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1 Model notations and the main theorem

A general nonlinear ordinary differential equation (ODE) model

dX(t)

dt
= F{X(t); θ} (1)

is measured with noise at time points t1, t2, ..., tn with observations

Yi = Y (ti) = X(ti) + e(ti), i = 1, ..., n. (2)

Using differential equation constraints, we can calculate the higher-order derivatives

djX(t)

dtj
= F (j−1){X(t); θ}.

Hence we propose incorporating differential equations into the local polynomial regression on

a grid of time points t = t∗1, t
∗
2, ..., t

∗
m by minimizing the objective function

m∑
k=1

n∑
i=1

[Yi − {αk +

p∑
j=1

F (j−1)(αk; θ)

j!
(ti − t∗k)j}]2Kh(ti − t∗k)ω(t∗k), (3)

with respect to ξ = (α1, ..., αm, θ)
T , where ω(t∗k) are nonnegative weights over the time grid.

This provides estimates α̂k = X̂(t∗k) and θ̂ simultaneously.

For a general nonlinear function F of the differential equation model, the optimization of

(3) becomes a nonlinear minimization problem, thus we may lose the computational efficiency

of the original local polynomial fitting. To solve this problem, we consider a linear estimator
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that results from one iteration of the Gauss-Newton optimization of (3) at a previous estimate

ξ = (α∗1, ..., α
∗
m, θ

∗)T . In matrix notation, the objective function (3) is {Y − G(ξ)}TW{Y −

G(ξ)}, where Y = (Y1, ..., Yn, ..., Y1, ..., Yn)T is a (nm)-dimensional vector with the observations

Yi’s repeated m times, G = (G1,1, ..., Gn,1, ..., G1,m, ..., Gn,m)T with

Gi,k(ξ) = Gi,k(αk, θ) = {αk +

p∑
j=1

F (j−1)(αk; θ)

j!
(ti − t∗k)j}

and W is a nm× nm diagonal weight matrix, that is,

Diag{ω(t∗1)Kh(t1 − t∗1), ..., ω(t∗1)Kh(tn − t∗1), ..., ω(t∗m)Kh(t1 − t∗m), ..., ω(t∗m)Kh(tn − t∗m)}.

Let J = (∂G/∂α1, ..., ∂G/∂αm, ∂G/∂θ1, ..., ∂G/∂θq)ξ=ξ∗ denote the nm × (m + q) Jacobian

matrix evaluated at ξ = ξ∗. Then a Gauss-Newton iteration minimizes (3) with G(ξ) replaced

by its linear approximation G(ξ∗)+J(ξ−ξ∗). This results in the weighted linear least squares

estimator

ξ̂ = (JTWJ)−1JTWỸ , (4)

where Ỹ = Y −G(ξ∗) + Jξ∗.

Theorem 1 We assume the following technical conditions

(1)The differential equation (1) holds over a time interval [a0, b0] and have a bounded solution

X(t). We observe Yi(t) from model (2) at t = ti ∈ [a0, b0], i = 1, ..., n. The differential

equation parameters θ are jointly estimated with αi = X(t∗i ) over a time grid t∗i ∈ [a0, b0],

i = 1, ...,m. The resulting estimator ξ̂ is given by (4) with the linearization at a starting value

ξ∗ = (α∗1, ..., α
∗
m, θ

∗)T .

(2) The starting value is an estimator ξ∗ such that |ξ∗− ξ| = Op(n
−δ) for some δ > 1/4. Here

| · | is the L∞ norm.

(3) The function F (x) in differential equation (1) has bounded p-th order derivative.

(4) n→∞, h→ 0, nh→∞ and m→∞.

(5) The kernel function K ≥ 0 is compactly supported and bounded. Denote the moments
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of K by µj(K) =
∫
K(u)ujdu. Then µ0(K) =

∫
K(u)du = 1, and all odd-order moments

µj(K) = 0 vanish.

(6) The observation time points t1, ..., tn and fitted time points t∗1, ..., t
∗
m comes from distribution

with densities f(t) and fg(t), t ∈ [a0, b0]. Over the time interval t ∈ [a0, b0], f(t) > 0 and

fg(t) > 0 are bounded with continuous derivatives f ′(t) and f ′g(t).

(7) The weight function ω(t) ≥ 0 is bounded over the time interval t ∈ [a0, b0].

Then conditional on the observation time points t1, ..., tn, fitted time points t∗1, ..., t
∗
m and ξ∗,

the differential equation parameter estimator θ̂ has conditional bias

Bias(θ̂) = op(n
−1/2) +Op(h

p+1) p odd, Bias(θ̂) = op(n
−1/2) +Op(h

p) p even,

and conditional variance var(θ̂) = Op((nmh
3)−1 + (nh)−1) if ω(a0) 6= 0 or ω(b0) 6= 0; and

var(θ̂) = Op((nmh
3)−1 + n−1) if ω(a0) = ω(b0) = 0.

Particularly, when ω(a0) = ω(b0) = 0 and mh3 →∞,

var(θ̂) =
σ2

n
A−1F [BF − (CF + CT

F )]A−1F , (5)

with AF =
∫

[Fθ ◦ FθT ◦ ω ◦ f ◦ fg](t)dt, BF =
∫

[(ω ◦ fg ◦ Fθ)′ ◦ (ω ◦ fg ◦ FθT )′ ◦ f ](t)dt and

CF =
∫

[(f ′ + f ◦ FX) ◦ ω ◦ fg ◦ Fθ ◦ {ω ◦ fg ◦ FθT }′](t)dt. Here and in the following we use

the shorthand notations [f ◦ g](t) = f(t)g(t), FX(t) = [ ∂
∂X
F (X; θ)](t) = ∂

∂X
F (X; θ)|X=X(t),

Fθ(t) = [ ∂
∂θ
F (X; θ)](t) = ∂

∂θ
F (X; θ)|X=X(t) and FθT (t) = [Fθ(t)]

T .

