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1 Model notations and the main theorem

A general nonlinear ordinary differential equation (ODE) model

dX (t) :
— = F{X(t): 6} (1)

is measured with noise at time points 1, t5, ..., t,, with observations
Yi=Y(t;) = X(t;) +e(t;), i=1,..,n. (2)

Using differential equation constraints, we can calculate the higher-order derivatives

X (t)
dti

= FU=D{X(t);6}.

Hence we propose incorporating differential equations into the local polynomial regression on

a grid of time points ¢ = 7,15, ..., t;, by minimizing the objective function
m n p -
>0 oot Do gy - ), ®)
k=1 i=1 j=1 ’
with respect to & = (ay, ..., ay,, 0)7, where w(t}) are nonnegative weights over the time grid.
This provides estimates d; = X (£;) and § simultaneously.
For a general nonlinear function F' of the differential equation model, the optimization of

(3) becomes a nonlinear minimization problem, thus we may lose the computational efficiency

of the original local polynomial fitting. To solve this problem, we consider a linear estimator
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that results from one iteration of the Gauss-Newton optimization of (3) at a previous estimate
¢ = (af,...;ar,,0%)T. In matrix notation, the objective function (3) is {Y — G(&)}TW{Y —
G(&)}, where Y = (Y7, ....Y,, ... Yy, ... Y,)T is a (nm)-dimensional vector with the observations

Y;’s repeated m times, G = (G11, ..., G, ooy Gimy oo, Gum)? with

and W is a nm x nm diagonal weight matrix, that is,
Diag{w(t))Kp(ty — t7), ..., w(t]) Kp(tn — 1), ooy w(t: ) Kp(ty — ¢, yw(tr ) Kp(t, — )}

Let J = (0G/0ay, ...,0G Doy, 0G0y, ...,0G | 00,)¢—¢« denote the nm x (m + ¢) Jacobian
matrix evaluated at £ = £*. Then a Gauss-Newton iteration minimizes (3) with G(&) replaced
by its linear approximation G(&*)+ J(& —&*). This results in the weighted linear least squares
estimator

= JTWI)TItTwy, (4)
where Y =Y — G(&) + J¢&*.
Theorem 1 We assume the following technical conditions
(1)The differential equation (1) holds over a time interval [ag, by| and have a bounded solution
X(t). We observe Y;(t) from model (2) att = t; € [ag,bo], © = 1,...,n. The differential
equation parameters 6 are jointly estimated with «; = X (t7) over a time grid tf € [ag, bo),
1 =1,....,m. The resulting estimatoré is given by (4) with the linearization at a starting value
&= (af,...,ar, 07,
(2) The starting value is an estimator £ such that |&* — & = O,(n~°) for some § > 1/4. Here
| | is the Lo morm.
(8) The function F(x) in differential equation (1) has bounded p-th order derivative.
(4) n — oo, h — 0, nh — oo and m — oo.

(5) The kernel function K > 0 is compactly supported and bounded. Denote the moments



of K by uj(K) = [ K(u)w/du. Then po(K) = [ K(u)du = 1, and all odd-order moments
wi(K) = 0 vanish.

(6) The observation time points t, ..., t, and fitted time points ti, ..., t5 comes from distribution
with densities f(t) and f,(t), t € [ag,bo]. Ower the time interval t € [ag, bo], f(t) > 0 and
fo(t) >0 are bounded with continuous derivatives f'(t) and f,(t).

(7) The weight function w(t) > 0 is bounded over the time interval t € [ag, by].

Then conditional on the observation time points ty,...,t,, fitted time points t7, ...t and &,

the differential equation parameter estimator 6 has conditional bias

Bias(0) = 0,(n"Y%) + O,(h**Y) p odd, Bias(d) = 0,(n"Y?) + O, (k") p even,

and conditional variance var(0) = Oy((nmh3)~t 4+ (nh)™1) if w(ag) # 0 or w(by) # 0; and
var(f) = Op((nmh?®)™ + n™Y) if w(ag) = w(by) = 0.

Particularly, when w(ag) = w(by) = 0 and mh3 — oo,

o2
var(9) = —Ap'[Br — (Cr + Cp)lAL, (5)

with Ap = [[Fyo Fyrowo fo fl(t)dt, Br = [[(wo fy0Fy) o(wo fyoFyr) o f](t)dt and
Cr=[l(f'+foFx)owo fyoFyo{wo fy0 Fyr}'|(t)dt. Here and in the following we use
the shorthand notations [f o g](t) = f(t)g(t), Fx(t) = [%F(X;0)](t) = % F(X;0)|x=x@),
Fy(t) = [SF(X;0)|(t) = ZF(X;0)|x=x() and Fyr(t) = [Fp(t)]".

Remark: With A small enough o(n~"/(?)), the bias in 6 is of 0,(n~'/2), so the variance
dominates. With w(ag) = w(by) = 0 and choosing m big enough so that mh® — oo, then

~

the Theorem states that € converges at the parametric rate n='/2.

