TESTING FOR CHANGE POINTS DUE TO A COVARIATE THRESHOLD IN QUANTILE REGRESSION

Liwen Zhang ${ }^{1}$, Huixia Judy Wang ${ }^{2}$, and Zhongyi Zhu ${ }^{3}$
Fudan University ${ }^{1,3}$, North Carolina State University ${ }^{2}$

Supplementary Material

This supplementary material contains two remarks and all the technical proofs.
Remark S1 Suppose that $\mathbf{X}=\mathbf{Z}$, and that U and \mathbf{X} are independent, then $\mathbf{S}_{\mathbf{Z}}(u)=$ $\mathbf{S} F_{U}(u)$ and $\mathbf{Q}\left\{\boldsymbol{\alpha}_{0}(\tau)\right\}=\left\{1-F_{U}\left(u_{0}\right)\right\} E\left[\mathbf{X X}^{T} \boldsymbol{\alpha}_{0}(\tau) f\left\{F^{-1}(\tau \mid \mathbf{X}) \mid \mathbf{X}\right\}\right]$. Consequently, the covariance function in Theorem 1 is reduced to $\mathbf{W}\left(u, u^{\prime}\right)=\tau(1-\tau) E\left(\mathbf{X X}^{T}\right)$ $\left[F_{U}\left\{\min \left(u, u^{\prime}\right)\right\}-F_{U}(u) F_{U}\left(u^{\prime}\right)\right]$ and $\mathbf{q}\left\{u, \alpha_{0}(\tau)\right\}$ in Theorem 2 is reduced to $\mathbf{q}\{u$, $\left.\alpha_{0}(\tau)\right\}=-F_{U}(u)\left[1-F_{U}\left(u_{0}\right)\right] E\left[\mathbf{X X}^{T} \boldsymbol{\alpha}_{0}(\tau) f\left\{F^{-1}(\tau \mid \mathbf{X}) \mid \mathbf{X}\right\}\right]+\left\{F_{U}(u)-F_{U}\left(u_{0}\right)\right\}$ $E\left[\mathbf{X X}^{T} \boldsymbol{\alpha}_{0}(\tau) f\left\{F^{-1}(\tau \mid \mathbf{X}) \mid \mathbf{X}\right\}\right]$.

Remark S2 The results in Theorems 1 and 2 can be simplified for models with homoscedastic errors. Consider the following location-shift model under the local alternative

$$
\begin{equation*}
Y_{i}=\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U_{i}>u_{0}\right)+\epsilon_{i} \tag{S.1}
\end{equation*}
$$

where ϵ_{i} are i.i.d. random variables with the τ th quantile zero. Thus

$$
T_{n}(\tau) \Rightarrow \sup _{u \in(0,1)}\left\|\boldsymbol{R}(u)+\boldsymbol{q}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\}\right\|,
$$

where $\mathbf{R}(u)$ is a mean zero Gaussian process with covariance kernel $\mathbf{W}\left(u, u^{\prime}\right)=\tau(1-$ $\tau)\left[E\left(\mathbf{Z}_{u} \mathbf{Z}_{u^{\prime}}^{T}\right)-E\left(\mathbf{Z}_{u} \mathbf{X}^{T}\right)\left\{E\left(\mathbf{X} \mathbf{X}^{T}\right)\right\}^{-1} E\left(\mathbf{X} \mathbf{Z}_{u^{\prime}}^{T}\right)\right], \boldsymbol{q}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\}=f_{\epsilon}(0)\left[-E\left(\mathbf{Z}_{u} \mathbf{X}^{T}\right)\right.$ $\left\{E\left(\mathbf{X X}^{T}\right)\right\}^{-1} \mathbf{Q}_{1}\left\{\boldsymbol{\alpha}_{0}(\tau)\right\}+\mathbf{P}_{1}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right]$, where $f_{\epsilon}(\cdot)$ is the density function of ϵ_{i}, $\mathbf{Q}_{1}\left\{\boldsymbol{\alpha}_{0}(\tau)\right\}=E\left\{\mathbf{X} \mathbf{Z}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U>u_{0}\right)\right\}$ and $\mathbf{P}_{1}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\}=E\left\{\mathbf{Z} \mathbf{Z}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(u_{0}<\right.\right.$ $U \leq u)\}$. Note that in this case the limiting null distribution of $T_{n}(\tau)$ no longer depends on the unknown density function $f_{\epsilon}(\cdot)$, and this simplifies the calculation of critical values.

Throughout the paper, we use $\|x\|$ to denote the Euclidean norm for a vector x, and use the vector-induced norm, i.e. $\|A\|=\sup _{x \neq 0}\|A x\| /\|x\|$ for a matrix A. Let $[x]$ denote the integer part of x. Denote $\boldsymbol{\theta}(\tau)=\left(\boldsymbol{\beta}^{T}(\tau), \boldsymbol{\alpha}^{T}(\tau)\right)^{T}, \boldsymbol{\theta}_{0}(\tau)=\left(\boldsymbol{\beta}_{0}^{T}(\tau), \boldsymbol{\alpha}_{0}^{T}(\tau)\right)^{T}$ and

$$
\mathbf{R}_{n}\{u, \tau, \boldsymbol{\beta}(\tau)\}=n^{-1 / 2} \sum_{i=1}^{n} \psi_{\tau}\left\{Y_{i}-\mathbf{X}_{i}^{T} \boldsymbol{\beta}(\tau)\right\} \mathbf{Z}_{i} I\left(U_{i} \leq u\right),
$$

$$
\mathbf{R}_{n}^{c}\{u, \tau, \boldsymbol{\beta}(\tau)\}=n^{-1 / 2} \sum_{i=1}^{n}\left[F_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}(\tau)\right\}-I\left\{Y_{i}-\mathbf{X}_{i}^{T} \boldsymbol{\beta}(\tau) \leq 0\right\}\right] \mathbf{Z}_{i} I\left(U_{i} \leq u\right),
$$

and
$\mathbf{R}_{n}^{d}\left\{u, \tau, \theta_{0}(\tau)\right\}=n^{-1 / 2} \sum_{i=1}^{n} \psi_{\tau}\left\{Y_{i}-\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)-n^{-1 / 2} \mathbf{Z}_{i}^{T} \alpha_{0}(\tau) I\left(U_{i} \geq u_{0}\right)\right\} \mathbf{Z}_{i} I\left(U_{i} \leq u\right)$,
where $\mathbf{R}_{n}^{c}\{u, \tau, \boldsymbol{\beta}(\tau)\}$ is the statistic by re-centering $I\left\{Y_{i}-\mathbf{X}_{i}^{T} \boldsymbol{\beta}(\tau) \leq 0\right\}$ at its expectation conditional on \mathbf{X}_{i}.

Proof of Proposition 1. The proof of Proposition 1(i) is given in the Supplementary Material in Lee et al.(2011). We only give the proof of Proposition 1(ii). Let \boldsymbol{P} and \boldsymbol{P}_{n} be the common probability measure and the empirical measure of the random sample of sample size n under the local alternative hypothesis. Also let $q\{Y, \mathbf{X} ; \boldsymbol{\beta}(\tau)\}=$ $-\rho_{\tau}\left\{Y-\mathbf{X}^{T} \boldsymbol{\beta}(\tau)\right\}$ and $q\{Y, \mathbf{W} ; \boldsymbol{\theta}(\tau), u\}=-\rho_{\tau}\left\{Y-\mathbf{X}^{T} \boldsymbol{\beta}(\tau)-n^{-1 / 2} \mathbf{Z}^{T} \boldsymbol{\alpha}(\tau) I(U>\right.$ $u)\}$ be the objective functions under the null and the alternative hypothesis with change point $u_{0}=u$. Note that

$$
\begin{aligned}
q\{Y, \mathbf{W} ; \boldsymbol{\theta}(\tau), u\}= & \left\{Y-\mathbf{X}^{T} \boldsymbol{\beta}(\tau)-n^{-1 / 2} \mathbf{Z}^{T} \boldsymbol{\alpha}(\tau) I(U>u)\right\} \\
& \times\left[-\tau+I\left\{Y-\mathbf{X}^{T} \boldsymbol{\beta}(\tau)-n^{-1 / 2} \mathbf{Z}^{T} \boldsymbol{\alpha}(\tau) I(U>u)<0\right\}\right] .
\end{aligned}
$$

Let $\mathbf{0}_{q}$ be a q-dimensional vector of zeros. The first derivative of $q\{Y, \mathbf{W} ; \boldsymbol{\theta}(\tau), u\}$ with respect to $\boldsymbol{\theta}(\tau)$ evaluated at $\tilde{\boldsymbol{\theta}}_{0}(\tau)=\left(\boldsymbol{\beta}_{0}^{T}(\tau), \mathbf{0}_{q}^{T}\right)^{T}$ is as follows