Remark: With h small enough o(n−1/(2p)), the bias in θ̂ is of op(n
−1/2), so the variance

dominates. With ω(a0) = ω(b0) = 0 and choosing m big enough so that mh3 → ∞, then

the Theorem states that θ̂ converges at the parametric rate n−1/2. Furthermore, we can

see how does this constrained local polynomial estimator improves upon the pseudo-least

square estimator with unconstrained local polynomial estimator for X and X ′ using the same

bandwidth. Since the bandwidth is selected so that bias is op(n
−1/2), we just need to compare

their variances. For simplicity, let use consider the case of uniformly distributed tis and t∗ks
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on time interval [0, 1]. Then f(t) = fg(t) = 1, and the variance var(θ̂) becomes

σ2

n
A−1F

(∫
[(ω ◦ Fθ)′ ◦ (ω ◦ FθT )′ − FX ◦ ω ◦ {Fθ ◦ (ω ◦ FθT )′ + (ω ◦ Fθ)′ ◦ FθT }](t)dt

)
A−1F ,

where AF is now
∫

[Fθ ◦FθT ◦ω](t)dt. Compare to the variance of Liang-Wu estimator (Liang

and Wu 2010), our var(θ̂) have one less term σ2

n
A−1F

∫
[(ω ◦FX ◦Fθ)′ ◦ (ω ◦FX ◦FθT )′](t)dtA−1F .

This is a positive semi-definite matrix, meaning our variance is smaller. This extra term in

Liang-Wu’s estimator corresponding to the error propogated from first stage estimator X̂(t).

Since we restrict our X̂ ′(t) = F (X̂(t); θ̂), our estimators X̂ ′(t) and X̂(t) are related and their

errors enter into variance of θ̂ only once through the term
∫
FX ◦ ω ◦ {Fθ ◦ (ω ◦ FθT )′ + (ω ◦

Fθ)
′ ◦ FθT }](t)dt.

The detailed proof of Theorem 1 is given as follows.

A Proof of Theorem 1

We analyze the order of estimation errors similar to the usual derivations of local polynomial

regression. (For example, see section 3.7 in Fan and Gijbels 1996.) The order of some common

quantities would be useful. Let Sk,j =
∑n

i=1Kh(ti − t∗k)(ti − t∗k)j. Then

Sk,j = nhjf(t∗k)µj(K)[1 + op(1)] j even, Sk,j = nhj+1f ′(t∗k)µj+1(K)[1 + op(1)] j odd,

(A.1)

where f(t) is the density at t and µj(K) =
∫
K(u)ujdu.

To consider properties of the estimator ξ̂ = (JTWJ)−1JTWỸ in (4), we first study the

matrix (JTWJ)−1 and JTW . Since Gi,k(ξ) only depends on (αk, θ), the Jacobian matrix J is
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sparse with many zero elements:

J =



D̃X1,1 . . . 0 D̃θ1,1

... . . .
...

...

D̃Xn,1 . . . 0 D̃θn,1

...
. . .

...
...

0 . . . D̃X1,m D̃θ1,m

... . . .
...

...

0 . . . D̃Xn,m D̃θn,m



,

where D̃X i,k = 1 +
∑p

j=1

(ti−t∗k)
j

j!
D

(j−1)
X,k and D̃θi,k =

∑p
j=1

(ti−t∗k)
j

j!
D

(j−1)
θT ,k

with

D
(j)
X,k = D

(j)
X (α∗k; θ

∗), D
(j)

θT ,k
= D

(j)

θT
(α∗k; θ

∗) =

(
∂

∂θ1
F (j)(α; θ), ...,

∂

∂θq
F (j)(α; θ)

)
α=α∗

k,θ=θ
∗
.

Since p is fixed, D̃X i,k and D̃θi,k are sums of fixed number of terms. Since by (A.1), the kernel

sums of (ti− t∗k)j is at most of order Op(nh
j), the error analysis later often only need to focus

on the lowest power term in D̃X i,k and D̃θi,k. That is, 1 and (ti − t∗k)D
(0)

θT ,k
respectively.

Hence,

WJ =

ω(t∗1)Kh(t1 − t∗1)D̃X1,1 . . . 0 ω(t∗1)Kh(t1 − t∗1)D̃θ1,1
... . . .

...
...

ω(t∗1)Kh(tn − t∗1)D̃Xn,1 . . . 0 ω(t∗1)Kh(tn − t∗1)D̃θn,1
...

. . .
...

...

0 . . . ω(t∗m)Kh(t1 − t∗m)D̃X1,m ω(t∗m)Kh(t1 − t∗m)D̃θ1,m

... . . .
...

...

0 . . . ω(t∗m)Kh(tn − t∗m)D̃Xn,m ω(t∗m)Kh(tn − t∗m)D̃θn,m



,

(A.2)
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and

JTWJ =

 Dm×m Lm×q

LTq×m Cq×q

 , (A.3)

where the subscripts of the four sub-matrices denotes their dimensions. The matrix D is a

m×m diagonal matrix with entries

Dk =
n∑
i=1

Kh(ti − t∗k)ω(t∗k)(D̃X i,k)
2, k = 1, ...,m. (A.4)

The k-th row of the L matrix is

Lk =
n∑
i=1

Kh(ti − t∗k)ω(t∗k)D̃X i,kD̃θi,k, (A.5)

and

C =
m∑
k=1

n∑
i=1

Kh(ti − t∗k)ω(t∗k)D̃θ
T

i,kD̃θi,k. (A.6)

Lemma 1 Dk = nω(t∗k)f(t∗k) + op(n),

Lk = nh2µ2(K)ω(t∗k)[f
′(t∗k)D

(0)

θT ,k
+ f(t∗k)D

(0)
X,kD

(0)

θT ,k
] + op(nh

2),

and C = nmh2µ2(K)AF + op(nmh
2).

The definition of AF was given under (5). We give the proof of Lemma 1 in the subsec-

tion A.3. It is easy to check by block matrix algebra that

(JTWJ)−1 =

 Dm×m Lm×q

LTq×m Cq×q


−1

=

 D−1 +D−1LV −1LTD−1 −D−1LV −1

−V −1LTD−1 V −1

 (A.7)

with V = C − LTD−1L. The order of quantities in (A.7) is described in the following lemma

whose proof is in subsection A.3.

Lemma 2 LTD−1L = Op(mnh
4), V −1 = C−1[1 + Op(h

2)] = Op(
1

nmh2
), D−1LV −1 = Op(

1
mn

)

and D−1LV −1LTD−1 = Op(
h2

n
).

Using the results in Lemma 1 and 2,

(JTWJ)−1 =

 D−1m×m + op(
1
n
) Op(

1
mn

)m×q

Op(
1
mn

)q×m C−1q×q + op(
1

mnh2
)

 . (A.8)
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Remark: For a d-dimensional X, the order analysis of the matrices would all remain the

same. The Dm×m matrix would become Dmd×md with diagonal block matrices Dk of size

d× d. And Lk would be matrices of size d× q. As d is fixed, the multiplying of matrices with

dimension d instead of 1 does not change the order. So the whole proof can be extended to

d-dimensional X straightforwardly.