Furthermore, we can
see how does this constrained local polynomial estimator improves upon the pseudo-least
square estimator with unconstrained local polynomial estimator for X and X’ using the same
bandwidth. Since the bandwidth is selected so that bias is 0,(n~'/2), we just need to compare

their variances. For simplicity, let use consider the case of uniformly distributed ¢;s and ¢}s



on time interval [0,1]. Then f(t) = f,(t) = 1, and the variance var(§) becomes
2
Z a7t ( Jiwo Ry oo FrY = Frowo (Fra(wo Fr) + (w0 Fo)  For) <t>dt) A7,

where Ap is now [[Fyo Fyr ow](t)dt. Compare to the variance of Liang-Wu estimator (Liang
and Wu 2010), our var(f) have one less term %214;,1 [l(wo FxoFy) o(wo FxoFyr)'|(t)dtAR".
This is a positive semi-definite matrix, meaning our variance is smaller. This extra term in
Liang-Wu'’s estimator corresponding to the error propogated from first stage estimator X (1).
Since we restrict our X'(£) = F(X(t);6), our estimators X’(¢) and X (t) are related and their
errors enter into variance of 6 only once through the term [ Fyowo{Fyo(woFyr) + (wo
Fy)' o Fyr}](t)dt.

The detailed proof of Theorem 1 is given as follows.

A  Proof of Theorem 1

We analyze the order of estimation errors similar to the usual derivations of local polynomial
regression. (For example, see section 3.7 in Fan and Gijbels 1996.) The order of some common

quantities would be useful. Let Sg; = > 1" | Ku(t; — t;)(t; — t})?. Then

Sks = 1 S )L+ 0p(1)] J even, Sy = nhi ™ (6ng (KL + 0y (1] J od.
(A1)
where f(t) is the density at ¢ and p;(K) = [ K(u)u’du.
To consider properties of the estimator &€ = (JTW.J)"'JTWY in (4), we first study the

matrix (JTW.J)™! and JTW. Since G;x(€) only depends on (ay, #), the Jacobian matrix J is



sparse with many zero elements:

Z)\j/(l,l ce 0 -/D\—él,l
DX,, ... 0 Db,
J = )
0 ... DXy, Dby
0 ... DXpym Db,
where DXy =1+ 30, Wi pOeY and DG, = 0, W DG with
DY — DDt g, DD = DD (ot g O pu) 0 pu)
Xk — Mx (ag; 07), Dng = DgT (ap 0°) = | 57 FV(;0), ..., 5 F7(; 0)
El 891 89(] Oé:()é;;70:9*

Since p is fixed, DX ik and l%zk are sums of fixed number of terms. Since by (A.1), the kernel

sums of (¢; —t})? is at most of order O,(nh?), the error analysis later often only need to focus

on the lowest power term in DX ik and lA)/sz That is, 1 and (¢; — tZ)Dg;) ., Tespectively.

Hence,

WJ =
w(tT)Kh<t1 - ti)b\}zl,l R 0 CLJ(tT)Kh(tl — ti)_/Dvel’l
w<t>{)Kh(tn - 2€>1K)Z)\)/(n,1 s 0 W(tI)Kh(tn — tI)lfDVGnJ

0 s wt) Kt — DX 1 w(tE) Ky (ty — t5,) DOy

0 o w(t) Kty — t2)DX o w(tE ) Kt — ) DOy
(A.2)



and

Dm m Lm
JIW T = : o (A.3)
Lgxm Cqu

where the subscripts of the four sub-matrices denotes their dimensions. The matrix D is a

m X m diagonal matrix with entries
Dy, = ZKh wt)(DX:p)? k=1,..,m. (A.4)

The k-th row of the L matrix is

ZKh (t; — t)w(t;) DX £ DO; k., (A.5)
and
m n T
C=>Y > Kult;—t;)w(t;) DO, Db; 1. (A.6)

Ly, = nh®us(K)w(tp)[f (6 Dyt + F(5) DLDye 1) + 0p(nh?),

and C' = nmh?uy(K)Ar + o,(nmh?).
The definition of Ap was given under (5). We give the proof of Lemma 1 in the subsec-

tion A.3. It is easy to check by block matrix algebra that

-1

D Limx D'+ DlLv-iLTp-1 —_p-lpy-1

T -1 q

(J WJ) = = (A.?)
L:fxm C’qxq —V-1LTp—1 Vs

with V' = C — LTD7'L. The order of quantities in (A.7) is described in the following lemma
whose proof is in subsection A.3.
Lemma 2 LD 'L = O,(mnh*), V71 = C7' 14 O,(h*)] = Op(=5z), DLV = O, (1)

and D'LV'LTD™ = 0, (%),

Using the results in Lemma 1 and 2,

Dm1><m+0 . 0 . mX
o @ Ol | s

Op(ﬁ)qu Cqu +0p(ﬁ)
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Remark: For a d-dimensional X, the order analysis of the matrices would all remain the
same. The D,,y,, matrix would become D,,qxmq With diagonal block matrices Dj of size
d x d. And L; would be matrices of size d x q. As d is fixed, the multiplying of matrices with
dimension d instead of 1 does not change the order. So the whole proof can be extended to

d-dimensional X straightforwardly.

A.1 Bias
The bias of é given tq,...,t,, 17, ..., t,, " is

Bias(§) = (JTWI)VITWE(Y) — & = (JTWI)LITW{E(Y — G(&*) + J&*) — J&}
= (JTWI)TTTWHE(Y) = G(€) = J (& — £}
Denote J = (JI},J3 1, ..., Sy, Il g oy i) " Hence the elements in E(Y) —G(&") — J(§— &)
are those E(Y;) — G, 1(€*) — Jix(& — &)’s. With Taylor expansion of E(Y;) = X(¢;) at time
point ¢ = ¢}, we have
= (t: — ;)

X(t) =X(t)+> i

j=1

X, )
(p+1)!