$$
\begin{aligned}
& \left.\frac{\partial}{\partial \boldsymbol{\theta}} q\{Y, \mathbf{W} ; \boldsymbol{\theta}(\tau), u\}\right|_{\boldsymbol{\theta}(\tau)=\tilde{\boldsymbol{\theta}}_{0}(\tau)} \\
= & -\left.\tilde{\mathbf{X}}_{u}\left[-\tau+I\left\{Y-\mathbf{X}^{T} \boldsymbol{\beta}(\tau)-n^{-1 / 2} \mathbf{Z}^{T} \boldsymbol{\alpha}(\tau) I(U>u)<0\right\}\right]\right|_{\boldsymbol{\theta}(\tau)=\tilde{\boldsymbol{\theta}}_{0}(\tau)} \\
= & -\tilde{\mathbf{X}}_{u}\left[-\tau+I\left\{Y-\mathbf{X}^{T} \boldsymbol{\beta}_{0}(\tau)<0\right\}\right] .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \left.n^{1 / 2} \boldsymbol{P}_{n} \frac{\partial}{\partial \boldsymbol{\theta}} q\{Y, \mathbf{W} ; \boldsymbol{\theta}(\tau), u\}\right|_{\boldsymbol{\theta}(\tau)=\tilde{\boldsymbol{\theta}}_{0}(\tau)} \\
= & n^{1 / 2} E\left(-\tilde{\mathbf{X}}_{u}\left[-\tau+F\left\{\mathbf{X}^{T} \boldsymbol{\beta}_{0}(\tau) \mid \mathbf{X}\right\}\right]\right) \\
= & n^{1 / 2} E\left(-\tilde{\mathbf{X}}_{u}\left[-F\left\{\mathbf{X}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{Z}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U>u_{0}\right) \mid \mathbf{X}\right\}+F\left\{\mathbf{X}^{T} \boldsymbol{\beta}_{0}(\tau) \mid \mathbf{X}\right\}\right]\right) \\
= & n^{1 / 2} E\left(-\tilde{\mathbf{X}}_{u}\left[-n^{-1 / 2} f\left\{\alpha_{\left.\left.\left.n, u_{0}(\tau) \mid \mathbf{X}\right\} \mathbf{Z}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U>u_{0}\right)\right]\right)}^{\rightarrow}\right.\right.\right. \\
\rightarrow & \left(E\left[\mathbf{X} \mathbf{Z}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U>u_{0}\right) f\left\{\mathbf{X}^{T} \boldsymbol{\beta}_{0}(\tau) \mid \mathbf{X}\right\}\right]^{T}, E\left[\mathbf{Z} \mathbf{Z}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left\{U>\max \left(u, u_{0}\right)\right\}\right.\right. \\
& \left.\left.f\left\{\mathbf{X}^{T} \boldsymbol{\beta}_{0}(\tau) \mid \mathbf{X}\right\}\right]^{T}\right)^{T} \\
= & \widetilde{\boldsymbol{q}}_{L}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\},
\end{aligned}
$$

where $\alpha_{n, u_{0}}(\tau)$ is a value lying between $\mathbf{X}^{T} \boldsymbol{\beta}_{0}(\tau)$ and $\mathbf{X}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{Z}^{T} \boldsymbol{\alpha}_{0}(\tau) I(U>$ $\left.u_{0}\right)$. It is obvious that $\alpha_{n, u_{0}}(\tau) \rightarrow \mathbf{X}^{T} \boldsymbol{\beta}_{0}(\tau)$ as n goes to infinity.

Similarly, for the first derivative of $q\{Y, \mathbf{W} ; \boldsymbol{\beta}(\tau)\}$ we have

$$
\left.n^{1 / 2} \boldsymbol{P}_{n} \frac{\partial}{\partial \boldsymbol{\beta}} q\{Y, \mathbf{X} ; \boldsymbol{\beta}(\tau)\}\right|_{\boldsymbol{\beta}(\tau)=\boldsymbol{\beta}_{0}(\tau)} \rightarrow \tilde{\boldsymbol{q}}_{1}
$$

By Proposition 1(i), the local asymptotic limiting distribution for the local alternative hypothesis can be characterized by

$$
\begin{aligned}
& \frac{1}{2}\left(\sup _{u}\left[\mathcal{G}(u)+\widetilde{\boldsymbol{q}}_{L}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\}\right]^{T} \boldsymbol{V}(u)^{-1}\left[\mathcal{G}(u)+\widetilde{\boldsymbol{q}}_{L}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\}\right]-\left(\mathcal{G}_{1}^{T}+\widetilde{\boldsymbol{q}}_{1}\right)^{T} \mathbf{V}_{1}^{-1}\right. \\
& \left.\quad\left(\mathcal{G}_{1}+\widetilde{\boldsymbol{q}}_{1}\right)\right) \text {. }
\end{aligned}
$$

This completes the proof of Proposition 1.
Lemma 1 (i) Suppose that Assumptions A1-A3 hold, we have
(il). $n^{-1} \sum_{i=1}^{n} f_{i}\left\{F_{i}^{-1}(\tau)\right\} \mathbf{Z}_{i} \mathbf{X}_{i}^{T} I\left(U_{i} \leq u\right) \xrightarrow{p} \mathbf{S}_{\mathbf{z}}(u)$ uniformly in $u \in(0,1)$;
(i2). $n^{-1} \sum_{i=1}^{n} \mathbf{Z}_{i} \mathbf{X}_{i}^{T} I\left(U_{i} \leq u\right) \xrightarrow{p} E\left(\mathbf{Z}_{u} \mathbf{X}^{T}\right)$ uniformly in $u \in(0,1)$;
(i3). $\left.n^{-1} \sum_{i=1}^{n} f_{i}\left\{F_{i}^{-1}(\tau)\right\} \mathbf{Z}_{i} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(u_{0} \leq U_{i} \leq u\right)\right\} \xrightarrow{p} \boldsymbol{P}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\}$ uniformly in $u \in(0,1)$;
(i4). $\left.n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(u_{0} \leq U_{i} \leq u\right)\right\} \xrightarrow{p} \boldsymbol{Q}\left\{\boldsymbol{\alpha}_{0}(\tau)\right\}$ uniformly in $u \in(0,1)$.
(ii). Suppose that Assumptions A2, A3 and A6 are satisfied, then (i1)-(i4) hold uniformly in $u \in(0,1)$ and $\tau \in \mathcal{T}$.

Proof of Lemma 1. (i) We only give the proof of (i1), since the proofs of (i2)-(i4) are similar. To prove (i1), we need to show that

$$
\left\|n^{-1} \sum_{i=1}^{n} f_{i}\left\{F_{i}^{-1}(\tau)\right\} \mathbf{Z}_{i} \mathbf{X}_{i}^{T} I\left(U_{i} \leq u\right)-\boldsymbol{S}_{z}(u)\right\|=o_{p}(1)
$$

uniformly in $u \in(0,1)$. Let U_{1}, \cdots, U_{n} be a random sample from the measurable space (χ, \mathcal{A}). Hence it is sufficient to show the element-wise uniform convergence of the matrix $n^{-1} \sum_{i=1}^{n} f_{i}\left\{F_{i}^{-1}(\tau)\right\} \mathbf{Z}_{i} \mathbf{X}_{i}^{T} I\left(U_{i} \leq u\right)$. Let $\mathbf{Z}=\left(Z^{(1)}, \cdots, Z^{(q)}\right)^{T}$, $\mathbf{X}=\left(X^{(1)}, \cdots, X^{(p)}\right)^{T}$, where $Z^{(j)}(j=1, \cdots, q)$ and $X^{(k)}(k=1, \cdots, p)$ could be the variable U or any other covariates. To obtain the desired results, we need to show that for any $j, k=1, \cdots, n$, we have
$n^{-1} \sum_{i=1}^{n} f_{i}\left\{F_{i}^{-1}(\tau)\right\} Z_{i j} X_{i k} I\left(U_{i} \leq u\right) \xrightarrow{p} E\left[f\left\{F^{-1}(\tau \mid \mathbf{X}) \mid \mathbf{X}\right\} Z^{(j)} X^{(k)} I(U \leq u)\right]$,
uniformly in $u \in(0,1)$. Let $f_{u}\left(Z^{(j)}, X^{(k)}, U\right)=f\left\{F^{-1}(\tau \mid \mathbf{X}) \mid \mathbf{X}\right\} Z^{(j)} X^{(k)} I(U \leq u)$, and denote the class of measurable functions $\mathcal{F}=\left\{f_{u}\left(Z^{(j)}, Z^{(k)}, U\right): \chi \rightarrow R\right\}$. It
is sufficient to show that $f_{u}\left(Z^{(j)}, X^{(k)}, U\right)$ is P-Glivenko-Cantelli. That is we want to show that, for any $\epsilon>0$, there exist finite brackets $\left\{\left(l_{u}^{m}\left(Z^{(j)}, X^{(k)}, U\right), h_{u}^{m}\left(Z^{(j)}, X^{(k)}\right.\right.\right.$, $U)), m=1, \cdots, N\}$ such that for any $f_{u}\left(Z^{(j)}, X^{(k)}, U\right) \in \mathcal{F}$, there exists some m such that $l_{u}^{m}\left(Z^{(j)}, X^{(k)}, U\right) \leq f_{u}\left(Z^{(j)}, X^{(k)}, U\right) \leq h_{u}^{m}\left(Z^{(j)}, X^{(k)}, U\right)$, and

$$
E\left\{h_{u}^{m}\left(Z^{(j)}, X^{(k)}, U\right)-l_{u}^{m}\left(Z^{(j)}, X^{(k)}, U\right)\right\} \leq \epsilon,
$$

where E denotes the expectation under the variables $Z^{(j)}, X^{(k)}$ and U. We partition the region $(0,1)$ into N intervals of equal length at the points u_{1}, \cdots, u_{N+1}, where $u_{1}=0$ and $u_{N+1}=1$. For any $\epsilon>0$, take

$$
\begin{aligned}
l_{u}^{m}\left(Z^{(j)}, X^{(k)}, U\right)= & Z^{(j)} X^{(k)} I\left\{Z^{(j)} X^{(k)}>0\right\} I\left(U \leq u_{m-1}\right) \\
& +Z^{(j)} X^{(k)} I\left\{Z^{(j)} X^{(k)}<0\right\} I\left(U \leq u_{m}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
h_{u}^{m}\left(Z^{(j)}, X^{(k)}, U\right)= & Z^{(j)} X^{(k)} I\left\{Z^{(j)} X^{(k)}>0\right\} I\left(U \leq u_{m}\right) \\
& +Z^{(j)} X^{(k)} I\left\{Z^{(j)} X^{(k)}<0\right\} I\left(U \leq u_{m-1}\right),
\end{aligned}
$$

for $m=1, \cdots, M$.
For any m and $l_{u}^{m}\left(Z^{(j)}, X^{(k)}, U\right) \leq f_{u}\left(Z^{(j)}, X^{(k)}, U\right) \leq h_{u}^{m}\left(Z^{(j)}, X^{(k)}, U\right)$, we have

$$
\begin{aligned}
& E\left\{h_{u}^{m}\left(Z^{(j)}, X^{(k)}, U\right)-l_{u}^{m}\left(Z^{(j)}, X^{(k)}, U\right)\right\} \\
= & \int f\left\{F^{-1}(\tau \mid \mathbf{X}) \mid \mathbf{X}\right\} z^{(j)} x^{(k)} I\left\{z^{(j)} x^{(k)}>0\right\} I\left(u_{m-1} \leq u \leq u_{m}\right) d P \\
& -\int f\left\{F^{-1}(\tau \mid \mathbf{X}) \mid \mathbf{X}\right\} z^{(j)} x^{(k)} I\left\{z^{(j)} x^{(k)}<0\right\} I\left(u_{m-1} \leq u \leq u_{m}\right) d P \\
= & (a)+(b) .
\end{aligned}
$$