A.1 Bias

The bias of ξ̂ given t1, ..., tn, t
∗
1, ..., t

∗
m, ξ

∗ is

Bias(ξ̂) = (JTWJ)−1JTWE(Ỹ )− ξ0 = (JTWJ)−1JTW{E(Y −G(ξ∗) + Jξ∗)− Jξ0}

= (JTWJ)−1JTW{E(Y )−G(ξ∗)− J(ξ0 − ξ∗)}

Denote J = (JT1,1, J
T
2,1, ..., J

T
n,1, J

T
1,2, ..., J

T
n,m)T . Hence the elements in E(Y )−G(ξ∗)−J(ξ0−ξ∗)

are those E(Yi)− Gi,k(ξ
∗)− Ji,k(ξ0 − ξ∗)’s. With Taylor expansion of E(Yi) = X(ti) at time

point t = t∗k, we have

X(ti) = X(t∗k)+

p∑
j=1

(ti − t∗k)j

j!
X(j)(t∗k)+(ti−t∗k)p+1X

(p+1)(t̃i,k)

(p+ 1)!
= Gi,k(ξ0)+(ti−t∗k)p+1X

(p+1)(t̃i,k)

(p+ 1)!
,

where t̃i,k is a point between t∗k and ti. Since Gi,k(ξ0)−Gi,k(ξ
∗)−Ji,k(ξ0−ξ∗) = Op(|ξ0−ξ∗|2) =

Op(n
−2δ), we have

E(Yi)−Gi,k(ξ
∗)− Ji,k(ξ0 − ξ∗) = (ti − t∗k)p+1X

(p+1)(t̃i,k)

(p+ 1)!
+Op(n

−2δ). (A.9)

Denote Tj = ((t1− t∗1)j, ..., (tn− t∗1)j, (t1− t∗2)j, ..., (tn− t∗m)j)T . Similar to the analysis in proof

of Lemma 1, we analyze the order of JTWTj by focusing on the term with lowest power of

(ti − t∗k) as higher power leads to smaller order kernel sum. From (A.2), the first m elements

in JTWTj are of the form
∑n

i=1Kh(ti − t∗k)(ti − t∗k)
jω(t∗k)D̃X i,k, k = 1, ...,m. The lowest

power term in D̃X i,k is 1 (i.e., (ti − t∗k)0) so that those m elements are of the same order as

Sk,j =
∑n

i=1Kh(ti − t∗k)(ti − t∗k)
j which is Op(nh

j) for p even, and Op(nh
j+1) for p odd by

(A.1). The last q elements in JTWTj are
∑m

k=1[
∑n

i=1Kh(ti − t∗k)(ti − t∗k)jω(t∗k)D̃θi,k]. Again,
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the lowest power term in D̃θi,k is (ti − t∗k) so that those last q elements are of the same order

as
∑m

k=1[
∑n

i=1Kh(ti − t∗k)(ti − t∗k)j+1] =
∑m

k=1 Sk,j+1. That is, they are of order Op(mnh
j+2)

for p even, and Op(mnh
j+1) for p odd by (A.1). In summation,

JTWTj =

 Op(nh
j)m×1

Op(mnh
j+2)q×1

 for j even;

 Op(nh
j+1)m×1

Op(mnh
j+1)q×1

 for j odd.

From (A.9), E(Y ) − G(ξ∗) − J(ξ0 − ξ∗) = Tp+1Op(1) + T0Op(n
−2δ). Plug-in the orders of

JTWTp+1 and JTWT0, we have that JTW{E(Y )−G(ξ∗)− J(ξ0 − ξ∗)} is Op(n(hp+1 + n−2δ))m×1

Op(mnh
2(hp+1 + n−2δ))q×1

 for p odd;

 Op(n(hp+2 + n−2δ))m×1

Op(mnh
2(hp + n−2δ))q×1

 for p even.

Combining this with (A.7) and Lemma 2, the bias Bias(θ̂), when p is odd, is

−V −1LTD−1Op(n(hp+1 + n−2δ))m×1 + V −1Op(mnh
2(hp+1 + n−2δ))q×1

= Op(
1
mn

)q×mOp(n(hp+1 + n−2δ))m×1 +Op(
1

mnh2
)q×qOp(mnh

2(hp+1 + n−2δ))q×1

= Op(h
p+1 + n−2δ),

where in the last equality an extra m factor in the first term comes from product of the

matrices of sizes q ×m and m× 1 while the second term need no extra factor as q is fixed.

When p is even, Bias(θ̂) becomes

−V −1LTD−1Op(n(hp+2 + n−2δ))m×1 + V −1Op(mnh
2(hp + n−2δ))q×1 = Op(h

p + n−2δ).

Since δ > −1/4, Bias(θ̂) = op(n
−1/2) for h small enough. That is, when h = o(n−1/2p).

A.2 Variance

Given t1, ..., tn, t
∗
1, ..., t

∗
m, ξ

∗, the variance var(ξ̂) = (JTWJ)−1JTWvar(Ỹ )WJ(JTWJ)−1. Since

(JTWJ)−1 is given in (A.7), we now calculate JTWvar(Ỹ )WJ . Denote Σ = var((Y1, ..., Yn)T ) =
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diag{σ2, ..., σ2︸ ︷︷ ︸
n

}. So var(Ỹ ) are simply m×m blocks of Σ,


m︷ ︸︸ ︷

Σ, ...,Σ

...,
. . . ,

...

Σ, ...,Σ

 .

Thus direct calculation gives that

JTWvar(Ỹ )WJ =

 D∗m×m L∗m×q

(L∗)Tq×m C∗q×q

 , (A.10)

where the (k, j)-th element in D∗ is

D∗k,j = σ2ω(t∗k)ω(t∗j)[
n∑
i=1

Kh(ti − t∗k)Kh(ti − t∗j)D̃X i,kD̃X i,j], for k, j = 1, ...,m, (A.11)

the k-th row in L∗ is

L∗k = σ2ω(t∗k)[
m∑
j=1

ω(t∗j)
n∑
i=1

Kh(ti − t∗k)Kh(ti − t∗j)D̃X i,kD̃θi,j], for k = 1, ...,m, (A.12)

and

C∗ =
m∑
k=1

m∑
j=1

σ2ω(t∗k)ω(t∗j)[
n∑
i=1

Kh(ti − t∗k)Kh(ti − t∗j)D̃θ
T

i,kD̃θi,j]. (A.13)

Lemma 3

D∗k,k = Op(nh
−1), D∗k,j = op(n) for k 6= j. (A.14)

L∗k = nmh2σ2µ2(K)[ω ◦ f ◦ {ω ◦ fg ◦ FθT }′](t∗k) + op(nmh
2). (A.15)

When ω(a0) 6= 0 or ω(b0) 6= 0, C∗ = Op(nmh + nm2h3); when ω(a0) = ω(b0) = 0, C∗ =

Op(nmh+ nm2h4). Particularly, when ω(a0) = ω(b0) = 0 and mh3 →∞,

C∗ = nm2h4σ2[µ2(K)]2BF + op(nm
2h4). (A.16)

The definition of BF is given under (5). The proof of Lemma 3 is given in subsection A.3.

