
1

Supplementary Material for Nonparametric Lack-of-Fit

Testing and Consistent Variable Selection

Adriano Zanin Zambom and Michael G. Akritas

State University of Campinas and Penn State University

1. Auxiliary Results

Lemma 1.0.1. Let X1, . . . , Xn be iid[F ], and let F̂n(x) be the corresponding

empirical distribution function. Then, for any constant c,

supxi,xj

{
|F (xi)− F (xj)|I

[
|F̂ (xi)− F̂ (xj)| ≤

c

n

]}
= Op

(
1√
n

)
.

Proof. By the Dvoretzky, Kiefer and Wolfowitz (1956) theorem, we have that

∀ε ≥ 0,

P

(
sup
x
|F̂n(x)− F (x)| ≥ ε

)
≤ Ce−2nε2 .

Therefore, |F̂ (x)− F (x)| = Op

(
1√
n

)
uniformly on x. Hence, writing

|F (xi)− F (xj)| = |F (xi)− F̂n(xi) + F̂n(xi)− F (xj) + F̂n(xj)− F̂n(xj)|,

it follows that supxi,xj

{
|F (xi)− F (xj)|I

[
|F̂ (xi)− F̂ (xj)| ≤ c/n

]}
is less than

or equal to

supxi,xj

{
|F (xi)− F̂n(xi)|+ |F̂n(xj)− F (xj)|

}
+supxi,xj

{
|F̂n(xi)− F̂n(xj)|

}
I
[
|F̂n(xi)− F̂n(xj)| ≤

c

n

]
= Op

(
1√
n

)
+Op

(
1√
n

)
+Op

(
1

n

)
.

This completes the proof of the lemma.

Lemma 1.0.2. Let Wi be defined in (2.11) of the paper of reference, and any

Lipschitz continuous function g(x),

1

p

n∑
j=1

g(x2j)I(j ∈Wi)− g(x2i) = Op

(
1√
n

)
,

uniformly in i = 1, . . . , n.
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Proof. First note that by the Lipschitz continuity and the Mean Value Theorem

we have

|g(x2j)− g(x2i)| ≤M |x2j − x2i| ≤M |FX2(x2j)− FX2(x2i)|/fX2(x̃ij),

for some constant M , where x̃ij is between x2j and x2i. Thus,∣∣∣∣∣∣1p
n∑
j=1

g(x2j)I(j ∈Wi)− g(x2i)

∣∣∣∣∣∣ ≤ 1

p

n∑
j=1

|g(x2j)− g(x2i)| ×

×I
[
|F̂X2(x2i)− F̂X2(x2j)| ≤

p− 1

2n

]
≤ M

p

n∑
j=1

|FX2(x2j)− FX2(x2i)|
fX2(x̃ij)

I

[
|F̂X2(x2i)− F̂X2(x2j)| ≤

p− 1

2n

]
= Op

(
1√
n

)
,

where the last equality follows from Lemma 1.0.1 and the assumption that fX2

remains bounded away from zero.

Lemma 1.0.3. Let Y is the response variable, X̃ = (1,X), where X is the n×d
matrix of covariates and 1 is the vector of 1, and let ej denote the (d + 1) × 1

vector having 1 in the j-th entry and all other entries 0. In the least squares

regression estimation of (α,β)T of the model

Y = X̃

(
α

β

)
+ ε,

the weights

wj = eT1 (X̃T X̃)−1X̃T ej , j = 1, . . . , n

from the estimator α̂ = eT1 (X̃T X̃)−1X̃TY are such that

n∑
j=1

wj = 1.

Proof. Note first that β̂ = (X̄ T X̄ )−1X̄ TY , where the columns of X̄ are the cen-

tered columns of the design matrix.

Since

α̂ = Ȳ − β̂1X̄ − . . . β̂dX̄d

=

(
1

n
1T − (X̄, . . . , X̄d)(X̄TX̄ )−1X̄T

)
Y.
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The lemma follows from the fact that the weights (X̄, . . . , X̄d)(X̄ T X̄ )−1X̄ T

sum to zero because X̄ T1 = 0.