For (a), we have

$$
\begin{aligned}
(a) & =\int f\left\{F^{-1}(\tau \mid \mathbf{X}) \mid \mathbf{X}\right\} z^{(j)} x^{(k)} I\left\{z^{(j)} x^{(k)}>0\right\} I\left(u_{m-1} \leq u \leq u_{m}\right) d P \\
& =\left(\int\left[f\left\{F^{-1}(\tau \mid \mathbf{X}) \mid \mathbf{X}\right\} z^{(j)} x^{(k)}\right]^{2} I\left\{z^{(j)} x^{(k)}>0\right\} d P \int I\left(u_{m-1} \leq u \leq u_{m}\right) d P\right)^{1 / 2} \\
& \leq\left(E\left[f\left\{F^{-1}(\tau \mid \mathbf{X}) \mid \mathbf{X}\right\} z^{(j)} x^{(k)}\right]^{2} f_{U}\left(u^{*}\right) / N\right)^{1 / 2} \\
& \leq\left(M_{1} L / N\right)^{1 / 2} \\
& =(M / N)^{1 / 2}
\end{aligned}
$$

where M_{1} and M are some positive constants, f is bounded by $L, M=M_{1} L$ and u^{*} lies between u_{m-1} and u_{m}, and the third inequality follows from Cauchy-Schwarz inequality.

Similarly, for (b) we have

$$
\begin{aligned}
(b) & =\int f\left\{F^{-1}(\tau \mid \mathbf{X}) \mid \mathbf{X}\right\}\left\{-z^{(j)} x^{(k)}\right\} I\left\{z^{(j)} x^{(k)}<0\right\} I\left(u_{m-1} \leq u \leq u_{m}\right) d P \\
& =\left(\int\left[f\left\{F^{-1}(\tau \mid \mathbf{X}) \mid \mathbf{X}\right\}\left\{-z^{(j)} x^{(k)}\right\}\right]^{2} I\left\{z^{(j)} x^{(k)}<0\right\} d P \int I\left(u_{m-1} \leq u \leq u_{m}\right) d P\right)^{1 / 2} \\
& \leq\left(E\left[f\left\{F^{-1}(\tau \mid \mathbf{X}) \mid \mathbf{X}\right\} z^{(j)} x^{(k)}\right]^{2} f_{U}\left(u^{*}\right) / N\right)^{1 / 2} \\
& \leq\left(M_{1} L / N\right)^{1 / 2} \\
& =(M / N)^{1 / 2} .
\end{aligned}
$$

Hence, we obtain

$$
E\left\{h_{u}^{m}\left(Z^{(j)}, X^{(k)}, U\right)-l_{u}^{m}\left(X^{(j)}, X^{(k)}, U\right)\right\} \leq 2(M / N)^{1 / 2} \leq \epsilon,
$$

where the last inequality above follows by taking $N \geq\left[4 M / \epsilon^{2}\right]+1$. Hence the minimum number of ϵ-brackets needed to cover \mathcal{F} is $\left[4 M / \epsilon^{2}\right]+1$ and is finite. By GlivenkoCantelli theorem, we can get the uniform convergence.
(ii). The uniform convergence in $u \in(0,1)$ and $\tau \in \mathcal{T}$ can be proven in a similar way by replacing the function $f_{u}\left(Z^{(j)}, X^{(k)}, U\right)$ with $f_{u, \tau}\left(Z^{(j)}, X^{(k)}, U\right)$ and thus is omitted. This completes the proof of Lemma 1.

Lemma 2 Let \mathbf{D} be an arbitrary compact set in \mathbf{R}^{p}. Under Assumptions A1-A3 and H_{1}, we have

$$
\sup _{u \in(0,1)} \sup _{\boldsymbol{\xi} \in \mathbf{D}}\left\|\boldsymbol{R}_{n}^{c}\left\{u, \tau, \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \boldsymbol{\xi}\right\}-\boldsymbol{R}_{n}^{d}\left\{u, \tau, \theta_{0}(\tau)\right\}\right\|=o_{p}(1) .
$$

Proof of Lemma 2. Without loss of generality, we assume that the components of \mathbf{X}_{i} are nonnegative. Then $\mathbf{Z}_{i} I\left\{Y_{i}<\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{X}_{i}^{T} \boldsymbol{\xi}\right\}$ and $F_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{X}_{i}^{T} \boldsymbol{\xi}\right\}$ are nondecreasing in $\boldsymbol{\xi}$. Because \mathbf{D} is compact, for any given $\delta>0, \mathbf{D}$ can be partitioned into a finite number of subsets $\mathbf{D}_{1}, \cdots, \mathbf{D}_{n(\delta)}$, where the diameter of each subset is less than or equal to δ. For $\boldsymbol{\xi} \in \mathbf{D}_{h}, h \in\{1, \cdots, n(\delta)\}$, there exists two points $\boldsymbol{\xi}_{h, 1}$ and $\boldsymbol{\xi}_{h, 2}$ in \mathbf{D}_{h} such that $\mathbf{X}_{i}^{T} \boldsymbol{\xi}_{h, 1} \leq \mathbf{X}_{i}^{T} \boldsymbol{\xi} \leq \mathbf{X}_{i}^{T} \boldsymbol{\xi}_{h, 2}$. By the monotonicity of
$\mathbf{Z}_{i} I\left\{Y_{i}<\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{X}_{i}^{T} \boldsymbol{\xi}\right\}$, we have

$$
\begin{align*}
& \mathbf{R}_{n}^{c}\left\{u, \tau, \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \boldsymbol{\xi}\right\}-\mathbf{R}_{n}^{d}\left\{u, \tau, \theta_{0}(\tau)\right\} \\
\geq & n^{-1 / 2} \sum_{i=1}^{n}\left[F_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{X}_{i}^{T} \boldsymbol{\xi}\right\}\right. \\
& \left.-I\left\{Y_{i}-\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)-n^{-1 / 2} \mathbf{X}_{i}^{T} \boldsymbol{\xi}_{h, 2}<0\right\}\right] \mathbf{Z}_{i} I\left(U_{i} \leq u\right)-\mathbf{R}_{n}^{d}\left\{u, \tau, \theta_{0}(\tau)\right\} \\
= & {\left[\mathbf{R}_{n}^{c}\left\{u, \tau, \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \boldsymbol{\xi}_{h, 2}\right\}-\mathbf{R}_{n}^{d}\left\{u, \tau, \theta_{0}(\tau)\right\}\right]-n^{-1 / 2} \sum_{i=1}^{n}\left[F _ { i } \left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)\right.\right.} \\
& \left.\left.+n^{-1 / 2} \mathbf{X}_{i}^{T} \xi_{h, 2}\right\}-F_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{X}_{i}^{T} \boldsymbol{\xi}\right\}\right] \mathbf{Z}_{i} I\left(U_{i} \leq u\right) . \tag{S.2}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
& \mathbf{R}_{n}^{c}\left\{u, \tau, \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \boldsymbol{\xi}\right\}-\mathbf{R}_{n}^{d}\left\{u, \tau, \theta_{0}(\tau)\right\} \\
\leq & {\left[\mathbf{R}_{n}^{c}\left\{u, \tau, \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \boldsymbol{\xi}_{h, 1}\right\}-\mathbf{R}_{n}^{d}\left\{u, \tau, \theta_{0}(\tau)\right\}\right]-n^{-1 / 2} \sum_{i=1}^{n}\left[F _ { i } \left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)\right.\right.} \\
& \left.\left.+n^{-1 / 2} \mathbf{X}_{i}^{T} \xi_{h, 1}\right\}-F_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{X}_{i}^{T} \boldsymbol{\xi}\right\}\right] \mathbf{Z}_{i} I\left(U_{i} \leq u\right) . \tag{S.3}
\end{align*}
$$

By the inequality $|y| \leq \max (|x|,|z|)$ for $x \leq y \leq z$ and combining (S.2) and (S.3), we obtain

$$
\begin{align*}
& \sup _{\xi \in D} \sup _{u \in(0,1)}\left\|\mathbf{R}_{n}^{c}\left\{u, \tau, \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \boldsymbol{\xi}\right\}-\mathbf{R}_{n}^{d}\left\{u, \tau, \theta_{0}(\tau)\right\}\right\| \\
\leq & \max _{1 \leq h \leq n(\delta)} \max _{k=1,2} \sup _{u \in(0,1)}\left\|\mathbf{R}_{n}^{c}\left\{u, \tau, \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \boldsymbol{\xi}_{h, k}\right\}-\mathbf{R}_{n}^{d}\left\{u, \tau, \boldsymbol{\theta}_{0}(\tau)\right\}\right\| \\
& +\max _{1 \leq h \leq n(\delta)} \max _{k=1,2} \sup _{u \in(0,1)} \| n^{-1 / 2} \sum_{i=1}^{n}\left[F_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{X}_{i}^{T} \xi_{h, k}\right\}\right. \\
& \left.-F_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{X}_{i}^{T} \boldsymbol{\xi}\right\}\right] \mathbf{Z}_{i} I\left(U_{i} \leq u\right) \| \\
= & (c)+(d),
\end{align*}
$$

where

$$
(c)=\max _{1 \leq h \leq n(\delta)} \max _{k=1,2} \sup _{u \in(0,1)}\left\|n^{-1 / 2} \sum_{i=1}^{n} \psi_{i}(h, k, u)\right\|
$$

and $\psi_{i}(h, k, u)=\left[F_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{X}_{i}^{T} \boldsymbol{\xi}_{h, k}\right\}-I\left\{Y_{i}-\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)-n^{-1 / 2} \mathbf{X}_{i}^{T} \boldsymbol{\xi}_{h, k}<\right.\right.$ $0\}-F_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U_{i} \geq u_{0}\right)\right\}+I\left\{Y_{i}-\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)-n^{-1 / 2} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U_{i}\right.\right.$ $\left.\left.\left.\geq u_{0}\right)<0\right\}\right] \mathbf{Z}_{i} I\left(U_{i} \leq u\right)$. Because the distance between $\boldsymbol{\xi}$ and $\boldsymbol{\xi}_{h, k}$ is less than δ, by mean value theorem and Assumption A3(a) and Lemma 1, it is easy to show that $(d)=\delta O_{p}(1)$, which can be arbitrarily small by choosing a small δ.