X, )

XD ()4 (t—t)PH!

= Gix(&o)+(ti—tp)r

?

where t; , is a point between t; and t;. Since Gy 1 (&) — G (€)= Jin(€0—€%) = O,(|&—E&*|?) =
O,(n=%), we have

X(p+1)({i k)

TESHI +0,(n). (A.9)

E(Y;) — Gi(€%) — Jip(&o — &) = (t; — tp)P™!

Denote Tj = ((t1 — )7, ..., (t, — )7, (t1 — t5)7, ..., (£, — t5,)7)T. Similar to the analysis in proof
of Lemma 1, we analyze the order of JTWT} by focusing on the term with lowest power of
(t; — t}) as higher power leads to smaller order kernel sum. From (A.2), the first m elements
in JTWT; are of the form Y7 Kp(t; — t3)(t; — t1)/w(t;)DXix, k = 1,...,m. The lowest
power term in DX ik is 1 (e, (t; —t5)°) so that those m elements are of the same order as
Skj = Yo Ku(ti — t)(t; — t})? which is O,(nh?) for p even, and O,(nhi*t) for p odd by

(A.1). The last ¢ elements in JTWT; are S0 [ Ky (t; — t3)(t; — 1) w(t7)D0; ). Again,
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the lowest power term in lA)/sz is (t; — t}) so that those last ¢ elements are of the same order
as Y o[> Kt — ) (6 — 1)) = 3701, Skj+1. That is, they are of order O,(mnhi*?)

for p even, and O,(mnh’*t) for p odd by (A.1). In summation,

O,(nh?),, O,(nhi*t1),,
JTWTj = p(1h ) for j even; ol Jma for j odd.

Op(mnhi*?) 1 Op(mnhi ™) 1

From (A.9), E(Y) — G(&*) — J(& — &%) = Tp110,(1) + TyO,(n=%). Plug-in the orders of
JTWT,y and JTWTy, we have that JTW{E(Y) — G(£*) — J(& — )} is

Op(n(hPH +n=2)),. Op(n(hP*2 4+ 1n72)),0
for p odd, for p even.

Op(mnhQ(th +n_26)>q><1 Op(mnh2(hp + n—26))qxl

~

Combining this with (A.7) and Lemma 2, the bias Bias(f), when p is odd, is

—VALTD1O,(n(hP* + n72)) st + V2O, (mnh?(RPHY 4+ n72)) 1y
Op(#)quop(n(hp—Irl + n_%))mxl + Op(ﬁ)qqup(mnhg(hp‘H + n_%))qxl
= O, (W +n~2),

where in the last equality an extra m factor in the first term comes from product of the

matrices of sizes ¢ X m and m x 1 while the second term need no extra factor as ¢ is fixed.

~

When p is even, Bias(#) becomes
—V LD, (n(BPT2 4+ 07 2)) st + VO, (mnh2 (WP 4+ n72)) g1 = Op(hP +n~2).

Since § > —1/4, Bias(f) = 0,(n~'/?) for h small enough. That is, when h = o(n~'/?).

A.2 Variance

Given ty, ..., ty, t%, ..., t%,, €%, the variance var(€) = (JTWJ) " JTWoar(Y)W J(JTW J)~L. Since

(JTW J)~is given in (A.7), we now calculate JT Wvar(Y)W.J. Denote ¥ = var((Ys, ..., Y,)T) =



diag{c?,...,0%}. So var(Y) are simply m x m blocks of 3,
———

DINND)
DINNND Y
Thus direct calculation gives that
~ D’;knxm L;knxq
JWoar(YYWJ = ,
(L*)qu C;Xq
where the (k, j)-th element in D* is
Dyj=0 2w (t] )w ZKh Ki(t; —t;)lf)\)/(zklf)\)/(”], for k,j=1,...m

the k-th row in L* is

Lk = O' w tk Zw ZKh(tz — t:)Kh(tz — t;)b\j/(z’,kﬁ_éi,j]; for k = 1, N1
j=1 =1

and

n o —
ow(tp)w(t)D  Knlt; — tp) Kn(t; — ) D0, Db, 5).

k=1 j=1 i=1

Lemma 3

Dz,k = Op<nh71)a DI:,j = 0p(n) Jor k # 7.

L; = nmh*0*ps(K)wo fo{wo f, o Fyr}'](t) + 0,(nmh?).

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

When w(ag) # 0 or w(by) # 0, C* = Op(nmh + nm?h3); when w(ag) = w(by) = 0, C* =

O,(nmh + nm?2h?). Particularly, when w(ag) = w(by) = 0 and mh® — oo,

O = 0 oK) B + o, (nm?h").

(A.16)

The definition of B is given under (5). The proof of Lemma 3 is given in subsection A.3.



-1 -1
R D L D* L D L D L
var(§) = =
LT C (L*>T C* LT C (L**)T C**

Using (A.7), we directly calculate var(f) = C** as
VIALIDT D DLV - v ()T DT LY T - VLT DT TV Ve VT (AL

We first focus on the case of w(ag) = w(by) = 0. Use Lemma 2 and Lemma 3, The first term

is of order

1 n 1 1

Op(%)quop(E)Op(%)qu = O(m)

where an extra factor m was added from the product of the matrices of sizes ¢ x m and m X ¢
(the diagonal matrices in the middle does not introduce any extra factor). The second term

and the third term is of order

1 1

1
W)quOp(nth)quOp(%)qu = Op(ﬁ)-

Oy

Again the extra factor m comes from the product of the matrices of sizes ¢ x m and m X q.