Lemma 1.0.4. For the local polynomial regression estimator (2.10) of the paper

of reference

m̂1(x) = eT1
(
XTxWxXx

)−1XTxWx,

each of the weights denoted by

w̃(x,Xj) = eT1
(
XTxWxXx

)−1XTxWxej , j = 1, . . . , n,

is of order Op

(
1

n|Hn|1/2

)
.

Proof. Recall from (2.10) of the paper of reference that

Xx =


1 (X− x)T vechT

{
(X− x)(X− x)T

}
. . .

...
...

... . . .

1 (Xn − x)T vechT
{

(Xn − x)(Xn − x)T
}

. . .

 ,

Wx = diag{KH(X1 − x), . . . ,KH(Xn − x)}, and that the dimensions of Xx are

n× γd.
Now, it is easy to see that 1

nX
T
xWx is a γd × n matrix with column j given

by

Vj :=
1

n


KHn(Xj − x)

KHn(Xj − x)(Xj − x)

KHn(Xj − x)vech{(Xj − x)(Xj − x)T }
...

 . (1.1)

Let 1 be the vector of ones (of dimension defined by the context) and Df (x)
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the vector of partial derivatives of f(x). As in Ruppert and Wand (1994), define

Nx =


νx,11 νx,12 νx,13 . . .

νx,21 νx,22 νx,23 . . .

νx,31 νx,32 νx,33 . . .
...

...
...

. . .



=

∫ 
1

u

vech(uuT )
...


[

1 u vechT (uuT ) . . .
]
K(u)du,

and

Qx =

∫
K(u)


0 uT 0 . . .

u 0 uvechT (uuT ) . . .

0 vech(uuT )uT 0 . . .
...

...
...

. . .

 {DT
f (x)H1/2

n u}du.

It is known (Ruppert and Wand, 1994) that Qx = O(tr(H
1/2
n )), where tr(Hn) is

the trace of matrix Hn.

For ` = 2, . . . , q, let C` be a matrix whose each element is of the same order

of a product of ` elements of H
1/2
n . For example, C2 can be defined (see proof of

Theorem 3.1 Ruppert and Wand, 1994) as the 1
2d(d+ 1)× 1

2d(d+ 1) matrix such

that

vech(H1/2
n uuTH1/2

n ) = C2vech(uuT ),

for all d-vectors u.

Extending the formulas of
(
n−1XTxWxXx

)−1
in Ruppert and Wand (1994)

to a more general case, we have that

eT1
(
n−1XTxWxXx

)−1
= Op

(
1Tdiag{1, H−1/2n , C−12 , C−13 , . . .}

)
.

Also, each column Vj of 1
nX

T
xWx defined in (1.1) is of order

Op

(
1

n|Hn|1/2
diag{1, H1/2

n , C2, C3, . . .}1
)
.
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Therefore, noting that 1 is a γd × 1 vector and that each weight w(x,Xj) is

computed by eT1
(
n−1XTxWxXx

)−1
Vj , we have that

eT1
(
n−1XTxWxXx

)−1
Vj

= Op

(
1Tdiag{1, H−1/2n , C−12 , C−13 , . . .}

)
×

×Op
(

1

n|Hn|1/2
diag{1, H1/2

n , C2, C3, . . .}1
)

= Op

(
1

n|Hn|1/2

)
,

completing the proof.

Lemma 1.0.5. For a symmetric, positive definite bandwidth matrix H
1/2
n , we

have

1. The determinant of H
1/2
n is equal to the product of the eigen-values of H

1/2
n .

2. Define the norm ||H1/2
n || to be the maximum of its eigenvalues. Given X,

for the weights used in local polynomial regression (2.10) of the paper of

reference

w(X1i,X1j) = eT1
(
XTX1i

WX1iXX1i

)−1XTX1i
WX1iej ,

we have that

n∑
j=1

w(X1i,X1j)||X1j −X1i|| = O(||H1/2
n ||). (1.2)

Proof. 1. Note that the bandwidthmatrix H
1/2
n is positive definite, therefore

there exists an eigen value decomposition H
1/2
n = V ΛV −1 such that V is a

orthogonal matrix with columns corresponding to the eigenvectors of H
1/2
n

and Λ is a diagonal matrix with elements corresponding to the eigenvalues

of H
1/2
n . Thus,

|H1/2
n | = |V ΛV −1| = |V ||Λ||V −1| = |V V −1||Λ| = |Λ|.