Let $U_{(i)}$ be the i-th order statistic of $\left\{U_{i} ; i=1, \cdots, n\right\}$, and $\left\{\left(Y_{(i)}, \mathbf{X}_{(i)}, \mathbf{Z}_{(i)}\right) ; i=\right.$ $1, \cdots, n\}$ be the observation and $\left\{F_{(i)} ; i=1, \cdots, n\right\}$ be the distribution functions corresponding to $U_{(i)}$. For notational simplicity, we omit h, k, u in the expression $\psi_{i}(h, k, u)$ when no confusion is made. Let $\psi_{(i)}$ be the score function of the subject associated with $U_{(i)}$. Then

$$
\begin{aligned}
\psi_{(i)}= & \left(F_{(i)}\left\{\mathbf{X}_{(i)}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{X}_{(i)}^{T} \boldsymbol{\xi}_{h, k}\right\}-I\left\{Y_{(i)}-\mathbf{X}_{(i)}^{T} \boldsymbol{\beta}_{0}(\tau)-n^{-1 / 2} \mathbf{X}_{(i)}^{T} \boldsymbol{\xi}_{h, k}<0\right\}\right. \\
& -F_{(i)}\left[\mathbf{X}_{(i)}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{Z}_{(i)}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left\{U_{(i)} \geq u_{0}\right\}\right] \\
& \left.+I\left[Y_{(i)}-\mathbf{X}_{(i)}^{T} \boldsymbol{\beta}_{0}(\tau)-n^{-1 / 2} \mathbf{Z}_{(i)}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left\{U_{(i)} \geq u_{0}\right\}<0\right]\right) \mathbf{Z}_{(i)} I\left\{U_{(i)} \leq u\right\} .
\end{aligned}
$$

Then for an arbitrarily small number $\epsilon>0$, we have

$$
\begin{align*}
& P\left\{\max _{h=1, \cdots, n(\delta)} \max _{k=1,2} \sup _{u \in(0,1)}\left\|\sum_{i=1}^{n} \psi_{i}\right\|>\epsilon\right\} \\
= & P\left\{\max _{h=1, \cdots, n(\delta)} \max _{k=1,2} \sup _{u \in(0,1)}\left\|\sum_{i=1}^{n} \psi_{(i)}\right\|>\epsilon\right\} \\
< & n(\delta) \max _{h=1, \cdots, n(\delta)} \max _{k=1,2} P\left\{\max _{j=1, \cdots, n}\left\|\sum_{i=1}^{j} \psi_{(i)}\right\|>\epsilon\right\} . \tag{S.5}
\end{align*}
$$

Let the σ-fields $\mathscr{F}_{(i)}=\sigma\left\{\psi_{(1)}, \cdots, \psi_{(i)}\right\}$ for $i=1, \cdots, n$. Because of the equality $E\left\{\psi_{(i)} \mid \mathbf{X}_{(i)}\right\}=0$, then $\left\{\psi_{(i)}, \mathscr{F}_{(i)}\right\}$ is an array of martingale difference. For every $\gamma>1$, applying Doob inequality gives

$$
\begin{align*}
P\left\{\max _{j=1, \cdots, n}\left\|n^{-1 / 2} \sum_{i=1}^{j} \psi_{(i)}\right\|>\epsilon\right\} & \leq M_{2} \epsilon^{-2 \gamma} E\left\|n^{-1 / 2} \sum_{i=1}^{n} \psi_{(i)}\right\|^{2 \gamma} \\
& =M_{2} \epsilon^{-2 \gamma} E\left\|n^{-1 / 2} \sum_{i=1}^{n} \psi_{i}\right\|^{2 \gamma} \tag{S.6}
\end{align*}
$$

where M_{2} is a constant depending on γ. Because $\left\{\psi_{i}, \mathscr{F}_{i}\right\}$ is an array of martingale difference, by the Rosenthal inequality (Hall and Heyde, 1980), we have

$$
E\left\|n^{-1 / 2} \sum_{i=1}^{n} \psi_{i}\right\|^{2 \gamma} \leq M_{3} n^{-\gamma} E\left\{\sum_{i=1}^{n} E\left(\left\|\psi_{i}\right\|^{2} \mid \mathscr{F}_{i-1}\right)\right\}^{\gamma}+M_{3} n^{-\gamma} \sum_{i=1}^{n} E\left\|\psi_{i}\right\|^{2 \gamma}
$$

where M_{3} is a constant. Note that

$$
\begin{aligned}
& E\left(\left\|\psi_{i}\right\|^{2} \mid \mathscr{F}_{i-1}\right) \\
\leq & \left\|\mathbf{Z}_{i}\right\|^{2}\left|F_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{X}_{i}^{T} \boldsymbol{\xi}_{h, k}\right\}-F_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U_{i} \geq u_{0}\right)\right\}\right| \\
= & \left\|\mathbf{Z}_{i}\right\|^{2}\left|f_{i}(\zeta)\right| n^{-1 / 2}\left|\mathbf{X}_{i}^{T} \boldsymbol{\xi}_{h, k}-\mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U_{i} \geq u_{0}\right)\right| \\
\leq & L n^{-1 / 2}\left\{\left\|\mathbf{Z}_{i}\right\|^{2}\| \| \mathbf{X}_{i}\| \| \boldsymbol{\xi}_{h, k}\|+\| \mathbf{Z}_{i}\left\|^{3}\right\| \boldsymbol{\alpha}_{0}(\tau) I\left(U_{i} \geq u_{0}\right) \|\right\},
\end{aligned}
$$

where ζ is between $\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{Z}_{i}^{T} \alpha_{0}(\tau) I\left(U_{i} \geq u_{0}\right)$ and $\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{X}_{i}^{T} \boldsymbol{\xi}_{h, k}$. By Hölder's inequality,

$$
\begin{aligned}
E\left\|\psi_{i}\right\|^{2 \gamma} & =E\left\{E\left(\left\|\psi_{i}\right\|^{2 \gamma} \mid \mathscr{F}_{i-1}\right)\right\} \leq E\left\{E\left(\left\|\psi_{i}\right\|^{2} \mid \mathscr{F}_{i-1}\right)\right\}^{\gamma} \\
& \leq L^{\gamma} n^{-\gamma / 2} E\left\{\left\|\mathbf{Z}_{i}\right\|^{2}\| \| \mathbf{X}_{i}\| \| \boldsymbol{\xi}_{h, k}\|+\| \mathbf{Z}_{i}\left\|^{3}\right\| \alpha_{0}(\tau) I\left(U_{i} \geq u_{0}\right) \|\right\}^{\gamma}
\end{aligned}
$$

Hence we have

$$
\begin{align*}
& E\left\|n^{-1 / 2} \sum_{i=1}^{n} \psi_{i}\right\|^{2 \gamma} \\
\leq & M_{3} L^{\gamma} n^{-\gamma / 2} E\left[n^{-1} \sum_{i=1}^{n}\left\{\left\|\mathbf{X}_{i}\right\|^{2}\left\|\mathbf{Z}_{i}\right\| \boldsymbol{\xi}_{h, k}\|+\| \mathbf{X}_{i}\left\|^{2}\right\| \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0} I\left(U_{i} \geq u_{0}\right) \|\right\}\right]^{\gamma} \\
& +M_{3} L^{\gamma} n^{-3 \gamma / 2+1} n^{-1} \sum_{i=1}^{n} E\left\{\left\|\mathbf{X}_{i}\right\|^{2}\left\|\mathbf{Z}_{i}\right\|\left\|\boldsymbol{\xi}_{h, k}\right\|+\left\|\mathbf{Z}_{i}\right\|^{3}\left\|\alpha_{0}(\tau) I\left(U_{i} \geq u_{0}\right)\right\|\right\}^{\gamma} \\
\leq & M_{3} L^{\gamma} n^{-\gamma / 2} E\left[n^{-1} \sum_{i=1}^{n}\left\{\left\|\mathbf{X}_{i}\right\|^{2}\left\|\mathbf{Z}_{i}\right\|\|\mathbf{D}\|+\left\|\mathbf{Z}_{i}\right\|^{4}\left\|\boldsymbol{\alpha}_{0}(\tau) I\left(U_{i} \geq u_{0}\right)\right\|\right\}\right]^{\gamma} \\
& +M_{3} L^{\gamma} n^{-3 \gamma / 2+1} n^{-1} \sum_{i=1}^{n} E\left\{\left\|\mathbf{X}_{i}\right\|^{2}\left\|\mathbf{Z}_{i}\right\|\|\mathbf{D}\|+\left\|\mathbf{Z}_{i}\right\|^{3}\left\|\boldsymbol{\alpha}_{0}(\tau) I\left(U_{i} \geq u_{0}\right)\right\|\right\}^{\gamma} \\
\leq & M_{3} M_{4} L^{\gamma} n^{-\gamma / 2} E\left[n^{-1} \sum_{i=1}^{n}\left\{\left\|\mathbf{X}_{i}\right\|^{2}\left\|\mathbf{Z}_{i}\right\|+\left\|\mathbf{Z}_{i}\right\|^{3}\left\|\alpha_{0}(\tau) I\left(U_{i} \geq u_{0}\right)\right\|\right\}\right]^{\gamma} \\
\leq & 2 M_{3} M_{3} M_{4} L^{\gamma} n^{-\gamma / 2},
\end{align*}
$$

