}} & \leq \frac{\delta}{1-\delta^{2}} \bar{\lambda}_{n, 0} \zeta_{n}^{*}+\mathcal{E}^{*}+(1+b) \bar{\lambda}_{n, 0} I_{1}\left(\hat{\theta}_{n}-\theta_{n}^{*}\right) \\
& \leq \frac{\delta}{1-\delta^{2}} \bar{\lambda}_{n, 0} \frac{\epsilon_{n}^{*}}{\bar{\lambda}_{n, 0}}+\mathcal{E}^{*}+\frac{\delta}{2} \hat{\mathcal{E}}+\frac{1}{2} \epsilon_{n}^{*}-\frac{1}{2} \mathcal{E}^{*} \\
& =\left(\frac{\delta}{1-\delta^{2}}+\frac{1}{2}\right) \epsilon_{n}^{*}+\frac{1}{2} \mathcal{E}^{*}+\frac{\delta}{2} \hat{\mathcal{E}} \\
& \leq\left(\frac{\delta}{1-\delta^{2}}+\frac{1}{2}\right) \epsilon_{n}^{*}+\frac{1}{2(1+\delta)} \epsilon_{n}^{*}+\frac{\delta}{2} \hat{\mathcal{E}}
\end{aligned}
$$

Hence,

$$
\hat{\mathcal{E}} \leq \frac{2}{2-\delta}\left[\frac{\delta}{1-\delta^{2}}+\frac{1}{2}+\frac{1}{2(1+\delta)}\right] \epsilon_{n}^{*}=\frac{1}{1-\delta} \epsilon_{n}^{*}
$$

Furthermore, by Lemma 8, we have with probability at least

$$
1-\left(N_{1}+N_{2}\right)\left\{\left(1+\frac{3}{10} W^{2}\right) \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)+2 \exp \left(-n \frac{\xi^{2}}{2}\right)\right\}
$$

that $I\left(\hat{\theta}_{n}-\theta_{n}^{*}\right) \leq d\left(\delta_{1}, \delta_{2}\right) \zeta_{n}^{*} / b$, where

$$
N_{1}=\log _{1+b}\left(\frac{1}{\delta_{1}}\right), \quad N_{2}=\log _{1+b}\left(\frac{1}{\delta_{2}}\right)
$$

(b) $c \geq d\left(\delta_{1}, \delta_{2}\right)$. On the set where $I\left(\hat{\theta}_{n}-\theta_{n}^{*}\right) \leq d\left(\delta_{1}, \delta_{2}\right) \zeta_{n}^{*} / b$, from equation (4.10) we have with probability at least

$$
1-\left\{\left(1+\frac{3}{10} W^{2}\right) \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)+2 \exp \left(-n \frac{\xi^{2}}{2}\right)\right\}
$$

that

$$
\begin{aligned}
\hat{\mathcal{E}}+(1+b) \bar{\lambda}_{n, 0} I\left(\hat{\theta}_{n}\right) & \leq \bar{\lambda}_{n, 0} d\left(\delta_{1}, \delta_{2}\right) \frac{\zeta_{n}^{*}}{b}+\mathcal{E}^{*}+(1+b) \bar{\lambda}_{n, 0} I\left(\theta_{n}^{*}\right) \\
& \leq \frac{\delta}{1-\delta^{2}} \bar{\lambda}_{n, 0} \zeta_{n}^{*}+\mathcal{E}^{*}+(1+b) \bar{\lambda}_{n, 0} I\left(\theta_{n}^{*}\right)
\end{aligned}
$$

which is the same as (a2) and leads to the same result.
To summarize, let

$$
A=\left\{\hat{\mathcal{E}} \leq \frac{1}{1-\delta} \epsilon_{n}^{*}\right\}, \quad B=\left\{I\left(\hat{\theta}_{n}-\theta_{n}^{*}\right) \leq d\left(\delta_{1}, \delta_{2}\right) \frac{\zeta_{n}^{*}}{b}\right\}
$$

Note that

$$
J+1 \leq \log _{1+b}\left(\frac{(1+b)^{2} d\left(\delta_{1}, \delta_{2}\right)}{c}\right)
$$