The last term is of order

1
nmh?

S PO S

nmh3  n

O,( YO, (nmh +nm*h*)O,(

nmh?

So the first term is of smaller order, and the sum of all four terms is of order Op(—55 + ).
For the second case of when w(ag) # 0 or w(by) # 0, using Lemma 3 shows that the last
term in (A.17) is now Oy(—5 + =). The first three terms order remain the same and are
now of smaller order. Hence the variance of 6 is of order Oy + ).
We now derive the explicit variance formula when var(0) = Op(%). That is, when w(ag) =
w(by) = 0 and mh® — oco. By Lemma 1, C' = nmh*uy(K)Ar + o,(nmh?); by Lemma 2,
V=l = C71 + o(h?)]; and C* = nm?h*0?[us(K)]*Br + 0,(nm?h*) as in (A.16). Hence the

last term in (A.17) becomes V~1C*V =1 = %QA?BFA# +o(1).
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Now consider the third term, —V'LTD™'L*V~! in (A.17). The matrix in the middle is

L'D7'L*=> LiD,'L;.
k=1

By Lemma 1, Dy = nw(t;)f(t) + op(n), L = nh?ua(K)[f'(t) + f(t5) DY)Jw(tr) DS, +
op(nh?). From (A.15) L = nmh*0?pus(K)[w o f o {wo f, o Fyr }'|(t5) + 0p(nmh?). Hence
LTD™L* = nmh'o®[uy (K))? 3200, [(f' + f o Fx) owo Fyo{wo fy 0 Fyr Y] (t;)[1 + 0p(1)]
= nm?h*c?[pa(K)|*Cr + 0,(nm?*h*)
where Cp = [[(f'+ foFx)owo Fyo{wo fy0 Fyr} o f,](t)dt as defined under (5). Then using
C = nmh?uy(K)Ar +o(nmh?) from Lemma 1, =V LTD-1*V 1 = —%QAEICFAEI +0p(2).
The second term in (A.17) is the transpose of the third term. Combine them together, we

have
2

~ 1
var(6) = A By — (Cr + CHAF' + 0().

A.3 Proofs of Lemmas
Lemma 1 Dy, = nw(t})f(t;) + op(n),
Ly = nh? o (K)w(t)[f (t) DY, + f(t) DYDY ] + 0,(nh?),

and C = nmh?us(K)Ap + o,(nmh?).

Proof of Lemma 1:

— G-1)
The proof comes from direct calculations using DX, =1 + Z Lt —tr)) DX L DO,y =
D(J 1) —_
(t; — ) "J! £ and (A.1). Notice that that DX, has p 4+ 1 terms that each is of the

] 1
form of powers (¢; — ;)7 times a bounded quantity. So Dy by (A.4) is sum of (p + 1)? terms
each of the form Sy ; = > " | Ku(t; — t5)(t; — t})? times a bounded quantity. Specifically,

(J 1) P U 1) (G-1)

sko+zskj R B = =)

=1
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Since the asymptotic is done for fixed p, m — oo and n — oo, asymptotically Dy corresponds
to the term with biggest order among the (p + 1)? terms. The leading term is Sy ow(tf) =
nw(ty) f(ty) + op(n) by (A.1). The rest of terms are of order Sy ; for some j > 1 so are of
order O,(nh?) or O,(nh’*). Either way, they are at most of order O,(nh?) = o0,(n). Hence
the sum Dy = nw(ty) f(t;) + op(n) is of order O,(n).

Similarly by (A.5),

P D(J 1) p P Dgl(kl) D(J 1)

ZS;“ 9, ok +ZZS}:H—] ( 9]|k )]W(tZ)
=1 j=1

Here the first term in the sum is Sk,lw(t,’;)Dé?r) L= nh2u2(K)f’(t,’;)w(t*)Dég) . +op(nh?), and the

first term in the double sum is Sk’ng??kDéT)k (t7) = nh?pa(K) f(t5)w (t*)Dg?kDeT)k + 0, (nh?).

The rest of terms are at most of order O,(nh*) = o,(nh?). So

Ly = 0l pa(K)w(6) [ (1) Dyt + F(6) DD ] + op(nh?).

-1 pG-)
Now from (A.6) we consider C' = 377" [ D%, Sptei (—55) T (=525 )|w(t;). Inside the

7!

summation over k, for each k there are p? terms. The first term is S 2w(t*)D( )Dé(;) P =

nh2ps (K) f (t)w(t;) Dy ) DY

o7 T 0p(nh?). The rest of the terms are at most of order Oy(nh") =

0,(nh?). So after the sum over k, we have

C = Znhz,ug(K) tr)w (tk)Dé ;DéT)k%—op(mnhQ) = nmh?uy(K) /[cuOfOngFgoFeT](t)dt+0(nmh2).