where M_{3} and M_{4} are some finite constants, $M_{4}=\max \left(\|\mathbf{D}\|^{\gamma}, 1\right)$. In the above, the second inequality follows because $\left\|\boldsymbol{\xi}_{h, k}\right\| \leq\|\mathbf{D}\|$, and the fourth inequality follows from the Assumption A3(c). Combining (S.4), (S.5), (S.6) and (S.7), yields that

$$
\begin{aligned}
& \sup _{\xi \in D} \sup _{u \in(0,1)}\left\|\mathbf{R}_{n}^{c}\left\{u, \tau, \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \boldsymbol{\xi}\right\}-\mathbf{R}_{n}^{d}\left\{u, \tau, \theta_{0}(\tau)\right\}\right\| \\
\leq & 4 n(\delta) M M_{2} M_{3} M_{4} L^{\gamma} n^{-\gamma / 2} \epsilon^{-2 \gamma} \\
= & o(1)
\end{aligned}
$$

This completes the proof of Lemma 2.
Lemma 3 Under Assumptions A1-A3 and H_{1}, we have

$$
\sup _{u \in(0,1)} \sup _{\boldsymbol{\xi} \in D}\left\|\boldsymbol{R}_{n}\left\{u, \tau, \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \boldsymbol{\xi}\right\}-\boldsymbol{R}_{n}^{d}\left\{u, \tau, \boldsymbol{\theta}_{0}(\tau)\right\}+\mathbf{S}_{\mathbf{z}}(u) \boldsymbol{\xi}-\boldsymbol{P}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\}\right\|=o_{p}(1)
$$

Proof of Lemma 3. Direct calculation gives that

$$
\begin{aligned}
& \mathbf{R}_{n}\left\{u, \tau, \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \boldsymbol{\xi}\right\}-\mathbf{R}_{n}^{d}\left\{u, \tau, \boldsymbol{\theta}_{0}(\tau)\right\}+\mathbf{S}_{\mathbf{z}}(u) \boldsymbol{\xi}-\mathbf{P}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\} \\
= & {\left[\mathbf{R}_{n}^{c}\left\{u, \tau, \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \boldsymbol{\xi}\right\}-\mathbf{R}_{n}^{d}\left\{u, \tau, \boldsymbol{\theta}_{0}(\tau)\right\}\right]+\left(n ^ { - 1 / 2 } \sum _ { i = 1 } ^ { n } \left[\tau-F_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)\right.\right.\right.} \\
& \left.\left.\left.+n^{-1 / 2} \mathbf{X}_{i}^{T} \boldsymbol{\xi}\right\}\right] \mathbf{Z}_{i} I\left(U_{i} \leq u\right)+\mathbf{S}_{\mathbf{z}}(u) \boldsymbol{\xi}-\mathbf{P}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\}\right) \\
= & (e)+(f) .
\end{aligned}
$$

To obtain the desired result, it is sufficient to show that (e) and (f) are $o_{p}(1)$ uniformly in $u \in(0,1)$ and $\boldsymbol{\xi} \in \mathbf{D}$. The uniform property of the first term (e) is obtained by Lemma 1. It remains to show that (f) is $o_{p}(1)$ uniformly in $u \in(0,1)$ and $\boldsymbol{\xi} \in \mathbf{D}$. Because we have

$$
\begin{aligned}
\|(f)\|= & \| n^{-1} \sum_{i=1}^{n} f_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U_{i} \geq u_{0}\right)+\eta_{i}\right\} \\
& \times\left\{-\mathbf{Z}_{i} \mathbf{X}_{i}^{T} I\left(U_{i} \leq u\right) \boldsymbol{\xi}+\mathbf{Z}_{i} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(u_{0} \leq U_{i} \leq u\right)\right\}+\mathbf{S}_{\mathbf{z}}(u) \boldsymbol{\xi}-\mathbf{P}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\} \| \\
\leq & \|-n^{-1} \sum_{i=1}^{n} f_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U_{i} \geq u_{0}\right)+\eta_{i}\right\} \mathbf{Z}_{i} \mathbf{X}_{i}^{T} I\left(U_{i} \leq u\right) \boldsymbol{\xi} \\
& +\mathbf{S}_{\mathbf{z}}(u) \boldsymbol{\xi}\|+\| n^{-1} \sum_{i=1}^{n} f_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+\eta_{i}\right\} \mathbf{Z}_{i} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(u_{0} \leq U_{i} \leq u\right)-\mathbf{P}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\} \| \\
= & \|(g)\|+\|(h)\|,
\end{aligned}
$$

where the first equality follows from the mean value theorem with η_{i} between 0 and $n^{-1 / 2} \mathbf{X}_{i}^{T} \boldsymbol{\xi}-n^{-1 / 2} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U_{i} \geq u_{0}\right)$. By Assumption A3(a), we have $\max _{1 \leq i \leq n}\left|\eta_{i}\right|$ $=o_{p}(1)$. Then from Assumption A1, for each i, we have

$$
\begin{aligned}
& f_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U_{i} \geq u_{0}\right)+\eta_{i}\right\} \\
= & f_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U_{i} \geq u_{0}\right)\right\}+o_{p}(1) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& -n^{-1} \sum_{i=1}^{n} f_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U_{i} \geq u_{0}\right)+\eta_{i}\right\} \mathbf{Z}_{i} \mathbf{X}_{i}^{T} I\left(U_{i} \leq u\right) \boldsymbol{\xi}+\mathbf{S}_{\mathbf{z}}(u) \boldsymbol{\xi} \\
= & -n^{-1} \sum_{i=1}^{n} f_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U_{i} \geq u_{0}\right)\right\} \mathbf{Z}_{i} \mathbf{X}_{i}^{T} I\left(U_{i} \leq u\right) \boldsymbol{\xi}+\mathbf{S}_{\mathbf{z}}(u) \boldsymbol{\xi}+o_{p}(1) \\
= & o_{p}(1) .
\end{aligned}
$$

By Lemma 1, uniformly in $u \in(0,1)$ and $\boldsymbol{\xi} \in \mathbf{D}$, we have $\sup _{u \in(0,1)} \sup _{\boldsymbol{\xi} \in D}\|(g)\|$ $=o_{p}(1)$. Following the similar arguments, we can show that $\sup _{u \in(0,1)} \sup _{\boldsymbol{\xi} \in D}\|(h)\|=$ $o_{p}(1)$. This completes the proof of Lemma 3.

Lemma 4 Under Assumptions A1-A3 and $H_{1}, \hat{\boldsymbol{\beta}}(\tau)$ has the following Bahadur representation:

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}(\tau)-\boldsymbol{\beta}_{0}(\tau)=\mathbf{S}^{-1}\left\{n^{-1} \sum_{i=1}^{n} \psi_{\tau}\left(\epsilon_{i}\right) \mathbf{X}_{i}\right\}+n^{-1 / 2} \boldsymbol{S}^{-1} \boldsymbol{Q}\left\{\boldsymbol{\alpha}_{0}(\tau)\right\}+o_{p}(1) \tag{S.8}
\end{equation*}
$$

Proof of Lemma 4. First, the consistency of $\hat{\boldsymbol{\beta}}(\tau)$ can be obtained from Procházka (1988). Applying Lemma 4.1 of He and Shao (1996), we get

$$
\begin{aligned}
& \sup _{\left\|\boldsymbol{\beta}(\tau)-\boldsymbol{\beta}_{0}(\tau)\right\| \leq \delta_{n}} \| n^{-1 / 2} \sum_{i=1}^{n}\left[\psi_{\tau}\left\{Y_{i}-\mathbf{X}_{i}^{T} \boldsymbol{\beta}(\tau)\right\}-\psi_{\tau}\left(\epsilon_{i}\right)\right] \mathbf{X}_{i} \\
& -n^{-1 / 2} \sum_{i=1}^{n} E\left[\psi_{\tau}\left\{Y_{i}-\mathbf{X}_{i}^{T} \boldsymbol{\beta}(\tau)\right\} \mathbf{X}_{i} \mid \mathbf{X}_{i}\right] \|=O_{p}\left\{\left(\delta_{n}+n^{-1 / 2}\right)^{1 / 2} \log n\right\},
\end{aligned}
$$

where $\delta_{n}=o(1)$ as $n \rightarrow \infty$. Note that

$$
E\left[\psi_{\tau}\left\{Y-\mathbf{X}^{T} \boldsymbol{\beta}(\tau)\right\} \mid \mathbf{X}\right]=\tau-F\left\{\mathbf{X}^{T} \boldsymbol{\beta}(\tau) \mid \mathbf{X}\right\}
$$

Therefore,

$$
\begin{align*}
& n^{-1 / 2} \sum_{i=1}^{n}\left(\psi_{\tau}\left\{Y_{i}-\mathbf{X}_{i}^{T} \hat{\boldsymbol{\beta}}(\tau)\right\}-\left[\tau-F_{i}\left\{\mathbf{X}_{i}^{T} \hat{\boldsymbol{\beta}}(\tau)\right\}\right]\right) \mathbf{X}_{i}=n^{-1 / 2} \sum_{i=1}^{n} \psi_{\tau}\left(\epsilon_{i}\right) \mathbf{X}_{i} \\
& \quad+O_{p}\left[\left\{\left\|\hat{\boldsymbol{\beta}}(\tau)-\boldsymbol{\beta}_{0}(\tau)\right\|+n^{-1 / 2}\right\}^{1 / 2} \log n\right] \tag{S.9}
\end{align*}
$$