Under case (a), we have

$$
\begin{aligned}
P(A \cap B)= & P(\mathrm{a} 1)-P\left(A^{c} \cap \mathrm{a} 1\right)+P(\mathrm{a} 2)-P\left(A^{c} \cap \mathrm{a} 2\right) \\
\geq & P(\mathrm{a} 1)-J\left\{\left(1+\frac{3}{10} W^{2}\right) \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)+2 \exp \left(-n \frac{\xi^{2}}{2}\right)\right\} \\
& +P(\mathrm{a} 2)-\left\{\left(1+\frac{3}{10} W^{2}\right) \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)+2 \exp \left(-n \frac{\xi^{2}}{2}\right)\right\} \\
= & P(B)-(J+1)\left\{\left(1+\frac{3}{10} W^{2}\right) \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)+2 \exp \left(-n \frac{\xi^{2}}{2}\right)\right\} \\
\geq & 1-\left(N_{1}+N_{2}+J+1\right)\left\{\left(1+\frac{3}{10} W^{2}\right) \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right) 2 \exp \left(-n \frac{\xi^{2}}{2}\right)\right\} \\
\geq & 1-\log _{1+b}\left\{\frac{(1+b)^{2}}{\delta_{1} \delta_{2}} \cdot \frac{d\left(\delta_{1}, \delta_{2}\right)\left(1-\delta^{2}\right)}{\delta b}\right\} \\
& \left\{\left(1+\frac{3}{10} W^{2}\right) \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)+2 \exp \left(-n \frac{\xi^{2}}{2}\right)\right\} .
\end{aligned}
$$

Under case (b),

$$
\begin{aligned}
P(A \cap B) & =P(B)-P\left(A^{c} \cap B\right) \\
& \geq P(B)-\left\{\left(1+\frac{3}{10} W^{2}\right) \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)+2 \exp \left(-n \frac{\xi^{2}}{2}\right)\right\} \\
& \geq 1-\left(N_{1}+N_{2}+2\right)\left\{\left(1+\frac{3}{10} W^{2}\right) \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)+2 \exp \left(-n \frac{\xi^{2}}{2}\right)\right\} \\
& =1-\log _{1+b}\left\{\frac{(1+b)^{2}}{\delta_{1} \delta_{2}}\right\}\left\{\left(1+\frac{3}{10} W^{2}\right) \exp \left(-n \bar{a}_{n}^{2} r_{1}^{2}\right)+2 \exp \left(-n \frac{\xi^{2}}{2}\right)\right\}
\end{aligned}
$$

We thus obtain the desired result.

Acknowledgement

Bin Nan was supported in part by NSF Grant DMS-1007590 and NIH grant R01-AG036802.

References

Andersen, P. K. and Gill, R. D. (1982). Cox's regression model for counting processes: a large sample study. Ann. Statist. 10, 1100-1120.
Bach, F. (2010). Self-concordant analysis for logistic regression. Electronic J. Statist. 4, 384-414.
Bickel, P., Ritov, Y. and Tsybakov, A. (2009). Simultaneous analysis of lasso and dantzig selector. Ann. Statist. 37, 1705-1732.
Bradic, J., Fan, J. and Jiang, J. (2011). Regularization for Cox's proportional hazards model with NP-dimensionality. Ann. Statist. 39, 3092-3120.

Bühlmann, P. (2006). Boosting for high-dimensional linear models. Ann. Statist. 34, 559-583.
Bunea, F. (2008). Honest variable selection in linear and logistic regression models via ℓ_{1} and $\ell_{1}+\ell_{2}$ penalization. Electronic J. Statist. 2, 1153-1194.
Bunea, F., Tsybakov, A. B. and Wegkamp, M. H. (2007). Sparsity oracle inequalities for the Lasso. Electronic J. Statist. 1, 169-194.
Cox, D. R. (1972). Regression models and life tables (with discussion). J. Roy. Statist. Soc. B 34, 187-220.
Gaiffas, S. and Guilloux, A. (2012). High-dimensional additive hazards models and the lasso. Electronic J. Statist. 6, 522-546.
Gui, J. and Li, H. (2005). Penalized Cox regression analysis in the high-dimensional and lowsample size settings, with applications to microarray gene expression data. Bioinformatics 21, 3001-3008.
Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces: Isoperimetry and Processes. Springer, Berlin.
Martinussen, T. and Scheike, T. H. (2009). Covariate selection for the semiparametric additive risk model. Scand. J. Statist. 36, 602-619.
Massart, P. (1990). The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18, 1269-1283.
Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Ser. B 58, 267-288.
Tibshirani, R. (1997). The Lasso method for variable selection in the Cox model. Statist. Medicine 16, 385-395.
van de Geer, S. (2008). High-dimensional generalized linear models and the lasso. Ann. Statist. 36, 614-645.
van der Vaart and Wellner, J. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Wiley, New York.

Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
E-mail: kongsc@umich.edu
Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
E-mail: bnan $@ u m i c h . e d u$
(Received August 2012; accepted November 2012)