2. Let b be such that K(x) = K(x)I(||x|| ≤
√
d− 1b). Such a b exists by the
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assumption that the density K has bounded support. By noting that

K
(
H−1/2n (X1i −X1j)

)
||X1j −X1i||

= K
(
H−1/2n (X1i −X1j)

)
||H1/2

n H−1/2n (X1i −X1j)||

≤ K
(
H−1/2n (X1i −X1j)

)
||H1/2

n ||||H−1/2n (vX1i −X1j)||

≤ K
(
H−1/2n (X1i −X1j)

)
||H1/2

n ||
√
d− 1b,

we have that

KHn

(
H−1/2n (X1i −X1j)

)
||X1j −X1i||

= O
(
KHn

(
H−1/2n (X1i −X1j)

)
||H1/2

n ||
√
d− 1b

)
= KHn

(
H−1/2n (X1i −X1j)

)
O
(
||H1/2

n ||
)
. (1.3)

Let VX1i be the n×1 vector with j-th entry ||X1i−X1j ||O
(
||H1/2

n ||
)

. From

the definition of the weights, the left hand side of (1.2) is equal to

eT1
(
XTX1i

WX1iXX1i

)−1XTX1i
WX1iVX1i

= O
(
||H1/2

n ||
)

eT1
(
XTX1i

WX1iXX1i

)−1XTX1i
WX1i1

= O
(
||H1/2

n ||
)
.

The first equality follows from the fact that the each entry j of the n × 1

vector WX1iVX1i is equal to (1.3), and the last equality follows from the

fact that the weights sum to 1, proved in Lemma 1.0.3. This completes the

proof.

2. Proofs of Theorems

Proof of Theorem 1. First note that the vector of (n− p+ 1)p constructed “ob-

servations” in the augmented one-way ANOVA design can be constructed as

ξ̂V = (ξ̂j , j ∈W(p−1)/2+1, . . . , ξ̂j , j ∈Wn−(p−1)/2)
′. (2.1)

This vector of constructed “observations” is composed by observations of ξ̂ in

blocks, according to the windows Wi, which are described in (2.11) of the paper
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of reference. Thus that the test statistic can be written as

MST - MSE = ξ̂
′
VAξ̂V

where

A =
np− 1

n(n− 1)p(p− 1)
⊕ni=1 J

¯p
− 1

n(n− 1)p
J
¯np
− 1

n(p− 1)
I
¯np

, (2.2)

where I
¯r

is a identity matrix of dimension r, J
¯r

is a rxr matrix of 1’s and ⊕ is

the Kronecker sum or direct sum.

Under H0 in (2.3) of the paper of reference we write

ξ̂i = Yi − m̂1(X1i) +m1(X1i)−m1(X1i) = ξi − (m̂1(X1i)−m1(X1i))

= ξi −∆m1(X1i),

where ∆m1(X1i) is defined implicitly in the above relation. Thus, ξ̂V is decom-

posed as ξ̂V = ξV − ∆m1V , where ξV and ∆m1V are defined as in (2.1) but

using ξi and ∆m1(X1i), respectively, instead of ξ̂i. Thus
√
n(MST - MSE) can

be written as

√
nξ̂
′
VAξ̂V =

√
nξ′VAξV −

√
n2ξ′VA∆m1V +

√
n∆′m1VA∆m1V , (2.3)

Using arguments similar to those used in the proof of Lemma 3.1 in Wang,

Akritas and Van Keilegom (2008), it can be shown that if σ2(., x2), defined in

condition e) of the paper of reference, is Lipschitz continuous and E(ε4i ) < ∞
then, under H0 and as n →∞,

n1/2[ξ′VAξV − ξ′VAdξV ]
p→ 0, (2.4)

where Ad = diag{B1, ..., Bn}, with Bi = 1
n(p−1) [J¯p

− I
¯p

], and moreover, it follows

that
√
nξ′VAξV is asymptotically normal distributed. It remains to derive its

asymptotic variance and to show that the other two terms in (2.3) converge

to zero in probability. Using (2.4) it suffices to find the asymptotic variance

of
√
nξ′VAdξV . Since E(ξ′VAdξV ) = 0 its variance equals E[(

√
nξ′VAdξV )2]. To

find this we first evaluate its conditional expectation, E[(
√
nξ′VAdξV )2|{X2j}nj=1],

given X21, . . . , X2n. Recalling the notation σ2(., x2) = E(ξ2|X2 = x2), we have
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1

n(p− 1)2

n∑
i1,i2

n∑
j1 6=l1

n∑
j2 6=l2

E(ξj1ξl1ξj2ξl2 |{X2j}nj=1)I(js ∈Wis , ls ∈Wis , s = 1, 2)