By the subgradient condition of quantile regression (Koenker, 2005) and Assumption 3(a), we have

$$
n^{-1 / 2} \sum_{i=1}^{n} \psi_{\tau}\left\{Y_{i}-\mathbf{X}_{i}^{T} \hat{\boldsymbol{\beta}}(\tau)\right\} \mathbf{X}_{i}=o_{p}(1)
$$

Hence we obtain

$$
\begin{aligned}
& n^{-1 / 2} \sum_{i=1}^{n}\left(\psi_{\tau}\left\{Y_{i}-\mathbf{X}_{i}^{T} \hat{\boldsymbol{\beta}}(\tau)\right\}-\left[\tau-F_{i}\left\{\mathbf{X}_{i}^{T} \hat{\boldsymbol{\beta}}(\tau)\right\}\right]\right) \mathbf{X}_{i} \\
= & n^{-1 / 2} \sum_{i=1}^{n}\left[F_{i}\left\{\mathbf{X}_{i}^{T} \hat{\boldsymbol{\beta}}(\tau)\right\}-\tau\right] \mathbf{X}_{i}+o_{p}(1) \\
= & n^{-1 / 2} \sum_{i=1}^{n} f_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U_{i} \geq u_{0}\right)\right\} \mathbf{X}_{i} \mathbf{X}_{i}^{T}\left\{\hat{\boldsymbol{\beta}}(\tau)-\boldsymbol{\beta}_{0}(\tau)\right\} \\
& -n^{-1} \sum_{i=1}^{n} f_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U_{i} \geq u_{0}\right)\right\} \mathbf{X}_{i} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau) I\left(U_{i}>u_{0}\right) \\
& +o_{p}(1)+o_{p}\left[n^{1 / 2}\left\{\hat{\boldsymbol{\beta}}(\tau)-\boldsymbol{\beta}_{0}(\tau)\right\}\right] \\
= & n^{1 / 2} \boldsymbol{S}\left\{\hat{\boldsymbol{\beta}}(\tau)-\boldsymbol{\beta}_{0}(\tau)\right\}-\boldsymbol{Q}\left\{\boldsymbol{\alpha}_{0}(\tau)\right\}+o_{p}(1)+o_{p}\left[n^{1 / 2}\left\{\hat{\boldsymbol{\beta}}(\tau)-\boldsymbol{\beta}_{0}(\tau)\right\}\right],
\end{aligned}
$$

which together with (S.9) proves Lemma 4.

Proof of Theorem 2. Because Theorem 1 is only a special case of Theorem 2 when $\boldsymbol{\alpha}_{0}(\tau)=0$, we only need to prove Theorem 2, namely $Y_{i}=\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \mathbf{Z}_{i}^{T} \boldsymbol{\alpha}_{0}(\tau)$ $I\left(U_{i}>u_{0}\right)+\epsilon_{i}$ under the alternative hypothesis. Let $\boldsymbol{\xi}=n^{1 / 2}\left\{\hat{\boldsymbol{\beta}}(\tau)-\boldsymbol{\beta}_{0}(\tau)\right\}$, it follows from Lemmas 3 and 4 that

$$
\begin{aligned}
& \mathbf{R}_{n}\{u, \tau, \hat{\boldsymbol{\beta}}(\tau)\} \\
= & \mathbf{R}_{n}^{d}\left\{u, \tau, \boldsymbol{\beta}_{0}(\tau)\right\}-n^{1 / 2} \mathbf{S}_{\mathbf{z}}(u)\left\{\hat{\boldsymbol{\beta}}(\tau)-\boldsymbol{\beta}_{0}(\tau)\right\}+\mathbf{P}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\}+o_{p}(1) \\
= & n^{-1 / 2} \sum_{i=1}^{n} \psi_{\tau}\left(\epsilon_{i}\right) \mathbf{Z}_{i} I\left(U_{i} \leq u\right)-\mathbf{S}_{\mathbf{z}}(u) \mathbf{S}^{-1} n^{-1 / 2} \sum_{i=1}^{n} \psi_{\tau}\left(\epsilon_{i}\right) \mathbf{X}_{i}-\mathbf{S}_{\mathbf{z}}(u) \mathbf{S}^{-1} \mathbf{Q}\left\{\boldsymbol{\alpha}_{0}(\tau)\right\} \\
& +\mathbf{P}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\}+o_{p}(1) \\
= & n^{-1 / 2} \sum_{i=1}^{n} \psi_{\tau}\left(\epsilon_{i}\right)\left\{I\left(U_{i} \leq u\right) \mathbf{Z}_{i}-\mathbf{S}_{\mathbf{z}}(u) \mathbf{S}^{-1} \mathbf{X}_{i}\right\}-\mathbf{S}_{\mathbf{z}}(u) \mathbf{S}^{-1} \mathbf{Q}\left\{\boldsymbol{\alpha}_{0}(\tau)\right\}+\mathbf{P}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\} \\
& +o_{p}(1) \\
= & \mathbf{R}(u)+\mathbf{q}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\}+o_{p}(1) .
\end{aligned}
$$

Following the proofs in Stute (1997), the weak convergence of $\mathbf{R}(u)$ can be obtained. This completes the proof of Theorem 2.

Proof of Corollary 1. Following the same arguments used in the proof of Theorem 2, we can show that
$\mathbf{R}_{n}\{u, \tau, \hat{\boldsymbol{\beta}}(\tau)\}=n^{-1 / 2} \sum_{i=1}^{n} \psi_{\tau}\left(\epsilon_{i}\right)\left\{I\left(U_{i} \leq u\right) \mathbf{Z}_{i}-\mathbf{S}_{\mathbf{z}}(u) \mathbf{S}^{-1} \mathbf{X}_{i}\right\}+\mathbf{q}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\}+o_{P}(1)$,
where $\mathbf{q}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\}=a_{n}\left\{-\mathbf{S}_{\mathbf{z}}(u) \mathbf{S}^{-1} \mathbf{Q}\left\{\boldsymbol{\alpha}_{0}(\tau)\right\}+\mathbf{P}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\}\right\}$. Because $\mathbf{q}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\}$ $\rightarrow+\infty$ as n goes into infinity, this implies $T_{n}(\tau)$ goes into infinity. This completes the proof of Corollary 1.

The following lemma is needed to prove Theorem 3.

Lemma 5 Under Assumptions A1-A5, we have

$$
\sup _{u \in(0,1)}\left\|\mathbf{S}_{z, n}(u)-\mathbf{S}_{\mathbf{z}}(u)\right\|=o_{p}(1)
$$

Proof of Lemma 5. Let $g\{\boldsymbol{\beta}(\tau)\}=\mathbf{Z}_{i} \mathbf{X}_{i}^{T} K_{h_{n}}\left\{Y_{i}-\mathbf{X}_{i}^{T} \boldsymbol{\beta}(\tau)\right\}$. Then

$$
\begin{aligned}
\mathbf{S}_{z, n}(u)-\mathbf{S}_{\mathbf{z}}(u)= & \left.n^{-1} \sum_{i=1}^{n}\left[g\{\hat{\boldsymbol{\beta}}(\tau)\} I\left(U_{i} \leq u\right)-g\left\{\boldsymbol{\beta}_{0}(\tau)\right\} I\left(U_{i} \leq u\right)\right\}\right] \\
& +n^{-1} \sum_{i=1}^{n}\left[g\left\{\boldsymbol{\beta}_{0}(\tau)\right\} I\left(U_{i} \leq u\right)-\mathbf{S}_{\mathbf{z}}(u)\right] \\
= & (i)+(j) .
\end{aligned}
$$

To obtain the desired result, we need to show that (i) and (j) are $o_{p}(1)$ uniformly in $u \in(0,1)$.

First note that

$$
\begin{aligned}
(i) & =n^{-1} \sum_{i=1}^{n} \mathbf{Z}_{i} \mathbf{X}_{i}^{T} I\left(U_{i} \leq u\right)\left[K_{h_{n}}\left\{Y_{i}-\mathbf{X}_{i}^{T} \hat{\boldsymbol{\beta}}(\tau)\right\}-K_{h_{n}}\left\{Y_{i}-\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)\right\}\right] \\
& \leq n^{-1} \sum_{i=1}^{n} \mathbf{Z}_{i} \mathbf{X}_{i}^{T} I\left(U_{i} \leq u\right) \max _{1 \leq i \leq n}\left[K_{h_{n}}\left\{Y_{i}-\mathbf{X}_{i}^{T} \hat{\boldsymbol{\beta}}(\tau)\right\}-K_{h_{n}}\left\{Y_{i}-\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)\right\}\right] .
\end{aligned}
$$

By Assumptions A3(a), A4 and A5, and the fact that $\hat{\boldsymbol{\beta}}(\tau)-\boldsymbol{\beta}_{0}(\tau)=O_{p}\left(n^{-1 / 2}\right)$, following mean value theorem, we have

$$
\begin{aligned}
& \max _{1 \leq i \leq n}\left[K_{h_{n}}\left\{Y_{i}-\mathbf{X}_{i}^{T} \hat{\boldsymbol{\beta}}(\tau)\right\}-K_{h_{n}}\left\{Y_{i}-\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)\right\}\right] \\
\leq & h_{n}^{-2} \max _{1 \leq i \leq n}\left\|\mathbf{X}_{i}\right\| K^{\prime}(\boldsymbol{\zeta}) O_{p}\left(n^{-1 / 2}\right)=o_{p}(1)
\end{aligned}
$$

where $\boldsymbol{\zeta}$ is a point between $Y_{i}-\mathbf{X}_{i}^{T} \hat{\boldsymbol{\beta}}(\tau)$ and $Y_{i}-\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)$. Hence $(i)=o_{p}(1)$.
Next, by the Taylor expansion we have

$$
\begin{aligned}
& n^{-1} \sum_{i=1}^{n} E\left[g\left\{\boldsymbol{\beta}_{0}(\tau)\right\} I\left(U_{i} \leq u\right)\right] \\
= & n^{-1} \sum_{i=1}^{n} E_{\mathbf{X}_{i}}\left(\mathbf{Z}_{i} \mathbf{X}_{i}^{T} I\left(U_{i} \leq u\right) E\left[K_{h_{n}}\left\{Y_{i}-\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)\right\} \mid \mathbf{X}_{i}\right]\right) \\
= & n^{-1} \sum_{i=1}^{n} E_{\mathbf{X}_{i}}\left(\mathbf{Z}_{i} \mathbf{X}_{i}^{T} I\left(U_{i} \leq u\right)\left[f_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}(\tau)\right\}+o(1)\right]\right) \\
= & \mathbf{S}_{\mathbf{z}}(u)+o_{p}(1) .
\end{aligned}
$$

The rest of the proof follows with the similar arguments used in Lemma 1 of Hansen (1996) and thus is omitted.