Lemma 2 LD 'L = O,(mnh*), V71 = C7 14 O,(h?)] = Op(=5z), DLV = O, (1)
and D'LV'LTD™ = 0, (%),

Proof of Lemma 2:

Since D is diagonal, by Lemma 1, D~' diagonal with entries of O,(1/n). Hence

1 1
L"D'L = Op(nhQ)quOp(H)Op(nlf)qu = Op(nhzﬁnhz)m = O,(nmh?).
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Note that we count an extra factor of m when multiplying the ¢ x m matrix with a m x ¢
matrix. Since D! is diagonal, multiplying by D~! does not introduce the extra factor m.
The rest of the order calculations of matrices products are all like this: direct multiplications
of the order of each matrix and add an extra factor m for multiplication over the m dimension,
but no such extra factor for diagonal matrix nor for multiplication over the fixed dimension q.

Now V = C + O,(nmh*) = C[1 + O,(h?)] by Lemma 1. With the fixed ¢ x ¢ dimen-

sions, we have V™' = C7'[1 + O,(h?)]. Then DLV = O,(inh’—1=) = O,(-=). And

nmh?
DT'LVILTD ™ = 0,(:Enh?Lym = 0,(%2).
Lemma 3

Dyy = Op(nh™"), Dy ;= op(n) for k#j.
L = b0y (K)o f o {wo fy 0 EyrY|(15) + op(nmh?).

When w(ag) # 0 or w(by) # 0, C* = Op(nmh + nm?h3); when w(ag) = w(by) = 0, C* =

O,(nmh + nm?2h*). Particularly, when w(ag) = w(by) = 0 and mh® — oo,
C* = nm?*h*o? e (K))* Br + op(nm?h*).

Proof of Lemma 3:

The analysis of the order of Dy ; is similar to the analysis of Dy in proof of Lemma 1.
There are (p+ 1) x (p + 1) terms in lf)\)/(zklf)\)/(” with the lowest power term being 1. So
the first term in Dy ; his o?w(t})w(t]) >oiny Ka(ti — t;) Kn(ti — t5). For k = j, this becomes
Doy [Kn(ts — t5)]* = nh™ uo(K?) f(t;) + 0,(nh™"). Easy to check the rest of terms in Dy ; is

at most of order O,(nh). So
Dy = nh™ o [w(tp)Puo(K*)[1 + 0p(1)] = Op(nh ™).
When k # j, i) Kn(ti — ti) Kp(t; — t3) — n [ K(u)Ky(t; — t5 4 hu) f(t; + hu)du = o,(n).

Hence we have Dy ; = o,(n) for k # j.
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For L;, by (A.12), we only need to consider the lowest power terms in lf?\)/(i,kaQi’j, that

is, 1(t; — t;)Dé(;)j. So (A.12) becomes

Li = o®w(tp)[S0, Kalti — t5) X0, () Kalti — ) (t: — 1) Dy 111+ 0,(1)]
= w2 Ka(ti — ) mhPpe(K)[~w o fy o Fyr]'(t;)][1 + 0,(1)]
= —nmh202pus(K)wo fo{wo f, 0 Fyr¥|(t:) + o,(nmh?).
We now evaluate the order of C* in more details. Again, for Df;; the leading term is
(t; — t;-) DS (aj;8). So from (A.13), we have C* becomes
o
= 023 Yo g Bt — ) Kt — ty) (6 — 1) (6 — 0 )w (8w (£5)
Dy(ou; 6) Dor (aj; 0)[1 + 0,(1)]
= [0 e Kt — 5 (8 — ti)w(t7) 1 Do (s 0) Dyr (o3 0)
21 2oy Bn(ti = G Kn(ts — ) (8 — 6) (8 — ) (1) w(E5) (A.18)
Dy(ou; 8) Dor (aj; 0) ] [1 4 0p(1)]
= olnm [ [ p{K(55)} (@ — 2)*[w(@)]* Fo(x) Fyr (2) fy(2) f (2)dwdz
+nm? [ [ [ K () K (Y ) (@ — 2)(y — 2)w(@)w(y) Fo(z) Fyr (y)

fo() fo(y) f (2)dwdydz | [1 + 0p(1)].
We further simplify the triple integral in the last expression using integral by parts:

Let K*(t) be the anti-derivative of K(t) and K**(¢) the anti-derivative of K*(¢). That is,

C R () = 4K*(t) = K(t). Denote x*(z) = K*(z)z — K**(z) so that Lx*(z) = K(z)z.

dr?

Hence

Ik %K(””;Z)(m — 2)w(x) Fy(z) fy(z)dx

= hit (5 )w(@) Fy (o) fy (o) [ag — [ b (557w o fy o Fy)'(w)da.

Notice that the first term is different for two cases: (a) the weight function is zero at

(A.19)

boundary points w(ag) = w(by) = 0; and (b) the weight function is nonzero at boundary
points w(ag) # 0 or w(by) # 0. For the first case of w(ag) = w(by) = 0, the first term in (A.19)

equals zero. For the second case, the first term in (A.19) is non-zero.
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We now consider the case where the first term in (A.19) equals zero. Then only the second

term in (A.19) remains, which is (with a change of variable u = *3*)