9



var(ξ̂) =

 D L

LT C


−1 D∗ L∗

(L∗)T C∗


 D L

LT C


−1

=

 D∗∗ L∗∗

(L∗∗)T C∗∗


Using (A.7), we directly calculate var(θ̂) = C∗∗ as

V −1LTD−1D∗D−1LV −1 − V −1(L∗)TD−1LV −1 − V −1LTD−1L∗V −1 + V −1C∗V −1. (A.17)

We first focus on the case of ω(a0) = ω(b0) = 0. Use Lemma 2 and Lemma 3, The first term

is of order

Op(
1

nm
)q×mOp(

n

h
)Op(

1

nm
)m×q = O(

1

nmh
)

where an extra factor m was added from the product of the matrices of sizes q×m and m× q

(the diagonal matrices in the middle does not introduce any extra factor). The second term

and the third term is of order

Op(
1

nmh2
)q×qOp(nmh

2)q×mOp(
1

nm
)m×q = Op(

1

n
).

Again the extra factor m comes from the product of the matrices of sizes q ×m and m × q.

The last term is of order

Op(
1

nmh2
)Op(nmh+ nm2h4)Op(

1

nmh2
) = Op(

1

nmh3
+

1

n
).

So the first term is of smaller order, and the sum of all four terms is of order Op(
1

nmh3
+ 1

n
).

For the second case of when ω(a0) 6= 0 or ω(b0) 6= 0, using Lemma 3 shows that the last

term in (A.17) is now Op(
1

nmh3
+ 1

nh
). The first three terms order remain the same and are

now of smaller order. Hence the variance of θ̂ is of order Op(
1

nmh3
+ 1

nh
).

We now derive the explicit variance formula when var(θ̂) = Op(
1
n
). That is, when ω(a0) =

ω(b0) = 0 and mh3 → ∞. By Lemma 1, C = nmh2µ2(K)AF + op(nmh
2); by Lemma 2,

V −1 = C−1[1 + o(h2)]; and C∗ = nm2h4σ2[µ2(K)]2BF + op(nm
2h4) as in (A.16). Hence the

last term in (A.17) becomes V −1C∗V −1 = σ2

n
A−1F BFA

−1
F + o( 1

n
).
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Now consider the third term, −V −1LTD−1L∗V −1 in (A.17). The matrix in the middle is

LTD−1L∗ =
m∑
k=1

LTkDk
−1L∗k.

By Lemma 1, Dk = nω(t∗k)f(t∗k) + op(n), Lk = nh2µ2(K)[f ′(t∗k) + f(t∗k)D
(0)
X,k]ω(t∗k)D

(0)

θT ,k
+

op(nh
2). From (A.15) L∗k = nmh2σ2µ2(K)[ω ◦ f ◦ {ω ◦ fg ◦ FθT }′](t∗k) + op(nmh

2). Hence

LTD−1L∗ = nmh4σ2[µ2(K)]2
∑m

k=1[(f
′ + f ◦ FX) ◦ ω ◦ Fθ ◦ {ω ◦ fg ◦ FθT }′](t∗k)[1 + op(1)]

= nm2h4σ2[µ2(K)]2CF + op(nm
2h4)

where CF =
∫

[(f ′+ f ◦FX)◦ω ◦Fθ ◦{ω ◦ fg ◦FθT }′ ◦ fg](t)dt as defined under (5). Then using

C = nmh2µ2(K)AF +o(nmh2) from Lemma 1, −V −1LTD−1L∗V −1 = −σ2

n
A−1F CFA

−1
F +op(

1
n
).

The second term in (A.17) is the transpose of the third term. Combine them together, we

have

var(θ̂) =
σ2

n
A−1F [BF − (CF + CT

F )]A−1F + op(
1

n
).

A.3 Proofs of Lemmas

Lemma 1 Dk = nω(t∗k)f(t∗k) + op(n),

Lk = nh2µ2(K)ω(t∗k)[f
′(t∗k)D

(0)

θT ,k
+ f(t∗k)D

(0)
X,kD

(0)

θT ,k
] + op(nh

2),

and C = nmh2µ2(K)AF + op(nmh
2).

Proof of Lemma 1:

The proof comes from direct calculations using D̃X i,k = 1 +
∑p

j=1(ti − t∗k)j
D

(j−1)
X,k

j!
, D̃θi,k =∑p

j=1(ti − t∗k)j
D

(j−1)

θT ,k

j!
and (A.1). Notice that that D̃X i,k has p + 1 terms that each is of the

form of powers (ti − t∗k)j times a bounded quantity. So Dk by (A.4) is sum of (p + 1)2 terms

each of the form Sk,j =
∑n

i=1Kh(ti − t∗k)(ti − t∗k)j times a bounded quantity. Specifically,

Dk = [Sk,0 +

p∑
j=1

Sk,j(
D

(j−1)
X,k

j!
) +

p∑
l=1

(
D

(l−1)
X,k

l!
)(Sk,l +

p∑
j=1

Sk,l+j
D

(j−1)
X,k

j!
)]ω(t∗k)
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Since the asymptotic is done for fixed p, m→∞ and n→∞, asymptotically Dk corresponds

to the term with biggest order among the (p + 1)2 terms. The leading term is Sk,0ω(t∗k) =

nω(t∗k)f(t∗k) + op(n) by (A.1). The rest of terms are of order Sk,j for some j ≥ 1 so are of

order Op(nh
j) or Op(nh

j+1). Either way, they are at most of order Op(nh
2) = op(n). Hence

the sum Dk = nω(t∗k)f(t∗k) + op(n) is of order Op(n).

Similarly by (A.5),

Lk = [

p∑
j=1

Sk,j(
D

(j−1)
θT ,k

j!
) +

p∑
l=1

p∑
j=1

Sk,l+j(
D

(l−1)
X,k

l!
)(
D

(j−1)
θT ,k

j!
)]ω(t∗k).

Here the first term in the sum is Sk,1ω(t∗k)D
(0)

θT ,k
= nh2µ2(K)f ′(t∗k)ω(t∗k)D

(0)

θT ,k
+op(nh

2), and the

first term in the double sum is Sk,2D
(0)
X,kD

(0)

θT ,k
ω(t∗k) = nh2µ2(K)f(t∗k)ω(t∗k)D

(0)
X,kD

(0)

θT ,k
+op(nh

2).