=
2

n(p− 1)2

n∑
i1=1

n∑
i2=1

n∑
j 6=l

σ2(., x2j)σ
2(., x2l)I(j, l ∈Wi1 ∩Wi2) (2.5)

=
2

n(p− 1)2

n∑
i1=1

n∑
i2=1

n∑
j 6=l

σ2(., x2j)

(
σ2(., x2j) +Op

(
p√
n

))
I(j, l ∈Wi1 ∩Wi2)

=
2

n(p− 1)2

n∑
j=1

σ4(., x2j)
n∑

i1=1

n∑
i2=1

n∑
l 6=j

I(j, l ∈Wi1 ∩Wi2) +Op

(
p2

n1/2

)

=
2

n(p− 1)2

n∑
j=1

σ4(., x2j)2(1 + 22 + 32 + ...+ (p− 1)2) +Op

(
p2

n1/2

)

=
2

n(p− 1)2
p(p− 1)(2p− 1)

3

n∑
j=1

σ4(., x2j) +Op

(
p2

n1/2

)
,

where the third equality follows from Lemma 1.0.2 using the assumption that

σ2(., x2) is Lipschitz continuous and the second last inequality results from the

fact that if 1 ≤ |j1 − j2| = s ≤ p − 1, then they are (p − s)2 pairs of windows

whose intersection includes j1 and j2. Taking limits as n→∞ it is seen that

E
(
n1/2ξ′VAdξV

∣∣∣X2 = x2)
2 a.s.−→ 2(2p− 1)

3(p− 1)
E(σ4(., X2)) =

2(2p− 1)

3(p− 1)
τ2.(2.6)

From relation (2.5) it is easily seen that E[(
√
nξ′VAdξV )2|{X2j}nj=1] remains

bounded, and thus Var(n1/2ξ′VAξV ) also converges to the same limit by the Dom-

inated Convergence Theorem. Hence, n1/2ξ′VAξV converges in distribution to the

designated normal distribution. That the second and third terms in (2.3) con-

verge in probability to zero are shown in Lemmas 3.0.6, 3.0.7, respectively.

Proof of Theorem 2. Part 1: Local Additive Alternatives

Note that we can write ξ̂j = Yj − m̂1(X1j) as

ξ̂j = Yj −m1(X1j)− n−1/4m̃2(X2j)− [m̂1(X1j)−m1(X1j)] + n−1/4m̃2(X2j)

= ξj −∆m1(X1j) + n−1/4m̃2(X2j), (2.7)
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and therefore

ξ̂V = ξV −∆m1V + n−1/4m̃2V , where ξV , ∆m1V and m̃2V are defined as in

(2.1) but using ξi, ∆m1(X1i) and m̃2(X2i), respectively, instead of ξ̂i. Thus, we

can write

√
n(MST −MSE) =

√
nξ̂
′
VAξ̂V =

√
n(ξV −∆m1V )′A(ξV −∆m1V ) +

+
√
n2n−1/4(ξV −∆m1V )′Am̃2V

+
√
n(n−1/4)2m̃′2VAm̃2V . (2.8)

By Theorem 1,
√
n(ξV −∆m1V )′A(ξV −∆m1V )

d→ N(0, [2p(2p − 1)τ2]/[3(p −
1)]). That

√
n2n−1/4(ξV − ∆m1V )′Am̃2V

p→ 0 and
√
n(n−1/4)2m̃′2VAm̃2V

p→
pV (m̃2(X2)) are shown in Lemma 3.0.8 and Lemma 3.0.9, respectively. This

completes the proof of part 1.