— [ hr*(%

= —h*[K*(u)wo fy 0 Fp)'(z 4+ hu)du

o Fpl'(z)dx

= —h*wo f,o0 F)(2) [ k*(u)dull + o,(1)]
= hua(K)[wo f, 0 Fyl'(2)[1 + 0,(1)].
This is because of — [ k*(u)du = —k*(w)u|l; + [[K(v)uJudu = ps(K) where without loss
of generality, we assume that K (u) has a compact support on [—1,1], k*(—1) = 0 since
K*(-1) = K*(-1) = 0. s*(uw)|L; = [[K(u)u]du = 0 so k*(1) = 0+ £*(—1) = 0. Therefore
k*(u)ult; = 0. Hence, plugging this into (A.18) we have
O
= o {nmhys(K?) [lw(@)*Fy(z) For (z) fy(2) f (x)d
+nm? [{h?pa(K)w o fy 0 Fy)'(2) {1 pa(K)[w o fy o Fyr]'(2)} f(2)dz}[1 + 0,(1)]
= o*{nmhus(K?) [[w? o f, 0 f o Fyo Fyr](z)dx
+nm?hi [ (K)? [[(wo fy o Fy) o (wo fgo Fyr) o f](2)dz}1 + 0,(1)]
= O,(nmh + nm?h*)
For the second case where the first term in (A.19) cannot be dropped out, there is an extra

term in the triple integral of (A.18) ,

nm/hm

Therefore C* = O, (nmh + nm?h?) instead.

2[wo fg0 Fpl(z)[wo f,0 Fyrl(2) f(2)dz = Op(nm2h3)

This finishes the proof of Lemma 3.
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B Numerical Studies

In this section, we compare the performance of the proposed method with the Liang-Wu’s
method (2008), the method of Ramsay et al. (2007) and the NLS estimator by Monte Carlo
simulations. We evaluate the performance of the estimators by the average relative error

(ARE) defined as

~

T

ARE:Z]%—H

i=1

with éz as the estimate for true # in the ¢th simulation run with « = 1,2, ...,7. The compu-
tational cost and convergence are also considered in evaluating different estimation methods,
but the determination of the smoothing parameters is not considered in computational cost.
However, the same bandwidth was used for the Liang-Wu’s PsLS estimator and our new
estimator for fair comparisons.

Since the Liang-Wu’s PsLS estimator and the proposed new estimator in this paper are
computationally efficient, they can be used as the starting point for the NLS estimator. So
that this hybrid strategy may enjoy both computational efficiency of the PsLS estimator or
the new estimator and high estimation accuracy of the NLS estimator. We will also evaluate
the hybrid approaches in our simulation studies.

Example 1. Chen et al. (1999) proposed a system of differential equations to model protein

and gene interactions. We simulated the data from a modified gene-protein interaction model,

iy, —_ao_ _px
@l T e ! (A.20)

4X, =2X;—cXy
with true parameter values 6 = (a,b,c) = (1.5,1,2). Assume that X; and X, were measured
over a grid of n equally-spaced time points, every time interval of 0.4 in the range of ¢t =
0, 20], with measurement errors as in equation (2) with (oy, 09) taking as (0.1,0.1), (0.1,0.3),
(0.3,0.1) or (0.3,0.3) for the measurement standard errors for X; and X, respectively. Thus,

we obtained n = 51 data points. For each simulated data set, we apply the proposed estimation
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method and other existing methods to obtain the following estimates: the NLS estimator
ONLS and Ramsay et al.’s collocation estimator éc"l, and the Liang-Wu’s PsLS estimators
OPLS and PLS with m = n and m = [n*3]* ([z]* denotes the largest integer that does
not exceed z) respectively using the starting values generated randomly from 0 to twice the

true parameter value, the NLS estimator égfg using the Liang-Wu’s PsLS estimator éf LS

as the starting point, the proposed new estimator ézew and éj}f“’ using the Liang-Wu’s PsLS

QNLS and QNLS

new,n new,m

estimators as the starting point, the NLS estimators using the proposed
estimators éff LS and éﬁLs respectively as the starting point. For the Liang-Wu PsLS estimator
and the proposed estimator, the local quadratic polynomial smoothing was used and the
piecewise linear weighted function suggested in Brunel (2008) was used: w(t) = 1 for 1 <
t <19 w(t) =tfor 0 <t < 1; wit) =20—1¢ for 19 < ¢t < 20. Only one iteration
was used for the proposed estimator starting at the Liang-Wu’s PsLS estimator since very
little accuracy improvement was obtained by more iterations. The Ramsay et al. (2007)’s
collocation estimator 6 was implemented using the R package CollocInfer (available from
http://www.bscb.cornell.edu/~hooker) with 51 equally-spaced knots between ¢ = 0 and t =
20.

Table 1 summarizes the AREs and computing times of the various estimators based on
r = 400 simulation runs. From these simulation results, we observe the following patterns,
in particular for the estimates of parameters a and b: 1) The Liang-Wu’s PsLS estimator
is always most computationally efficient, but the second worst in estimation accuracy (in
AREs) except that the NLS estimator with twice the true parameter values as the stating
point was the worst in estimation accuracy probably due to the local convergence. 2) The
improvement of estimation accuracy by the data augmentation approach, m > n, is limited.
3) Ramsay et al. (2007)’s collocation estimator performs similarly in estimation accuracy to

the NLS estimator when the PsLS estimator or our proposed new estimator was used as the

starting point, but the computational cost of the collocation estimator (implemented using
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(01,09) Estimators

NNLS Heol NNLS N\PLS Nnew A\NLS \PLS Nnew NNLS
0 0 ePLS en en enewm em em enew,m

(0.1,0.1) AREs a 4436 13.74 858 1820 11.81 858 18.25 11.64 8.58
b 1826 14.42 884 18.70 12.07 884 18.76 11.90 8&8.84

