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S1 Simulation settings for the multivariate functional data

We describe additional details in setting the multivariate covariance function and the eigenfunc-
tions along with the eigenvalues for the simulated multivariate functional data. To consider the
correlations between the random functions, we set the underlying eigenfunctions {φr} coupled
with the corresponding eigenvalues {λr} through spectral decomposition of the multivariate cor-
relation function C. We consider the following correlation functions.

• The Bessel correlation function of the first kind [Abramowitz and Stegun (1965)],

Jν(z) =

(
z
2

)ν ∞∑
j=0

(−z2/4) j

j! Γ(ν + j + 1)
,

with order ν = 0, where z = | t |/ρo
1.

• The Matérn correlation function [Minasny and McBratney (2005)],

F(z) =
1

2ν−1Γ(v)
zνKν(z),

with order ν = 2.5, where z = 2|t|
√
ν/ρo

2, where

Kν(z) =
π

2
I−ν(z) − Iν(z)

sin(νπ)

with the modified Bessel function

I±ν(z) =

(
z
2

)±ν ∞∑
j=0

(z2/4) j

j! Γ( j ± ν + 1)
.
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• The rational quadratic correlation function [Abrahamsen (1997)],

R(z) =
1

1 + z2

with z = t/ρo
3.

Here, the constants ρo
1, ρo

2 and ρo
3 are scale parameters of the correlation functions. We take the

{1, 2, . . . ,N − j + 1}th elements of Jν(z), F(z) and R(z) as the elements of the jth row in the
upper triangular matrix of Ckk, where Ckk = C>kk and N is the number of recording times and
j = 1, . . . ,N. In the simulation study, we set ρo = (1, 2.2, 3) for Setting I and ρo = (1.1, 8, 8) for
Setting II. We obtain the eigenfunctions {φr} by the following steps.

1. Set the correlation function Ckk(s, t), k = 1, . . . , 3, based on the Bessel correlation function,
the Matérn correlation function and the rational quadratic correlation function described
above. Obtain {ϑr} and {ϕkr} through the spectral decomposition of Ckk such that Ckk(s, t) =∑∞

r=1 ϑrϕkr(s)ϕkr(t).

2. Construct the cross-correlation functions Ckl(s, t), k , l, such that Ckl(s, t) =
∑∞

r=1 ϑ̄rϕ
∗
kr(s)ϕ∗kr(t),

where ϕ∗kr(t) = ϕkr(t)/
√

3 and ϑ̄r = (1/3)
∑3

k=1 ϑkr.

3. Based on the spectral decomposition of C = {Ckl; 1 ≤ k, l ≤ 3}, obtain the eigenfunctions
{φr} with the corresponding eigenvalues {λr} for r = 1, . . . ,M, where M is the number of
positive eigenvalues.

We can obtain Gkl(s, t) simply by Gkl(s, t) = {vk(s)vl(t)}1/2Ckl(s, t). We generate the multivariate
functional data Ỹi j =

(
Ỹ1i j, . . . , Ỹpi j

)>
, the jth observation of the ith subject observed at ti j, by

the truncated version of model (3.1),

Ỹi j = µ(ti j) +

L∑
r=1

ξri

{
(Dφr)(ti j)

}
+ εi j.

For Setting I, Figure S1.1 displays true covariance function Gkk(s, t) of Xk (diagonal blocks),
the cross-covariance functions Gkl(s, t) of Xk and Xl (upper triangular part), and the cross-
correlation functions Ckl(s, t) of Zk and Zl (lower triangular part), for 1 ≤ k , l ≤ 3. Figure S1.2
displays the first four eigenfunctions of C for mFPCn. Using the 90% as the threshold for the
selection criterion of the percentage of variance explained, the target number of components are
3 for mFPCn and mFPCu as shown in Figure S1.3 (a)–(b), and are are 2, 3 and 2 for each X1, X2
and X3, as shown in Figure S1.3 (c)–(e).