Proof of Theorem 3. Denote

$$
\begin{equation*}
\mathbf{R}_{n}^{* *}(u)=n^{-1 / 2} \sum_{i=1}^{n} \omega_{i} \psi_{\tau}\left(e_{i}\right)\left\{I\left(U_{i} \leq u\right) \mathbf{Z}_{i}-\mathbf{S}_{\mathbf{z}}(u) \mathbf{S}^{-1} \mathbf{X}_{i}\right\} . \tag{S.10}
\end{equation*}
$$

To obtain the result, we need to show that
(i) $\mathbf{R}_{n}^{*}(u)$ and $\mathbf{R}_{n}^{* *}(u)$ are uniformly asymptotically equivalent, that is

$$
\begin{aligned}
\sup _{u \in(0,1)}\left\|\mathbf{R}_{n}^{*}(u)-\mathbf{R}_{n}^{* *}(u)\right\| & =\sup _{u \in(0,1)}\left\|n^{-1 / 2} \sum_{i=1}^{n} \omega_{i} \psi_{\tau}\left(e_{i}\right)\left\{\mathbf{S}_{z, n}(u) \mathbf{S}_{n}^{-1}-\mathbf{S}_{\mathbf{z}}(u) \mathbf{S}^{-1}\right\} \mathbf{X}_{i}\right\| \\
& =o_{p}(1)
\end{aligned}
$$

and (ii) $\mathbf{R}_{n}^{* *}(u)$ converges to the Gaussian process $\mathbf{R}(u)$.
The first part (i) is a direct conclusion of Lemma 4 by allowing $u=1$. Then it follows that $\mathbf{S}_{n}=\mathbf{S}+o_{p}(1)$ and

$$
\begin{aligned}
& \sup _{u \in(0,1)}\left\|n^{-1 / 2} \sum_{i=1}^{n} \omega_{i} \psi_{\tau}\left(e_{i}\right)\left\{\mathbf{S}_{z, n}(u) \mathbf{S}_{n}^{-1}-\mathbf{S}_{\mathbf{z}}(u) \mathbf{S}^{-1}\right\} \mathbf{X}_{i}\right\| \\
= & \sup _{u \in(0,1)}\left\|n^{-1 / 2} \sum_{i=1}^{n} \omega_{i} \psi_{\tau}\left(e_{i}\right)\left[\left\{\mathbf{S}_{z, n}(u)-\mathbf{S}_{\mathbf{z}}(u)\right\} \mathbf{S}_{n}^{-1}-\mathbf{S}_{\mathbf{z}}(u)\left(\mathbf{S}_{n}^{-1}-\mathbf{S}^{-1}\right)\right] \mathbf{X}_{i}\right\| \\
\leq & \sup _{u \in(0,1)}\left\|\left[\left\{\mathbf{S}_{z, n}(u)-\mathbf{S}_{\mathbf{z}}(u)\right\} \mathbf{S}_{n}^{-1}-\mathbf{S}_{\mathbf{z}}(u)\left(\mathbf{S}_{n}^{-1}-\mathbf{S}^{-1}\right)\right]\right\|\left\|n^{-1 / 2} \sum_{i=1}^{n} \omega_{i} \psi_{\tau}\left(e_{i}\right) \mathbf{X}_{i}\right\| \\
= & o_{p}(1)
\end{aligned}
$$

where the second equation follows by Lemma 4 , and $n^{-1 / 2} \sum_{i=1}^{n} \omega_{i} \psi_{\tau}\left(e_{i}\right) \mathbf{X}_{i}=O_{p}(1)$.
For (ii), we first show that the covariance function of $\mathbf{R}_{n}^{* *}(u)$ converges to that of $\mathbf{R}(u)$. For each $u \in R$ and $u^{\prime} \in R$, we have

$$
\begin{gathered}
\operatorname{Cov}\left\{\mathbf{R}_{n}^{* *}(u), \mathbf{R}_{n}^{* *}\left(u^{\prime}\right)\right\} \\
=\operatorname{Cov}\left[n^{-1 / 2} \sum_{i=1}^{n} \omega_{i} \psi_{\tau}\left(e_{i}\right)\left\{I\left(U_{i} \leq u\right) \mathbf{Z}_{i}-\mathbf{S}_{z, n}(u) \mathbf{S}_{n}^{-1} \mathbf{X}_{i}\right\},\right. \\
\left.n^{-1 / 2} \sum_{i=1}^{n} \omega_{i} \psi_{\tau}\left(e_{i}\right)\left\{I\left(U_{i} \leq u^{\prime}\right) \mathbf{Z}_{i}-\mathbf{S}_{z, n}\left(u^{\prime}\right) \mathbf{S}_{n}^{-1} \mathbf{X}_{i}\right\}\right] \\
=n^{-1} \sum_{i=1}^{n} \operatorname{Cov}\left[\omega_{i} \psi_{\tau}\left(e_{i}\right)\left\{I\left(U_{i} \leq u\right) \mathbf{Z}_{i}-\mathbf{S}_{z, n}(u) \mathbf{S}_{n}^{-1} \mathbf{X}_{i}\right\},\right. \\
\left.\omega_{i} \psi_{\tau}\left(e_{i}\right)\left\{I\left(U_{i} \leq u^{\prime}\right) \mathbf{Z}_{i}-\mathbf{S}_{z, n}\left(u^{\prime}\right) \mathbf{S}_{n}^{-1} \mathbf{X}_{i}\right\}\right]
\end{gathered}
$$

$$
\begin{aligned}
= & n^{-1} \sum_{i=1}^{n} E\left\{\omega_{i} \psi_{\tau}\left(e_{i}\right)\right\}^{2}\left\{I\left(U_{i} \leq u\right) \mathbf{Z}_{i}-\mathbf{S}_{z, n}(u) \mathbf{S}_{n}^{-1} \mathbf{X}_{i}\right\} \\
& \times\left\{I\left(U_{i} \leq u^{\prime}\right) \mathbf{Z}_{i}-\mathbf{S}_{z, n}\left(u^{\prime}\right) \mathbf{S}_{n}^{-1} \mathbf{X}_{i}\right\}^{T} \\
\rightarrow & \tau(1-\tau)\left\{E\left(\mathbf{Z}_{u} \mathbf{Z}_{u^{\prime}}\right)-E\left(\mathbf{Z}_{u} \mathbf{X}^{T}\right) \mathbf{S}^{-1} \mathbf{S}_{z}^{T}\left(u^{\prime}\right)-\mathbf{S}_{\mathbf{z}}(u) \mathbf{S}^{-1} E\left(\mathbf{X} \mathbf{Z}_{u^{\prime}}^{T}\right)\right. \\
& \left.+\mathbf{S}_{\mathbf{z}}(u) \mathbf{S}^{-1} E\left(\mathbf{X} \mathbf{X}^{T}\right) \mathbf{S}^{-1} \mathbf{S}_{z}^{T}\left(u^{\prime}\right)\right\}, \text { almost surely }
\end{aligned}
$$

which is the same as the covariance of $\mathbf{R}_{n}^{* *}(u)$ in Theorem 1.
Next, by the Cramer-Wold device, the finite dimensional convergence of the process $\mathbf{R}_{n}^{* *}(u)$ can be obtained.

Finally, because the class of functions $\mathcal{F}_{n}=\left[\psi_{\tau}(\cdot)\left\{I(U \leq u) \mathbf{Z}-\mathbf{S}_{z, n}(u) \mathbf{S}_{n}^{-1} \mathbf{X}\right.\right.$: $u \in R\}]$ is a Vapnik-Chervonenskis class of functions. Applying Lemma 15 in Pollard (1984), we can show that $R_{n}^{* *}(u)$ is uniformly tight. This completes the proof of Theorem 3.

To prove Theorem 4, we need to show that the processes $\mathbf{R}_{n}\left\{u, \tau, \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \boldsymbol{\xi}\right\}$ and $\mathbf{R}_{n}^{d}\left\{u, \tau, \boldsymbol{\theta}_{0}(\tau)\right\}-\mathbf{S}_{\mathbf{z}}(u) \boldsymbol{\xi}+\mathbf{P}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\}$ are uniformly asymptotically equivalent in $(u, \tau) \in(0,1) \times \mathcal{T}$.