¢ 3540 209 155 1.55 1.3 155 1.55 1.53 1.55

diverge 3.25 225 0 0 0 0 0 0 0

time 1.36 2682 091 019 027 099 063 1.06 1.74

(0.1,0.3) AREs a 49.85 2234 17.64 2389 1885 17.64 23.71 1875 17.64
b 216.0 23.31 18.22 24.67 19.03 18.22 24.47 18.93 18.22

c 3215 4.05 358 358 355 358 359 355  3.58

diverge 3.75 2.0 0 0 0 0 0 0 0

time 1.36 2528 099 0.18 0.25 1.08 058 097 1.80

(0.3,0.1) AREs a 81.39 2832 21.25 53.56 33.07 20.96 53.20 32.85 20.96
b 216.3 29.26 21.87 55.29 33.51 21.46 54.91 33.34 21.46

¢ 396 360 330 333 329 330 332 328 3.30

diverge 5.25  4.25 0 0 0 0 0 0 0

time 146 2427 125 018 025 1.24 058 098 1.97

(0.3,0.3) AREs a 87.09 35.02 33.08 54.81 41.69 30.13 54.42 41.63 29.32
b 228 36.26 36.14 56.63 42.26 32.44 56.24 4219 30.87

c 3465 493 464 466 460 464 466 459 4.65

diverge 5.75  3.25 0 0 0 0 0 0 0

time 1.51 2550 1.33 018 0.25 133 0.58 .96 2.05

Table 1: Performance of different estimators for Example 1 with n = 51 observations: §VLS=NLS

estimate starting randomly from 0 to the twice true values; éwl:Ramsay et al’s collocation estimate;
OPLS—PSLS estimate on a grid of n times points; §7L5=PsLS estimate on a grid of m = [n%/3]*

times points; ONLS=NLS estimate starting at 6r ‘18; grew—the proposed new estimate on a grid of n
PLS n n

times points; grew—the roposed new estimate on a grid of m = [n%/3]* times points; ONLS —NLS
m p g new,n

Actirrata afartinae ot ANEW. ﬂNLS _NT Q Activrmatan cfardriao o+ Anew



the Hooker’s R package) is highest. However, it is possible to reduce the computational cost
of the collocation estimator if a more efficient algorithm is used and the smoothing parameter
or tuning parameter is more appropriately adjusted. 4) If the starting point of the NLS
estimator is far from the true values, the NLS may converge to the local minima with a
high computational cost and poor estimation accuracy. However, when the Liang-Wu’s PsLS
estimator or the proposed new estimator was used as the starting point, the NLS estimator is
significantly improved to become the best among all the estimators in estimation accuracy with
a reasonable price of computational cost. 5) The proposed new estimator is clearly better than
the Liang-Wu’s PsLS estimator in estimation accuracy with a small price of computational
cost as we expected.

Example 2. In this second simulation example, we simulated the data from the FitzHugh-
Nagumo system of differential equations that were originally used to model the behavior of
spike potentials in the giant axon of squid neurons in FitzHugh (1961) and Nagumo et al.
(1962). This model was also used for simulation studies by Ramsay et al. (2007) and Liang
& Wu (2008). We use this model to further investigate the finite-sample behavior of the
proposed method and other existing methods for a different nonlinear differential equation

model. The FitzHugh-Nagumo system can be written as

4y = (X + Xy — 2,
aft =Xt X =5 (A.21)

a — _X1—atbXy
th2 - c )

with true parameter values 6 = (a, b, ¢) = (0.34,0.2, 3) in our simulations. We similarly assume
that X; and X, are measured over a grid of 51 equally-spaced time points, every 0.4 time
interval in the range of ¢ = [0,20] with measurement errors as in equation (2) with (oy, 09)
taking as (0.1,0.1), (0.1,0.3), (0.3,0.1) or (0.3, 0.3) for the measurement standard errors for X;
and X, respectively. For each simulated data set, we apply the proposed estimation method
and other existing methods to obtain all the estimates as in Example 1.

Table 2 summarizes the AREs and computing times of the various estimators based on
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(01,09) Estimators

NNLS Heol NNLS N\PLS Nnew A\NLS N\PLS pnew ANLS
0 0 ePLS en en enewm em em enew,m

(0.1,0.1) ARE a 258 7.70 196 426 542 1.75 411 425 1.75
b 141 582 125 19.64 20.71 11.95 19.7 193 120
c 232 6.07 069 2682 2116 037 242 123 0.37
diverge 36.75  6.00 4.25 0 0 0.50 0 0 0
time 11.59 12.07 817 0.17 024 701 058 089 7.07
(0.1,03) ARE a 6.73 1034 372 6.8 806 249 690 7.62 249
b 42,1 69.7 33.6 5278 49.28 289 524 504 28.9
c 9.08 773 244 3395 2231 055 311 149 0.56
diverge 39.75 5.25 14.75 0 0 1.25 0 0 1.25
time 10.93 12.89 9.11 0.18 0.25 814 057 087 7.90
(0.3,01) ARE a 521 13.61 5.26 10.30 860 497 10.2 823 5.15
b 229 730 244 2949 2743 23.18 29.3 276 239
c 191 771 142 3408 21.70 1.05 31.1 199 1.39
diverge 34.50 5.7 875 0 0 2.00 0 0 2.00
time 13.08 14.00 12.62 0.18 0.25 11.66 0.58 087 11.75
(0.3,03) ARE a 6.12 1358 5.68 11.44 10.73 544 11.5 106 5.19
b 350 826 358 55.02 53.28 36.1 549 536 352
c 421 904 244 4333 2444 141 400 223 1.12
diverge 39.75  6.25  20.00 0 0 7.00 0 0 7.75