Similarly, Figure S1.4 displays the true covariance functions Gkk(s, t) of Xk (diagonal blocks),
the cross-covariance functions Gkl(s, t) of Xk and Xl (upper triangular part), and the cross-
correlation functions Ckl(s, t) of Zk and Zl (lower triangular part), 1 ≤ k , l ≤ 3, for Setting
II. Figure S1.5 displays the first four eigenfunctions of G for mFPCn. Using the 90% as the
threshold for the selection criterion of the percentage of variance explained, the target number of
components are 3 for mFPCn and mFPCu as shown in Figure S1.6 (a)–(b), and are are 2, 1 and 1
for each X1, X2 and X3, as shown in Figure S1.6 (c)–(e).
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Figure S1.1: True covariance functions Gkk(s, t) of Xk (diagonal blocks), the cross-
covariance functions Gkl(s, t) of Xk and X j (upper triangular part), and the cross-
correlation functions Ckl(s, t) of Zk and Zl (lower triangular part), 1 ≤ k , l ≤ 3, for
simulation Setting I.
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Figure S1.2: The first four true eigenfunctions {φkr} based on mFPCn for r = 1
(blue), r = 2 (green), r = 3 (red), and r = 4 (gray), in simulation Setting I.
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(b) mFPCu

0 5 10 15
0

5

10

15

20

25

30

35

40

45

50

E
ig

e
n
v
a
lu

e

F
V

E
(%

)

Component Index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) X1

0 5 10 15
0

1

2

3

4

5

6

7

8

9

10

E
ig

e
n
v
a
lu

e

F
V

E
(%

)

Component Index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) X2

0 5 10 15
0

5

10

15

20

25

30

E
ig

e
n
v
a
lu

e

F
V

E
(%

)

Component Index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) X3

0 5 10 15
0

2

4

6

8

10

12

E
ig

e
n
v
a
lu

e

F
V

E
(%

)

Component Index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure S1.3: The first 15 true eigenvalues and the cumulative fraction of variance
(FVE) of total variance explained, obtained by the spectral decomposition of C
for mFPCn in (a) and G for mFPCu in (b) and uFPC in (c)–(e), respectively, in
simulation Setting I.
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Figure S1.4: True covariance functions Gkk(s, t) of Xk (diagonal blocks), the cross-
covariance functions Gkl(s, t) of Xk and X j (upper triangular part), and the cross-
correlation functions Ckl(s, t) of Zk and Zl (lower triangular part), 1 ≤ k , l ≤ 3, for
simulation Setting II.
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Figure S1.5: The first four true eigenfunctions {φkr} based on mFPCn for r = 1
(blue), r = 2 (green), r = 3 (red), and r = 4 (gray), in simulation Setting II.
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(b) mFPCu
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Figure S1.6: True first 15 eigenvalues and the cumulative fraction of variance
(FVE) of total variance explained, obtained by the spectral decomposition of C
for mFPCn and G for mFPCu and uFPC, respectively, in simulation Setting II.
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S2 Additional simulation

In the simulation study, we generate the synthetic curves according to the truncated version
of (3.1) up to L = 15 components. To make the simulated data closer to the real scenario
of traffic flow data, the unknown quantities are set as the model estimates of our traffic flow
analysis obtained Section 4, including the unknown mean function µ(t), variance function v(t)
and eigenfunction φri(t), where r = 1, . . . , 15. The multivariate FPC scores {ξri} are generated
from N(0, λr) for each r and the measurement errors {εki} are generated from N(0, σ2

k) for k =

1, . . . , p, where λr and σ2
k are also taken from the estimates of the traffic flow analysis. The

recording times are equally spaced on [0.25, 24] with 96 time points, mimicking the 15-minute
time intervals within a 24-hour period in the traffic flow analysis. We generate n = 100 and n =

500 multivariate random trajectories for each simulated data set with 200 simulation replicates.

Figure S2.2 illustrates the boxplots of cASE (Nc=1) as defined in (4.1) for the methods
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Figure S2.1: The estimated covariance functions Ĝkk(s, t) (diagonal blocks) and the
estimated cross-covariance functions Ĝkl(s, t) (upper triangular part) for X j, and the
estimated cross-covariance functions Ĉkl(s, t) (lower triangular part) for Z j, 1 ≤ j ≤
3 and 1 ≤ k , l ≤ 3.
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mFPCn, mFPCu and uFPC, and Table S2.1 lists the cASE (Nc=1) ratios of mFPCn to mFPCu

(denoting the ratio by R1), and those of mFPCn to uFPC (R2), in terms of cASEs (Nc=1). The
results indicate significant reductions in cASE measures from mFPCu to mFPCn for the three
variables and for the WLS and CE methods. Furthermore, while the cASE measures of mFPCn

in X1 are slightly larger than uFPC, mFPCn has significantly smaller cASEs than uFPC in X2 and
X3. Overall, the proposed mFPCn perform relatively well in the simulation study. Furthermore,
the boxplots of cASEs (Nc=1) in Figure S2.2 also indicate that in mFPCn the WLS approach
performs slightly better than those using CE in this simulation study.