Lemma 6 Under Assumptions A2-A6 and H_{1}^{*}, we have

$$
\begin{aligned}
& \sup _{\tau \in \mathcal{T}} \sup _{u \in(0,1)} \sup _{\boldsymbol{\xi} \in \mathbf{D}} \| \boldsymbol{R}_{n}\left\{u, \tau, \boldsymbol{\beta}_{0}(\tau)+n^{-1 / 2} \boldsymbol{\xi}\right\}-\boldsymbol{R}_{n}^{d}\left\{u, \tau, \boldsymbol{\theta}_{0}(\tau)\right\}+\mathbf{S}_{\mathbf{z}}(u) \boldsymbol{\xi} \\
& \quad-\boldsymbol{P}\left\{u, \boldsymbol{\alpha}_{0}(\tau)\right\} \|=o_{p}(1) .
\end{aligned}
$$

Proof of Lemma 6. We first partition \mathcal{T} into $n\left(\varepsilon_{n}\right)$ parts with points $\omega_{1}=\tau_{0}<\tau_{1}<$ $\cdots<\tau_{n\left(\varepsilon_{n}\right)}=\omega_{2}$, where $n\left(\varepsilon_{n}\right)=\left[\left(\omega_{2}-\omega_{1}\right) / \varepsilon_{n}\right]+1, \varepsilon_{n}=n^{-1 / 2-d}$ for some $d>0$. For $\tau_{j-1}<\tau<\tau_{j}$,

$$
\begin{aligned}
& \mathbf{R}_{n}^{c}\left\{u, \tau, \beta_{0}(\tau)+n^{-1 / 2} \boldsymbol{\xi}\right\}-\mathbf{R}_{n}^{d}\left\{u, \tau, \boldsymbol{\theta}_{0}(\tau)\right\} \\
\leq & \mathbf{R}_{n}^{c}\left\{u, \tau_{j-1}, \beta_{0}\left(\tau_{j-1}\right)+n^{-1 / 2} \boldsymbol{\xi}\right\}-\mathbf{R}_{n}^{d}\left\{u, \tau_{j}, \boldsymbol{\theta}_{0}\left(\tau_{j}\right)\right\} \\
& +n^{-1 / 2} \sum_{i=1}^{n}\left(\tau_{j}-\tau_{j-1}\right) \mathbf{Z}_{i} I\left(U_{i} \leq u\right) \\
& +n^{-1 / 2} \sum_{i=1}^{n}\left[F_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}\left(\tau_{j}\right)+n^{-1 / 2} \boldsymbol{\xi}\right\}-F_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}\left(\tau_{j-1}\right)+n^{-1 / 2} \boldsymbol{\xi}\right\}\right] \mathbf{Z}_{i} I\left(U_{i} \leq u\right)
\end{aligned}
$$

Using the same argument, a reverse inequality holds when τ_{j-1} and τ_{j} are switched.

Then we can get

$$
\begin{aligned}
& \sup _{\tau \in \mathcal{T}} \sup _{u \in(0,1)} \sup _{\boldsymbol{\xi} \in \mathbf{D}}\left\|\mathbf{R}_{n}^{c}\left\{u, \tau, \beta_{0}(\tau)+n^{-1 / 2} \boldsymbol{\xi}\right\}-\mathbf{R}_{n}^{d}\left\{u, \tau, \boldsymbol{\theta}_{0}(\tau)\right\}\right\| \\
& \leq \max _{1 \leq j \leq n\left(\varepsilon_{n}\right)} \sup _{u \in(0,1)} \sup _{\boldsymbol{\xi} \in \mathbf{D}}\left\|\mathbf{R}_{n}^{c}\left\{u, \tau_{j-1}, \beta_{0}\left(\tau_{j-1}\right)+n^{-1 / 2} \boldsymbol{\xi}\right\}-\mathbf{R}_{n}^{d}\left\{u, \tau_{j}, \theta_{0}\left(\tau_{j}\right)\right\}\right\| \\
& \quad+\max _{1 \leq j \leq n\left(\varepsilon_{n}\right)} \sup _{u \in(0,1)} \sup _{\boldsymbol{\xi} \in \mathbf{D}}\left\|\mathbf{R}_{n}^{c}\left\{u, \tau_{j}, \beta_{0}\left(\tau_{j}\right)+n^{-1 / 2} \boldsymbol{\xi}\right\}-\mathbf{R}_{n}^{d}\left\{u, \tau_{j-1}, \boldsymbol{\theta}_{0}\left(\tau_{j-1}\right)\right\}\right\| \\
& \quad+\max _{1 \leq j \leq n\left(\varepsilon_{n}\right)} \sup _{u \in(0,1)} \sup _{\boldsymbol{\xi} \in \mathbf{D}}\left\|n^{-1 / 2} \sum_{i=1}^{n}\left(\tau_{j}-\tau_{j-1}\right) \mathbf{Z}_{i} I\left(U_{i} \leq u\right)\right\| \\
& \quad+\max _{1 \leq j \leq n\left(\varepsilon_{n}\right)} \sup _{u \in(0,1)} \sup _{\boldsymbol{\xi} \in \mathbf{D}} \| n^{-1 / 2} \sum_{i=1}^{n}\left[F_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}\left(\tau_{j}\right)+n^{-1 / 2} \boldsymbol{\xi}\right\}-F_{i}\left\{\mathbf{X}_{i}^{T} \boldsymbol{\beta}_{0}\left(\tau_{j-1}\right)\right.\right. \\
& \left.\left.\quad+n^{-1 / 2} \boldsymbol{\xi}\right\}\right] \mathbf{Z}_{i} I\left(U_{i} \leq u\right) \| \\
& =(k)+(l)+(m)+(n) .
\end{aligned}
$$

For the terms (k) and (l), we have

$$
\begin{aligned}
(k)+(l) \leq & 2 \max _{1 \leq j \leq n\left(\varepsilon_{n}\right)} \sup _{u \in(0,1)} \sup _{\boldsymbol{\xi} \in \mathbf{D}}\left\|\mathbf{R}_{n}^{c}\left\{u, \tau_{j}, \beta_{0}\left(\tau_{j}\right)+n^{-1 / 2} \boldsymbol{\xi}\right\}-\mathbf{R}_{n}^{d}\left\{u, \tau_{j}, \boldsymbol{\theta}_{0}\left(\tau_{j}\right)\right\}\right\| \\
& +2 \max _{1 \leq j \leq n\left(\varepsilon_{n}\right)} \sup _{u \in(0,1)} \| \mathbf{R}_{n}^{d}\left\{u, \tau_{j}, \beta_{0}\left(\tau_{j}\right) \|-\mathbf{R}_{n}^{d}\left\{u, \tau_{j-1}, \beta_{0}\left(\tau_{j-1}\right) \|\right.\right. \\
= & (o)+(p)
\end{aligned}
$$

where τ is invariant in the first inequality while $\boldsymbol{\xi}$ is invariant in the second inequality. The term (o) can be shown to be $o_{p}(1)$ by using similar arguments as the proof of Lemma 1. For the term (p), let $\Phi=(0,1) \times(0,1)$ be a parameter set with metric $\rho\left\{(u, \tau),\left(u^{\prime}, \tau^{\prime}\right)\right\}=\left|u^{\prime}-u\right|+\left|\tau^{\prime}-\tau\right|$. For a given τ,

$$
\begin{aligned}
\mathbf{R}_{n}\left\{u, \tau, \beta_{0}(\tau)\right\} & =n^{-1 / 2} \sum_{i=1}^{n}\left[\tau-I\left\{Y_{i}-\mathbf{X}_{i}^{T} \beta_{0}(\tau) \leq 0\right\}\right] \mathbf{Z}_{i} I\left(U_{i} \leq u\right) \\
& \left.=n^{-1 / 2} \sum_{i=1}^{n}\left[\tau-I\left\{F_{i}\left(Y_{i}\right) \leq \tau\right)\right\}\right] \mathbf{Z}_{i} I\left(U_{i} \leq u\right)
\end{aligned}
$$

Define $V_{i}=F_{i}\left(Y_{i}\right)$, then V_{i} has a standard uniform distribution. Hence,

$$
\mathbf{R}_{n}\left\{u, \tau, \beta_{0}(\tau)\right\}=n^{-1 / 2} \sum_{i=1}^{n}\left\{\tau-I\left(V_{i} \leq \tau\right)\right\} \mathbf{Z}_{i} I\left(U_{i} \leq u\right)
$$

Moreover, $\left\{\left(\tau-I\left(V_{i} \leq \tau\right)\right) \mathbf{Z}_{i} I\left(U_{i} \leq u\right) ; i=1, \cdots, n\right\}$ is a sequence of vector martingale differences. Hence, following the same lines as that in Theorem A1 of Bai
(1996), we can obtain the stochastic equicontinuity of $\mathbf{R}_{n}\left\{u, \tau, \beta_{0}(\tau)\right\}$ on (Φ, ρ). That is, for any $\epsilon>0$ and $\eta>0$, there exists a $\phi>0$ such that for large n, we have

$$
P\left[\sup _{\Omega}\left\|-\mathbf{R}_{n}\left\{u, \tau, \beta_{0}(\tau)\right\}+\mathbf{R}_{n}\left\{u^{\prime}, \tau^{\prime}, \beta_{0}\left(\tau^{\prime}\right)\right\}\right\|>\eta\right]<\epsilon
$$

where $\Omega=\left\{\left(s_{1}, s_{2}\right) \in \Phi ; s_{1}=(u, \tau)\right.$ and $\left.s_{2}=\left(u^{\prime}, \tau^{\prime}\right), \rho\left(s_{1}, s_{2}\right)<\phi\right\}$, thus $(p)=$ $o_{p}(1)$. Finally it is easy to show that the last two terms (m) and (n) are $o_{p}(1)$ by using the similar arguments as that of Lemma A. 2 in Qu (2008), so we omit the details here.

Proof of Theorem 4. The proof is similar to that of Theorem 2 based on results of Lemmas 4 and 6 and thus is omitted.

Additional References

Hall, P. and Heyde, C. C. (1980). Martingale limit theory and its applications. Academic Press, New York.

He, X. and Shao, Q. (1996). A general Bahadur representation of M-estimators and its application to linear regression with nonstochastic designs. Ann. Statist. 24, 2608-2630.

Pollard, D. (1984). Convergence of stochastic processes. Springer Series in Statistics. Springer-Verlag, New York.

Procházka, B. (1988). Regression quantiles and trimmed least squares estimator in the nonlinear regression model. Comput. Statist. Data Anal. 6, 385-391.

Stute, W. (1997). Nonparametric model checks for regressions. Ann. Statist. 25, 613-641.