time 12,75 14.73 12.06 0.18 0.25 1099 0.58 0.87 10.93

Table 2: Performance of different estimators for Example 2 with n = 51 observations: §VLS=NLS
estimate starting randomly from 0 to the twice true values; éwl:Ramsay et al’s collocation estimate;
OPLS—PSLS estimate on a grid of n times points; §7L5=PsLS estimate on a grid of m = [n%/3]*
times points; ég LLE? =NLS estimate starting at éff gg ; éﬁewzthe proposed new estimate on a grid of n
times points; é{ff“’:the proposed new estimate on a grid of m = [n*3]* times points; éﬁfeﬁfn:NLS

estimate starting at 7€ HAT%ILU*?W:NLS estimate starting at 6]/°“.



r = 400 simulation runs. From this simulation study, additional interesting behaviors of
different estimators were observed although most results still hold as in Example 1: 1) The
NLS estimator is still the worst in both computational cost and convergence when the starting
point is randomly generated from 0 to twice the true parameter values. The non-convergence
frequency of the NLS estimator is much higher for the model in this example compared to
that of Example 1. In this case, it is more important to get a good starting value for the NLS
estimator. However we notice that the improvement using the Liang-Wu’s PsLS estimator
as the starting point is limited while using the proposed new estimator as the starting point,
the NLS estimator can be significantly improved to become the best among all the estimators
in estimation accuracy with a reasonable price of the computational cost. 2) In this case,
Ramsay et al. (2007)’s collocation estimator performs worse than the best NLS estimator
(the NLS estimator with our new estimator as the starting point) and also has a higher
computational cost. 3) The proposed new estimator, as the starting point, can better improve
the NLS estimator in the sense of AREs and convergence stability, compared to that of the
PsLS estimator as the starting point. 4) In Table 3, we also reported the standard deviation
(STD) of the estimators in Table 2 here. We can see that the trend and conclusions for the
STD are similar to those for the AREs, i.e., comparing to the Liang-Wu’s pseudo-least squares
(PLS) estimator, our new estimator has a lower STD in all three parameters a, b and ¢ for
the cases (01,02) = (0.3,0.1) and (0.3,0.3); while for the other two cases, the two methods
produce mixed performance in terms of both STD and ARE (for some parameters, the PLS
estimator is better and for some other parameters, our new estimate is better). However, the
NLS estimator using our new estimator as the initial value always performs better for all the
cases in both STD and ARE, compared to those using the PLS estimator as the initial value.

In summary, considering the computational cost, convergence rate, variance and ARE, the

QNLS

e using the proposed new estimator as the starting

best estimator is the NLS estimator

point.
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(01,09) Estimators

NNLS Heol ZNLS APLS Anew ANLS WPLS pnew ANLS
0 0 ePLS en en enew,n em em enew,m

(0.1,0.1) STD a 773 142 459 571 693 223 519 524 222
b 246 820 183 250 248 152 251 240 152
c 1363 155 631 295 3.64 047 3.08 3.62 0.47
diverge 36.75  6.00 4.25 0 0 0.50 0 0 0
time 11.59 12.07 817 0.17 024 701 058 089 7.07
(0.1,03) STD a 624 152 166 865 10.1 3.11 888 9.68 3.10
b 396 870 704 667 619 368 66.2 632 36.7
c 1515 163 147 4.04 583 073 449 637 0.73
diverge 39.75 5.25 14.75 0 0 1.25 0 0 1.25
time 10.93 12.89 9.11 0.18 0.25 814 057 087 7.90
(0.3,01) STD a 6.75 19.1 717 13.0 106 6.34 128 100 6.34
b 291 8.8 330 374 344 29.7 369 337 299
c 960 158 6.09 596 439 132 530 556 1.33
diverge 34.50 5.7 875 0 0 2.00 0 0 2.00
time 13.08 14.00 12.62 0.18 0.25 11.66 0.58 0.87 11.75
(0.3,03) STD a 1024 180 10.1 14.1 133 870 143 131 6.61
b 471 951 457 703 66.8 45.7 69.9 673 446
c 1881 16.7 12,6 6.38 5.75 558 590 6.52 1.42
diverge 39.75  6.25  20.00 0 0 7.00 0 0 7.75

time 1275 14.73 12.06 0.18 0.25 10.99 0.58 0.87 10.93

Table 3: Performance (standard deviation as percentage) of different estimators for Example 1

éNLS

with n = 51 observations: =nonlinear least squares estimate using a random starting

point; éC°l:Ramsay et al’s collocation estimate using the same starting point; oPLS =pseudo-
least squares estimate using the same startingﬁoint; gnew—=the proposed new estimate started

from 0PL5; ONLS=nonlinear least squares estimate started from 07%5; 9NLS=nonlinear least

NLS__

squares estimate started from "¢%; §NI5=nonlinear least squares estimate started from 6.
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