Figure S2.3 displays the boxplots for the number of components and fraction of total vari-

Table S2.1: Relative performance in terms of cASE (Nc=1) ratios of mFPCn to
mFPCu (R1) and of mFPCn to uFPC (R2) based on 200 simulation replicates.

WLS CE

Variable R1 R2 R1 R2
(n=100)

X1 0.588 1.020 0.739 1.137
X2 0.754 0.762 0.825 0.874
X3 0.702 0.763 0.868 0.875

(n=500)
X1 0.635 1.108 0.737 1.154
X2 0.773 0.783 0.832 0.881
X3 0.723 0.797 0.879 0.899
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Figure S2.2: Boxplots of ASE based on 200 simulation replicates for comparisons
among mFPCu, mFPCn and uFPC.
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Figure S2.3: Boxplots for the number of components and fraction of total vari-
ance explained (FVE) based on 200 simulation replicates for comparisons among
mFPCu, mFPCn and uFPC .

ance explained (FVE) based on 200 simulation replicates, with sample curves n = 100 and
n = 500, respectively. Under the criterion of achieving 90% of total variance explained, we see
that mFPCn selects 5 to 8 components for n = 100 and 5 to 6 components for n = 500 with the
FVE about 90.7%, while mFPCu selects 2 components only with the FVE interquartile ranges
from 91.1% to 92.5% for n = 100 and from 91.1% to 91.8% for n = 500. For uFPC, the me-
dian number of components for X1 is 4, while the selected number is 2 for X2 and X3, and all
the there variables generally have higher FVEs. The results indicates that using the fraction of
variance explained criterion for mFPCn can adequately select the number of functional principal
components.



MULTIVARIATE FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS S11

S3 Additional Proofs

S3.1 Proof of Lemma 5.1

Proof. For (a), we refer to the proofs of Theorem 3.1 in Li and Hsing (2010), which applies
one- and two-dimensional local linear regression with convergence rates depending on the band-
widths, sample sizes, and the number of recording times. It follows that, for any 1 ≤ k ≤ p,
supt∈T |µ̂k(t) − µk(t)| = O

(
τn1(bµk )

)
a.s.

As for (b), we provide a sketch of the proof and point out the differences, with more details
in relation to the proof of Theorem 3.3 in Li and Hsing (2010). Let

Rpq =
1
n

n∑
i=1

1
Mi

∑
j, j′

G̃kk(Ti j,Ti j′ )
(

Ti j − s
bGk

)p (
Ti j′ − t

bGk

)q

K
(

Ti j − s
bGk

)
K

(
Ti j′ − t

bGk

)
.

We can write Ĝkk(s, t) explicitly, that is

Ĝkk(s, t) = (A1R00 −A2R10 −A3R01)B−1
0 ,

where A1 = S 20S 02 − S 2
11, A2 = S 10S 02 − S 01S 11, A3 = S 01S 20 − S 10S 11 and B0 = A1S 00 −

A2S 10 − A3S 01, with S pq = 1
n
∑n

i=1
1

Mi

∑
j, j′

(
Ti j−s
bGk

)p (
Ti j′−t
bGk

)q
K

(
Ti j−s
bGk

)
K

(
Ti j′−t
bGk

)
. Define R∗pq =

Rpq −Gkk(s, t)S pq − bGk
∂
∂sGkk(s, t)S p+1,q − bGk

∂
∂t Gkk(s, t)S p,q+1. It is straightforward to show that(

Ĝkk −Gkk

)
(s, t) = (A1R∗00 −A2R∗10 −A3R∗01)B−1

0 . (S3.1)

By (5.22) in Li and Hsing (2010), we have A1 =
[
f (s) f (t)ν2

]2
+ O(δn2(bGk ) + bGk ) a.s., A2 =

A3 = O(δn2(bGk ) + bGk ) a.s., and B0 = f 3(s) f 3(t)ν2
2 + O(δn2(bGk ) + b2

Gk
) a.s., where δn2(bGk ) =[{

1 +
(
bGkγn1

)−1
+

(
b2

Gk
γn2

)−1
} (

log n/n
)]1/2

and ν2
2 =

∫ 1
−1 t2K(t)dt. It remains to investigate the

order of R∗00. By definition,

R∗00 =
1
n

n∑
i=1

1
Mi

∑
i, j

{
G̃kk(Ti j,Ti j′ ) −Gkk(s, t) −

[
∂

∂s
Gkk(s, t)

]
(Ti j − s)

−

[
∂

∂t
Gkk(s, t)

]
(Ti j′ − t)

}
K

(
Ti j − s

bGk

)
K

(
Ti j′ − t

bGk

)
.