The rest of terms are at most of order Op(nh
4) = op(nh

2). So

Lk = nh2µ2(K)ω(t∗k)[f
′(t∗k)D

(0)

θT ,k
+ f(t∗k)D

(0)
X,kD

(0)

θT ,k
] + op(nh

2).

Now from (A.6) we consider C =
∑m

k=1[
∑p

l=1

∑p
j=1 Sk,l+j(

D
(l−1)

θT ,k

l!
)T (

D
(j−1)

θT ,k

j!
)]ω(t∗k). Inside the

summation over k, for each k there are p2 terms. The first term is Sk,2ω(t∗k)D
(0)
θ,kD

(0)

θT ,k
=

nh2µ2(K)f(t∗k)ω(t∗k)D
(0)
θ,kD

(0)

θT ,k
+op(nh

2). The rest of the terms are at most of order Op(nh
4) =

op(nh
2). So after the sum over k, we have

C =
m∑
k=1

nh2µ2(K)f(t∗k)ω(t∗k)D
(0)
θ,kD

(0)

θT ,k
+op(mnh

2) = nmh2µ2(K)

∫
[ω◦f◦fg◦Fθ◦FθT ](t)dt+o(nmh2).

Lemma 2 LTD−1L = Op(mnh
4), V −1 = C−1[1 + Op(h

2)] = Op(
1

nmh2
), D−1LV −1 = Op(

1
mn

)

and D−1LV −1LTD−1 = Op(
h2

n
).

Proof of Lemma 2:

Since D is diagonal, by Lemma 1, D−1 diagonal with entries of Op(1/n). Hence

LTD−1L = Op(nh
2)q×mOp(

1

n
)Op(nh

2)m×q = Op(nh
2 1

n
nh2)m = Op(nmh

4).

12



Note that we count an extra factor of m when multiplying the q × m matrix with a m × q

matrix. Since D−1 is diagonal, multiplying by D−1 does not introduce the extra factor m.

The rest of the order calculations of matrices products are all like this: direct multiplications

of the order of each matrix and add an extra factor m for multiplication over the m dimension,

but no such extra factor for diagonal matrix nor for multiplication over the fixed dimension q.

Now V = C + Op(nmh
4) = C[1 + Op(h

2)] by Lemma 1. With the fixed q × q dimen-

sions, we have V −1 = C−1[1 + Op(h
2)]. Then D−1LV −1 = Op(

1
n
nh2 1

nmh2
) = Op(

1
mn

). And

D−1LV −1LTD−1 = Op(
1
mn
nh2 1

n
)m = Op(

h2

n
).

Lemma 3

D∗k,k = Op(nh
−1), D∗k,j = op(n) for k 6= j.

L∗k = nmh2σ2µ2(K)[ω ◦ f ◦ {ω ◦ fg ◦ FθT }′](t∗k) + op(nmh
2).

When ω(a0) 6= 0 or ω(b0) 6= 0, C∗ = Op(nmh + nm2h3); when ω(a0) = ω(b0) = 0, C∗ =

Op(nmh+ nm2h4). Particularly, when ω(a0) = ω(b0) = 0 and mh3 →∞,

C∗ = nm2h4σ2[µ2(K)]2BF + op(nm
2h4).

Proof of Lemma 3:

The analysis of the order of D∗k,j is similar to the analysis of Dk in proof of Lemma 1.

There are (p + 1) × (p + 1) terms in D̃X i,kD̃X i,j with the lowest power term being 1. So

the first term in D∗k,j his σ2ω(t∗k)ω(t∗j)
∑n

i=1Kh(ti − t∗k)Kh(ti − t∗j). For k = j, this becomes∑n
i=1[Kh(ti − t∗k)]2 = nh−1µ0(K

2)f(t∗k) + op(nh
−1). Easy to check the rest of terms in D∗k,j is

at most of order Op(nh). So

D∗k,k = nh−1σ2[ω(t∗k)]
2µ0(K

2)[1 + op(1)] = Op(nh
−1).

When k 6= j,
∑n

i=1Kh(ti − t∗k)Kh(ti − t∗j) → n
∫
K(u)Kh(t

∗
k − t∗j + hu)f(t∗k + hu)du = op(n).

Hence we have D∗k,j = op(n) for k 6= j.

13



For L∗k, by (A.12), we only need to consider the lowest power terms in D̃X i,kD̃θi,j, that

is, 1(ti − t∗j)D
(0)

θT ,j
. So (A.12) becomes

L∗k = σ2ω(t∗k)[
∑n

i=1Kh(ti − t∗k)
∑m

j=1 ω(t∗j)Kh(ti − t∗j)(ti − t∗j)D
(0)

θT ,j
][1 + op(1)]

= σ2ω(t∗k)[
∑n

i=1Kh(ti − t∗k)mh2µ2(K)[−ω ◦ fg ◦ FθT ]′(ti)][1 + op(1)]

= −nmh2σ2µ2(K)[ω ◦ f ◦ {ω ◦ fg ◦ FθT }′](t∗k) + op(nmh
2).

We now evaluate the order of C∗ in more details. Again, for D̃θi,j the leading term is

(ti − tj∗)D
(0)

θT
(αj; θ). So from (A.13), we have C∗ becomes

C∗

= σ2
∑n

i=1

∑m
k=1

∑m
j=1Kh(ti − t∗k)Kh(ti − tj∗)(ti − t∗k)(ti − tj∗)ω(t∗k)ω(t∗j)

Dθ(αk; θ)DθT (αj; θ)[1 + op(1)]

= σ2[
∑n

i=1

∑m
k=1{Kh(ti − t∗k)(ti − t∗k)ω(t∗k)}2Dθ(αk; θ)DθT (αk; θ)

+
∑n

i=1

∑m
(k 6=j)=1Kh(ti − t∗k)Kh(ti − tj∗)(ti − t∗k)(ti − tj∗)ω(t∗k)ω(t∗j)

Dθ(αk; θ)DθT (αj; θ) ] [1 + op(1)]

= σ2[nm
∫ ∫

1
h2
{K(x−z

h
)}2(x− z)2[ω(x)]2Fθ(x)FθT (x)fg(x)f(z)dxdz

+nm2
∫ ∫ ∫

1
h2
K(x−z

h
)K(y−z

h
)(x− z)(y − z)ω(x)ω(y)Fθ(x)FθT (y)

fg(x)fg(y)f(z)dxdydz ] [1 + op(1)].