Part 2: Local General Alternatives

Working as in (2.7) we can write ξ̂V = ξV −∆m1V + n−1/4m̃2V + n−1/4m̃12V ,

where ξV , ∆m1V , m̃2V and m̃12V are defined as in (2.1) but using ξi, ∆m1(X1i),

m̃2(X2i) and m̃12(X1i, X2i), respectively, instead of ξ̂i. Thus
√
n(MST −MSE)

is

√
nξ̂
′
VAξ̂V =

√
n(ξV −∆m1V − n−1/4m̃2V )′A(ξV −∆m1V − n−1/4m̃2V )

+
√
n2n−1/4(ξV −∆m1V − n−1/4m̃2V )′Am̃12V

+
√
n(n−1/4)2m̃′12VAm̃12V . (2.9)

By Part 1 of the theorem,
√
n(ξV−∆m1V−n−1/4m̃2V )′A(ξV−∆m1V−n−1/4m̃2V )

converges in distribution to

N(pV ar(m2(X2)), [2p(2p− 1)τ2]/[3(p− 1)]).

Hence, it is enough to show that
√
n(n−1/4)2m̃′12VAm̃12V

p→ pV ar(m̃12(X1, X2))

and
√
n2n−1/4(ξV−∆m1V−n−1/4m̃2V )′Am̃12V

p→ 2pCov(m̃2(X2), m̃12(X1, X2)).

These are shown in Lemmas 3.0.11 and 3.0.10, respectively.

3. Some Detailed Derivations

Lemma 3.0.6. The second term in (2.3) converges in probability to zero, i.e.

T2n :=
√
nξTVA∆m1V

p→ 0.
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Proof. After some algebra it can be seen that

T2n =
n−1/2(np− 1)

(n− 1)p(p− 1)

n∑
i=1

∑
j∈Wi

ξj
∑
k∈Wi

∆m1(Xk)

− n
−1/2p

(n− 1)

n∑
i=1

ξi

n∑
j=1

∆m1(Xj)−
n−1/2p

(p− 1)

n∑
i=1

ξi∆m1(Xi). (3.1)

We will show that each of the three terms above converge in probability to zero

conditionally on U = {X, Z}, and thus also unconditionally. Note that, because

all windows Wi are of finite size (p), the first term on the right hand side of (3.1)

can be written as a finite (p2) sum of terms each of which is similar to the last

term in (3.1). Thus, it suffices to show that the last and second terms of (3.1)

converge to zero. For notational simplicity, all expectations and variances in this

proof are to be understood as conditional on U = {X, Z}. For the second term

in (3.1), note that n−1/2
∑n

i=1 ξi remains bounded in probability, and therefore,

its convergence to zero will follow if we show that n−1
∑n

k=1 ∆m1(Xk)
p→ 0. For

later use, we will actually show that

1

n3/4

n∑
k=1

∆m1(Xk) =
1

n3/4

n∑
k=1

(m̂1(Xk)−m1(Xk))
p→ 0. (3.2)

By Theorem 6 in Masry (1996), it follows that

sup
x
|m̂1(x)−m1(x)| = O

( log(n)

nλd1i

) 1
2

+O
(
λq+1
i

)
. (3.3)

Thus

1

n3/4

n∑
k=1

∆m1(Xk) = O

n1/4( log(n)

nλd1i

) 1
2

+O
(
n1/4λq+1

i

)
= o(1),

where the last equality follows from the assumptions of the Theorem 2.0.1.

Consider now the last term in (3.1). Because the weights w̃(Xi,Xj) of the
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local polynomial regression sum to 1 (Lemma 1.0.3), we can write

√
n

1

n

n∑
i=1

ξi∆m1(Xi) = n−1/2
n∑
i=1

ξi(m̂(Xi)−m(Xi))

= n−1/2
n∑
i=1

n∑
j=1

w̃(Xi,Xj)(m(Xj) + ξj −m(Xi))ξi

= n−1/2
n∑
i=1

n∑
j=1

w̃(Xi,Xj)(m(Xj)−m(Xi))ξi

+n−1/2
n∑
i=1

n∑
j=1

w̃(Xi,Xj)ξjξi. (3.4)

The first term of the right hand side of (3.4) has zero expectation, so it suffices

to show that its variance goes to zero. To this end, we write

V ar(
1√
n

n∑
i=1

n∑
j=1

ξiw̃(Xi,Xj)(m1(Xj)−m1(Xi)))