Let η∗ki j j′ = G̃kk(Ti j,Ti j′ ) −Gkk(Ti j,Ti j′ ). By the Taylor’s expansion,

R∗00 =
1
n

n∑
i=1

1
Mi

∑
i, j

η∗ki j j′K
(

Ti j − s
bGk

)
K

(
Ti j′ − t

bGk

)
+ O(b2

Gk
).

Since supt∈T |µk(t) − µ̂k(t)| = O(τn1(bµk )) a.s. in (a),

E(η∗ki j j′ |Ti j,Ti j′ ) = E
[{

Yki j − µk(Ti j) +
(
µk(Ti j) − µ̂k(Ti j)

)} {
Yki j′ − µk(Ti j′ )

+
(
µk(Ti j′ ) − µ̂k(Ti j′ )

)} ∣∣∣∣Ti j,Ti j′

]
−Gkk(Ti j,Ti j′ )

= Gkk(Ti j,Ti j′ ) + O(τn1(bµk )) −Gkk(Ti j,Ti j′ ).
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We then have E(R∗00) = E(E(R∗00|Ti j,Ti j′ )) = O(τn1(bµk )) and R∗00 = O
(
τn2(bGk ) + τn1(bµk )

)
a.s.. We note

E(R∗00) and R∗00 are different from those of Li and Hsing (2010) since the raw data G̃kk(Ti j,Ti j′ ) contains
the unobservable term µ̂k. Thus,

∣∣∣Ĝkk(s, t) −Gkk(s, t)
∣∣∣ = O

(
τn2(bGk ) + τn1(bµk )

)
a.s. uniformly in T 2. The

results of (b) follows directly by the definition of ‖ · ‖2.

As for (c), recall (3.8) that σ̂2
k = (2/|T |)

∫
T1
{Ŵk(t) − Ĝkk(t, t)}dt. We have∣∣∣σ̂2

k − σ
2
k

∣∣∣ ≤ sup
t∈T

∣∣∣Ŵk(t) −Wk(t)
∣∣∣ + sup

t∈T

∣∣∣Ĝkk(t, t) − Gkk(t, t)
∣∣∣ .

Following the proof in (a), it is easy to show that when hWk � h1,

sup
t∈T

∣∣∣Ŵk(t) −Wk(t)
∣∣∣ = O

(
τn1(hWk )

)
a.s.

Combining the result of (b), we have
∣∣∣σ̂2

k − σ
2
k

∣∣∣ = O
(
τn1(hWk ) + τn1(bµk ) + τn2(bGk )

)
a.s. and therefore, the

result of (c) follows directly by the definition of ‖ · ‖2. �

S3.2 Proof of Lemma 5.2

Proof. Note that |vk(t) − v̂k(t)| =
∣∣∣v1/2

k (t) − v̂1/2
k (t)

∣∣∣ ∣∣∣v1/2
k (t) + v̂1/2

k (t)
∣∣∣. Lemma 5.1(b) implies that

v̂k(t) is bounded and bounded away from 0 a.s. for 1 ≤ k ≤ p and t ∈ T . Hence
∣∣∣v1/2

k (t) − v̂1/2
k (t)

∣∣∣ =

O
(
τn2(bGk ) + τn1(bµk )

)
a.s. Given 0 < mvk ≤ vk(t) ≤ Mvk for all t ∈ T , we have mvk − δ0 ≤ v̂k(t) ≤

Mvk +δ0 a.s. for some fixed δ0 > 0 as n � 0. There exist Mµk and MYk such that 0 ≤ |µk(t)| ≤ Mµk

for all t ∈ T , and 0 ≤
∣∣∣Yki j

∣∣∣ ≤ MYk a.s., where the existence of MYk is assured by (C5) or (C6).
It follows that

max
1≤ j≤mi

|Ũki j − Uki j| = max
1≤ j≤mi

1

v̂1/2
k (Ti j)v

1/2
k (Ti j)

∣∣∣v1/2
k (Ti j)(Yki j − µ̂k(Ti j))

−v̂1/2
k (Ti j)(Yki j − µ(Ti j))

∣∣∣
≤

1
mvk (mvk − δ0)

sup
t∈T

{
(MYk + Mµk )

∣∣∣v1/2
k (t) − v̂1/2

k (t)
∣∣∣

+Mvk |µk(t) − µ̂k(t)|
}

a.s.