(A.18)

We further simplify the triple integral in the last expression using integral by parts:

Let K∗(t) be the anti-derivative of K(t) and K∗∗(t) the anti-derivative of K∗(t). That is,

d2

dt2
K∗∗(t) = d

dt
K∗(t) = K(t). Denote κ∗(x) = K∗(x)x − K∗∗(x) so that d

dx
κ∗(x) = K(x)x.

Hence ∫
1
h
K(x−z

h
)(x− z)ω(x)Fθ(x)fg(x)dx

= hκ∗(x−z
h

)ω(x)Fθ(x)fg(x)|b0a0 −
∫
hκ∗(x−z

h
)[ω ◦ fg ◦ Fθ]′(x)dx.

(A.19)

Notice that the first term is different for two cases: (a) the weight function is zero at

boundary points ω(a0) = ω(b0) = 0; and (b) the weight function is nonzero at boundary

points ω(a0) 6= 0 or ω(b0) 6= 0. For the first case of ω(a0) = ω(b0) = 0, the first term in (A.19)

equals zero. For the second case, the first term in (A.19) is non-zero.
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We now consider the case where the first term in (A.19) equals zero. Then only the second

term in (A.19) remains, which is (with a change of variable u = x−z
h

)

−
∫
hκ∗(x−z

h
)[ω ◦ fg ◦ Fθ]′(x)dx

= −h2
∫
κ∗(u)[ω ◦ fg ◦ Fθ]′(z + hu)du

= −h2[ω ◦ fg ◦ Fθ]′(z)
∫
κ∗(u)du[1 + op(1)]

= h2µ2(K)[ω ◦ fg ◦ Fθ]′(z)[1 + op(1)].

This is because of −
∫
κ∗(u)du = −κ∗(u)u|1−1 +

∫
[K(u)u]udu = µ2(K) where without loss

of generality, we assume that K(u) has a compact support on [−1, 1], κ∗(−1) = 0 since

K∗(−1) = K∗∗(−1) = 0. κ∗(u)|1−1 =
∫

[K(u)u]du = 0 so κ∗(1) = 0 + κ∗(−1) = 0. Therefore

κ∗(u)u|1−1 = 0. Hence, plugging this into (A.18) we have

C∗

= σ2{nmhµ2(K
2)
∫

[ω(x)]2Fθ(x)FθT (x)fg(x)f(x)dx

+nm2
∫
{h2µ2(K)[ω ◦ fg ◦ Fθ]′(z)}{h2µ2(K)[ω ◦ fg ◦ FθT ]′(z)}f(z)dz}[1 + op(1)]

= σ2{nmhµ2(K
2)
∫

[ω2 ◦ fg ◦ f ◦ Fθ ◦ FθT ](x)dx

+nm2h4[µ2(K)]2
∫

[(ω ◦ fg ◦ Fθ)′ ◦ (ω ◦ fg ◦ FθT )′ ◦ f ](z)dz}[1 + op(1)]

= Op(nmh+ nm2h4)

For the second case where the first term in (A.19) cannot be dropped out, there is an extra

term in the triple integral of (A.18) ,

nm2

∫
[hκ∗(

b0 − z
h

)]2[ω ◦ fg ◦ Fθ](z)[ω ◦ fg ◦ FθT ](z)f(z)dz = Op(nm
2h3)

Therefore C∗ = Op(nmh+ nm2h3) instead.

This finishes the proof of Lemma 3.
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B Numerical Studies

In this section, we compare the performance of the proposed method with the Liang-Wu’s

method (2008), the method of Ramsay et al. (2007) and the NLS estimator by Monte Carlo

simulations. We evaluate the performance of the estimators by the average relative error

(ARE) defined as

ARE =
r∑
i=1

| θ̂i
θ
− 1|

with θ̂i as the estimate for true θ in the ith simulation run with i = 1, 2, ..., r. The compu-

tational cost and convergence are also considered in evaluating different estimation methods,

but the determination of the smoothing parameters is not considered in computational cost.

However, the same bandwidth was used for the Liang-Wu’s PsLS estimator and our new

estimator for fair comparisons.

Since the Liang-Wu’s PsLS estimator and the proposed new estimator in this paper are

computationally efficient, they can be used as the starting point for the NLS estimator. So

that this hybrid strategy may enjoy both computational efficiency of the PsLS estimator or

the new estimator and high estimation accuracy of the NLS estimator. We will also evaluate

the hybrid approaches in our simulation studies.

Example 1. Chen et al. (1999) proposed a system of differential equations to model protein

and gene interactions. We simulated the data from a modified gene-protein interaction model,

d
dt
X1 = a

1+e−X2
− bX1

d
dt
X2 = 2X1 − cX2

(A.20)

with true parameter values θ = (a, b, c) = (1.5, 1, 2). Assume that X1 and X2 were measured

over a grid of n equally-spaced time points, every time interval of 0.4 in the range of t =

[0, 20], with measurement errors as in equation (2) with (σ1, σ2) taking as (0.1, 0.1), (0.1, 0.3),

(0.3, 0.1) or (0.3, 0.3) for the measurement standard errors for X1 and X2 respectively. Thus,

we obtained n = 51 data points. For each simulated data set, we apply the proposed estimation
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method and other existing methods to obtain the following estimates: the NLS estimator

θ̂NLS and Ramsay et al.’s collocation estimator θ̂col, and the Liang-Wu’s PsLS estimators

θ̂PLSn and θ̂PLSm with m = n and m = [n4/3]+ ([z]+ denotes the largest integer that does

not exceed z) respectively using the starting values generated randomly from 0 to twice the

true parameter value, the NLS estimator θ̂NLSPLS using the Liang-Wu’s PsLS estimator θ̂PLSn

as the starting point, the proposed new estimator θ̂newn and θ̂newm using the Liang-Wu’s PsLS

estimators as the starting point, the NLS estimators θ̂NLSnew,n and θ̂NLSnew,m using the proposed

estimators θ̂PLSn and θ̂PLSm respectively as the starting point. For the Liang-Wu PsLS estimator

and the proposed estimator, the local quadratic polynomial smoothing was used and the

piecewise linear weighted function suggested in Brunel (2008) was used: w(t) = 1 for 1 ≤

t ≤ 19; w(t) = t for 0 ≤ t ≤ 1; w(t) = 20 − t for 19 ≤ t ≤ 20. Only one iteration

was used for the proposed estimator starting at the Liang-Wu’s PsLS estimator since very

little accuracy improvement was obtained by more iterations. The Ramsay et al. (2007)’s

collocation estimator θ̂col was implemented using the R package CollocInfer (available from

http://www.bscb.cornell.edu/∼hooker) with 51 equally-spaced knots between t = 0 and t =

20.