=
1

n

n∑
i=1

n∑
j1=1

n∑
j2=1

w̃(Xi,Xj1)w̃(Xi,Xj2)x

x(m1(Xj1)−m1(Xi))(m1(Xj2)−m1(Xi))V ar(ξi)

≤ M

n

n∑
i=1

n∑
j1=1

n∑
j2=1

w̃(Xi,Xj1)w̃(Xi,Xj2)x

x(c||Xj1 −Xi||c||Xj2 −Xi||)

= Mc2O(||H1/2
n ||)O(||H1/2

n ||) = o(1),

for some constants M and c, where the inequality holds because m1(·) is Lipschitz

continuous, the last equality follows from Lemma 1.0.4, and the second to last

equality from Lemma 1.0.5. Thus, by the assumptions of Theorem 2.0.1, the first

term of the right hand side of (3.4) goes in probability to zero. To show that the

second term in (3.4) also goes to 0 in probability, we will show that its second
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moment goes to zero. To this end, we write

E

 1√
n

n∑
i=1

n∑
j=1

ξiξjw̃(Xi,Xj)

2

= E

 1

n

n∑
i1=1

n∑
i2=1

n∑
j1=1

n∑
j2=1

ξi1ξi2ξj1ξj2w̃(Xi1 ,Xj1)w̃(Xi2 ,Xj2)


=

1

n

n∑
i=1

n∑
j=1

E(ξ2i ξ
2
j )w̃(Xi,Xj)

2

+
1

n

n∑
i=1

n∑
j=1

E(ξ2i ξ
2
j )w̃(Xi,Xi)w̃(Xj ,Xj)

+
1

n

n∑
i=1

n∑
j=1

E(ξ2i ξ
2
j )w̃(Xi,Xj)w̃(Xj ,Xi)

+
1

n

n∑
i=1

E(ξ4i )w̃(Xi,Xi)w̃(Xi,Xi)

= O

(
1

n|Hn|

)
+O

(
1

n|Hn|

)
+O

(
1

n|Hn|

)
+O

(
1

n2|Hn|

)
= o(1), (3.5)

by the fact that E(ξ4i ) is bounded and that each weight is of the order 1
n|Hn|1/2

(Lemma 1.0.4). Thus, by the assumptions of Theorem 2.0.1, the second term of

the right hand side of (3.4) goes in probability to zero.

This completes the proof of Lemma 3.0.6.

Lemma 3.0.7. The third term in (2.3) converges in probability to zero, i.e.

T3n =
√
n∆T

m1VA∆m1V
p→ 0.

Proof. Similarly to Lemma 3.0.6, we can write

T3n =

√
n(np− 1)

n(n− 1)p(p− 1)

n∑
i=1

∑
j∈Wi

∆m1(Xj)

2

−
√
np

n(n− 1)

(
n∑
i=1

∆m1(Xi)

)2

−
√
np

n(p− 1)

n∑
i=1

∆2
m1

(Xi). (3.6)
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we have to show that each of the three terms on the right hand side of (3.6)

converges to zero in probability Again, because all windows Wi are of finite size

(p), the first term on the right hand side of (3.6) can be written as a finite (p2)

sum of terms each of which is similar to the last term in (3.6). Thus, it suffices

to show that the last and second terms of (3.6) converge to zero.

Recall that (Masry, 1996)

sup
x
|m̂1(x)−m1(x)| = O

( log(n)

nλd1i

) 1
2

+O
(
λq+1
i

)
.

Replacing ∆m1 by its order, the second term in (3.6) is or order

O

√n
n2

n( log(n)

nλ
(d−1)
i

) 1
2

+ nλq+1
i

2


= O


n1/4( log(n)

nλd1i

) 1
2

+ n1/4λq+1
i

2
 = o(1)

where the last equality follows from the assumptions of the theorem.

Similarly, the third term in (3.6) is or order

O

√n
n
n

( log(n)

nλd1i

) 1
2

+ λq+1
i

2


= O


n1/4( log(n)

nλd1i

) 1
2

+ n1/4λq+1
i

2
 = o(1)

This completes the proof of Lemma 3.0.7.

Lemma 3.0.8. The second term in (2.8) converges in probability to zero, i.e.