= O
(
τn2(bGk ) + τn1(bµk )

)
a.s.

�

S3.3 Proof of Lemma 6.1

Proof. (a) Using the notations mvk and Mµk for the lower bound of vk(t) and the upper bound of
µk(t), for all t ∈ T , as in the proof of Lemma 5.2, we have

|Zk(t)|λ ≤ m−1
vk

{
|Xk(t)| + Mµk

}λ
= m−1

vk

λ∑
s=0

(
λ

s

)
|Xk(t)|sMλ−s

µk
.
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To show E(supt∈T |Zk(t)|s) < ∞, it is sufficient to show that E(supt∈T |Xk(t)|s) < ∞ for s < λ.
Noting that supt∈T |Xk(t)|s =

(
supt∈T |Xk(t)|

)s and given the probability density function g of
supt∈T |Xk(t)|, we have

E(sup
t∈T
|Xk(t)|s) =

∫
|x|≤1
|x|s g(x)dx +

∫
|x|>1
|x|s g(x)dx ≤ 1 + sup

t∈T
|Xk(t)|λ < ∞.

Further, since εki j = εki j/vk(ti j)1/2, boundedness of E(
∣∣∣εki j

∣∣∣2λh2 ) follows by the boundedness of
vk(t), which completes the proof of (a). The result of (b) can be shown analogously. �

S3.4 Proof of Corollary 5.1

Proof. (a) For any fixed t ∈ T , ‖ẐL,WLS
i (t) − Zi(t)‖2 ≤ ‖ẐL,WLS

i (t) − ZL
i (t)‖2 + ‖ZL

i (t) − Zi(t)‖2.
Note that ‖ZL

i (t) − Zi(t)‖2 → 0 in probability as L → ∞, by the Karhunen-Loève theorem. It
remains to discuss the asymptotic behavior of ẐL,WLS

i (t) − ZL
i (t). By Theorem 5.3, the limiting

distribution of (ξ̂WLS
i,L − ξi,L) is N(0,ΩWLS

i,L ) for each L. Since φ̂L,t→φL,t a.s. as n → ∞, we have{
ẐL,WLS

i (t) − ZL
i (t)

}
convergence in distribution to N(0,ωWLS

i,L (t, t)). It remains to show that

lim
L→∞

lim
n→∞

ω̂WLS
i,L (t, t) = ωWLS

i (t, t) a.s.

We note that |ω̂WLS
i,L (t, t) − ωWLS

i (t, t)| ≤ |ω̂WLS
i,L (t, t) − ωWLS

i,L (t, t)| + |ωWLS
i,L (t, t) − ωWLS

i (t, t)|. For
a fixed L, limn→∞ |ω̂

WLS
i,L (s, t) − ωWLS

i,L (s, t)| = 0 a.s. by the consistency properties of the esti-
mates of λr’s, φr(t)’s and µk(t)’s along with the Slusky’s theorem. Further, limL→∞ |ω

WLS
i,L (t, t) −

ωWLS
i (t, t)| = 0 a.s. under (C7), which completes the proof of (a).

(b) By the consistency properties of ξ̂WLS
i,L and φ̂L,t, it is sufficient to examine the asymptotic be-

havior of
{
ZL,WLS

i (t) − ZL
i (t)

}
, where ZL,WLS

i (t) = φ>L,tξ
WLS
i,L . We observe that a>

{
ZL,WLS

i (t) − ZL
i (t)

}
=(

φL,t a
)> (

ξWLS
i,L − ξi,L

)
, where

(
φL,t a

)
is an L-vector. Hence, it reduces to the form of a linear com-

bination of the FPC scores, which is similar to that in Corollary 2 and Theorem 5 of Yao, Müller,
and Wang (2005) and, thus, the result follows. �
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