Table 1 summarizes the AREs and computing times of the various estimators based on

r = 400 simulation runs. From these simulation results, we observe the following patterns,

in particular for the estimates of parameters a and b: 1) The Liang-Wu’s PsLS estimator

is always most computationally efficient, but the second worst in estimation accuracy (in

AREs) except that the NLS estimator with twice the true parameter values as the stating

point was the worst in estimation accuracy probably due to the local convergence. 2) The

improvement of estimation accuracy by the data augmentation approach, m > n, is limited.

3) Ramsay et al. (2007)’s collocation estimator performs similarly in estimation accuracy to

the NLS estimator when the PsLS estimator or our proposed new estimator was used as the

starting point, but the computational cost of the collocation estimator (implemented using
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(σ1, σ2) Estimators

θ̂NLS θ̂col θ̂NLSPLS θ̂PLSn θ̂newn θ̂NLSnew,n θ̂PLSm θ̂newm θ̂NLSnew,m

(0.1,0.1) AREs a 44.36 13.74 8.58 18.20 11.81 8.58 18.25 11.64 8.58

b 18.26 14.42 8.84 18.70 12.07 8.84 18.76 11.90 8.84

c 35.40 2.09 1.55 1.55 1.53 1.55 1.55 1.53 1.55

diverge 3.25 2.25 0 0 0 0 0 0 0

time 1.36 26.82 0.91 0.19 0.27 0.99 0.63 1.05 1.74

(0.1,0.3) AREs a 49.85 22.34 17.64 23.89 18.85 17.64 23.71 18.75 17.64

b 216.0 23.31 18.22 24.67 19.03 18.22 24.47 18.93 18.22

c 32.15 4.05 3.58 3.58 3.55 3.58 3.59 3.55 3.58

diverge 3.75 2.0 0 0 0 0 0 0 0

time 1.36 25.28 0.99 0.18 0.25 1.08 0.58 0.97 1.80

(0.3,0.1) AREs a 81.39 28.32 21.25 53.56 33.07 20.96 53.20 32.85 20.96

b 216.3 29.26 21.87 55.29 33.51 21.46 54.91 33.34 21.46

c 39.6 3.60 3.30 3.33 3.29 3.30 3.32 3.28 3.30

diverge 5.25 4.25 0 0 0 0 0 0 0

time 1.46 24.27 1.25 0.18 0.25 1.24 0.58 0.98 1.97

(0.3,0.3) AREs a 87.09 35.02 33.08 54.81 41.69 30.13 54.42 41.63 29.32

b 2.28 36.26 36.14 56.63 42.26 32.44 56.24 42.19 30.87

c 34.65 4.93 4.64 4.66 4.60 4.64 4.66 4.59 4.65

diverge 5.75 3.25 0 0 0 0 0 0 0

time 1.51 25.50 1.33 0.18 0.25 1.33 0.58 .96 2.05

Table 1: Performance of different estimators for Example 1 with n = 51 observations: θ̂NLS=NLS

estimate starting randomly from 0 to the twice true values; θ̂col=Ramsay et al’s collocation estimate;

θ̂PLSn =PsLS estimate on a grid of n times points; θ̂PLSm =PsLS estimate on a grid of m = [n4/3]+

times points; θ̂NLSPLS =NLS estimate starting at θ̂PLSn ; θ̂newn =the proposed new estimate on a grid of n

times points; θ̂newm =the proposed new estimate on a grid of m = [n4/3]+ times points; θ̂NLSnew,n=NLS

estimate starting at θ̂newn ; θ̂NLSnew,m=NLS estimate starting at θ̂newm .
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the Hooker’s R package) is highest. However, it is possible to reduce the computational cost

of the collocation estimator if a more efficient algorithm is used and the smoothing parameter

or tuning parameter is more appropriately adjusted. 4) If the starting point of the NLS

estimator is far from the true values, the NLS may converge to the local minima with a

high computational cost and poor estimation accuracy. However, when the Liang-Wu’s PsLS

estimator or the proposed new estimator was used as the starting point, the NLS estimator is

significantly improved to become the best among all the estimators in estimation accuracy with

a reasonable price of computational cost. 5) The proposed new estimator is clearly better than

the Liang-Wu’s PsLS estimator in estimation accuracy with a small price of computational

cost as we expected.

Example 2. In this second simulation example, we simulated the data from the FitzHugh-

Nagumo system of differential equations that were originally used to model the behavior of

spike potentials in the giant axon of squid neurons in FitzHugh (1961) and Nagumo et al.

(1962). This model was also used for simulation studies by Ramsay et al. (2007) and Liang

& Wu (2008). We use this model to further investigate the finite-sample behavior of the

proposed method and other existing methods for a different nonlinear differential equation

model. The FitzHugh-Nagumo system can be written as

d
dt
X1 = (X1 +X2 − X3

1

3
)c,

d
dt
X2 = −X1−a+bX2

c
,

(A.21)

with true parameter values θ = (a, b, c) = (0.34, 0.2, 3) in our simulations. We similarly assume

that X1 and X2 are measured over a grid of 51 equally-spaced time points, every 0.4 time

interval in the range of t = [0, 20] with measurement errors as in equation (2) with (σ1, σ2)

taking as (0.1, 0.1), (0.1, 0.3), (0.3, 0.1) or (0.3, 0.3) for the measurement standard errors for X1

and X2 respectively. For each simulated data set, we apply the proposed estimation method

and other existing methods to obtain all the estimates as in Example 1.

Table 2 summarizes the AREs and computing times of the various estimators based on
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(σ1, σ2) Estimators

θ̂NLS θ̂col θ̂NLSPLS θ̂PLSn θ̂newn θ̂NLSnew,n θ̂PLSm θ̂newm θ̂NLSnew,m

(0.1,0.1) ARE a 2.58 7.70 1.96 4.26 5.42 1.75 4.11 4.25 1.75

b 14.1 58.2 12.5 19.64 20.71 11.95 19.7 19.3 12.0

c 2.32 6.07 0.69 26.82 21.16 0.37 24.2 12.3 0.37

diverge 36.75 6.00 4.25 0 0 0.50 0 0 0

time 11.59 12.07 8.17 0.17 0.24 7.01 0.58 0.89 7.07

(0.1,0.3) ARE a 6.73 10.34 3.72 6.85 8.06 2.49 6.90 7.62 2.49

b 42.1 69.7 33.6 52.78 49.28 28.9 52.4 50.4 28.9

c 9.08 7.73 2.44 33.95 22.31 0.55 31.1 14.9 0.56

diverge 39.75 5.25 14.75 0 0 1.25 0 0 1.25

time 10.93 12.89 9.11 0.18 0.25 8.14 0.57 0.87 7.90

(0.3,0.1) ARE a 5.21 13.61 5.26 10.30 8.60 4.97 10.2 8.23 5.15

b 22.9 73.0 24.4 29.49 27.43 23.18 29.3 27.6 23.9

c 1.91 7.71 1.42 34.08 21.70 1.05 31.1 19.9 1.39

diverge 34.50 5.75 8.75 0 0 2.00 0 0 2.00

time 13.08 14.00 12.62 0.18 0.25 11.66 0.58 0.87 11.75

(0.3,0.3) ARE a 6.12 13.58 5.68 11.44 10.73 5.44 11.5 10.6 5.19

b 35.0 82.6 35.8 55.02 53.28 36.1 54.9 53.6 35.2

c 4.21 9.04 2.44 43.33 24.44 1.41 40.0 22.3 1.12

diverge 39.75 6.25 20.00 0 0 7.00 0 0 7.75

time 12.75 14.73 12.06 0.18 0.25 10.99 0.58 0.87 10.93

Table 2: Performance of different estimators for Example 2 with n = 51 observations: θ̂NLS=NLS

estimate starting randomly from 0 to the twice true values; θ̂col=Ramsay et al’s collocation estimate;

θ̂PLSn =PsLS estimate on a grid of n times points; θ̂PLSm =PsLS estimate on a grid of m = [n4/3]+

times points; θ̂NLSPLS =NLS estimate starting at θ̂PLSn ; θ̂newn =the proposed new estimate on a grid of n

times points; θ̂newm =the proposed new estimate on a grid of m = [n4/3]+ times points; θ̂NLSnew,n=NLS

estimate starting at θ̂newn ; θ̂NLSnew,m=NLS estimate starting at θ̂newm .
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r = 400 simulation runs. From this simulation study, additional interesting behaviors of

different estimators were observed although most results still hold as in Example 1: 1) The

NLS estimator is still the worst in both computational cost and convergence when the starting

point is randomly generated from 0 to twice the true parameter values. The non-convergence

frequency of the NLS estimator is much higher for the model in this example compared to

that of Example 1. In this case, it is more important to get a good starting value for the NLS

estimator. However we notice that the improvement using the Liang-Wu’s PsLS estimator

as the starting point is limited while using the proposed new estimator as the starting point,

the NLS estimator can be significantly improved to become the best among all the estimators

in estimation accuracy with a reasonable price of the computational cost. 2) In this case,

Ramsay et al. (2007)’s collocation estimator performs worse than the best NLS estimator

(the NLS estimator with our new estimator as the starting point) and also has a higher

computational cost. 3) The proposed new estimator, as the starting point, can better improve

the NLS estimator in the sense of AREs and convergence stability, compared to that of the

PsLS estimator as the starting point. 4) In Table 3, we also reported the standard deviation

(STD) of the estimators in Table 2 here. We can see that the trend and conclusions for the

STD are similar to those for the AREs, i.e., comparing to the Liang-Wu’s pseudo-least squares

(PLS) estimator, our new estimator has a lower STD in all three parameters a, b and c for

the cases (σ1, σ2) = (0.3, 0.1) and (0.3, 0.3); while for the other two cases, the two methods

produce mixed performance in terms of both STD and ARE (for some parameters, the PLS

estimator is better and for some other parameters, our new estimate is better). However, the

NLS estimator using our new estimator as the initial value always performs better for all the

cases in both STD and ARE, compared to those using the PLS estimator as the initial value.

In summary, considering the computational cost, convergence rate, variance and ARE, the

best estimator is the NLS estimator θNLSnew using the proposed new estimator as the starting

point.
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(σ1, σ2) Estimators

θ̂NLS θ̂col θ̂NLSPLS θ̂PLSn θ̂newn θ̂NLSnew,n θ̂PLSm θ̂newm θ̂NLSnew,m

(0.1,0.1) STD a 7.73 14.2 4.59 5.71 6.93 2.23 5.19 5.24 2.22

b 24.6 82.0 18.3 25.0 24.8 15.2 25.1 24.0 15.2

c 13.63 15.5 6.31 2.95 3.64 0.47 3.08 3.62 0.47

diverge 36.75 6.00 4.25 0 0 0.50 0 0 0

time 11.59 12.07 8.17 0.17 0.24 7.01 0.58 0.89 7.07

(0.1,0.3) STD a 6.24 15.2 16.6 8.65 10.1 3.11 8.88 9.68 3.10

b 39.6 87.0 70.4 66.7 61.9 36.8 66.2 63.2 36.7

c 15.15 16.3 14.7 4.04 5.83 0.73 4.49 6.37 0.73

diverge 39.75 5.25 14.75 0 0 1.25 0 0 1.25

time 10.93 12.89 9.11 0.18 0.25 8.14 0.57 0.87 7.90

(0.3,0.1) STD a 6.75 19.1 7.17 13.0 10.6 6.34 12.8 10.0 6.34

b 29.1 85.8 33.0 37.4 34.4 29.7 36.9 33.7 29.9

c 9.60 15.8 6.09 5.96 4.39 1.32 5.30 5.56 1.33

diverge 34.50 5.75 8.75 0 0 2.00 0 0 2.00

time 13.08 14.00 12.62 0.18 0.25 11.66 0.58 0.87 11.75

(0.3,0.3) STD a 10.24 18.0 10.1 14.1 13.3 8.70 14.3 13.1 6.61

b 47.1 95.1 45.7 70.3 66.8 45.7 69.9 67.3 44.6

c 18.81 16.7 12.6 6.38 5.75 5.58 5.90 6.52 1.42

diverge 39.75 6.25 20.00 0 0 7.00 0 0 7.75

time 12.75 14.73 12.06 0.18 0.25 10.99 0.58 0.87 10.93

Table 3: Performance (standard deviation as percentage) of different estimators for Example 1

with n = 51 observations: θ̂NLS=nonlinear least squares estimate using a random starting

point; θ̂col=Ramsay et al’s collocation estimate using the same starting point; θ̂PLS=pseudo-

least squares estimate using the same starting point; θ̂new=the proposed new estimate started

from θ̂PLS; θ̂NLSPLS =nonlinear least squares estimate started from θ̂PLS; θNLSnew =nonlinear least

squares estimate started from θ̂new; θNLScol =nonlinear least squares estimate started from θ̂col.
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