√
n2n−1/4(ξV −∆m1V )′Am̃2V

p→ 0.
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Proof. By the definition of the matrix A, we can write (ξV −∆m1V )′Am̃2V as

np− 1

n(n− 1)p(p− 1)

n∑
i=1

 n∑
j=1

m̃2(X2j)I(j ∈Wi)

[ n∑
k=1

(ξk −∆m1(X1k))I(k ∈Wi)

]

− 1

n(n− 1)p

[
p

n∑
i=1

m̃2(X2i)

][
p

n∑
i=1

(ξi −∆m1(X1i))

]

− p

n(p− 1)

n∑
i=1

m̃2(X2i)(ξi −∆m1(X1i)).

Using Lemma 1.0.2 and the fact that m̃2(·) is Lipschitz continuous, the sum in

the first term can be expressed as

p

n∑
i=1

[m̃2(X2i) +O(n−1/2)]

[
n∑
k=1

(ξk −∆m1(X1k))I(k ∈Wi)

]
≤

≤ p

n∑
k=1

[
n∑
i=1

m̃2(X2i)I(i ∈Wk)

]
(ξk −∆m1(X1k))

+p2O(n−1/2)

n∑
k=1

|(ξk −∆m1(X1k))|

= p2
n∑
k=1

m̃2(X2k)(ξk −∆m1(X1k)) +Op(p
2n1/2),

so that

√
nn−1/4m̃′2VA(ξV −∆m1V ) =

n1.25p

n− 1

[
1

n

n∑
i=1

m̃2(X2i)(ξi −∆m1(X1i))

]

−n
1.25p

n− 1

[
1

n

n∑
i=1

m̃2(X2i)

][
1

n

n∑
i=1

(ξi −∆m1(X1i))

]
+Op

(
1

n1/4

)
.

Using the fact that E (m̃2(X2i)) = E (m̃2(X2i)ξi) = E(ξi) = 0, relation (3.2)

and also that n−3/4
∑n

i=1 m̃2(X2i)∆m1(X1i)
p→ 0, as is shown in a similar way to

(3.2), completes the proof of the lemma.

Lemma 3.0.9. The third term in (2.8) converges in probability to pV (m̃2(X2)),

i.e.

√
n(n−1/4)2m̃′2VAm̃2V

p→ pV (m̃2(X2)).
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Proof. Writing

m̃′2VAm̃2V =
np

n− 1


[

1

n

n∑
i=1

m̃2
2(X2i)

]
−

[
1

n

n∑
i=1

m̃2(X2i)

]2+Op

(
1

n1/2

)

= p
{
Em̃2

2(X2)− [Em̃2(X2)]
2
}

+Op

(
1

n1/2

)
,

it follows that

√
n(n−1/4)2m̃′2VAm̃2V = pVar(m̃2(X2)) +Op

(
1

n1/2

)
,

which completes the proof.

Lemma 3.0.10. The second term in (2.9) converges in probability to

2pCov(m̃2(X2), m̃12(X1, X2)), i.e.

√
n2n−1/4(ξV −∆m1V − n−1/4m̃2V )′Am̃12V

p→ 2pCov(m̃2(X2), m̃12(X1, X2)).

Proof. By the definition of the matrix A, we can write

√
nn−1/4(ξV −∆m1V − ρ1nm̃2V )′Am̃12V =

√
nn−1/4

np− 1

n(n− 1)p(p− 1)
×

×
n∑
i=1

 n∑
j=1

m̃12(X1j , X2j)I(j ∈Wi)

×
×

[
n∑
k=1

(ξk −∆m1(X1k)− n−1/4m̃2(X2k))I(k ∈Wi)

]

−
√
nn−1/4

1

n(n− 1)p

[
p

n∑
i=1

m̃12(X1i, X2i)

]
×[

p
n∑
i=1

(ξi −∆m1(X1i)− n−1/4m̃2(X2i))

]

−
√
nn−1/4

p

n(p− 1)

n∑
i=1

m̃12(X1i, X2i)(ξi −∆m1(X1i)− ρ1nm̃2(X2i)). (3.7)

Noting that n−3/4
∑n

i=1 ξim̃12(X1i, X2i)
p→ 0, and

1
n3/4

∑n
i=1 ∆m1(X1i)m12(X1i, X2i)

p→ 0, which follows by arguments similar to

(3.2), the third term in (3.7) goes in probability to [p/(p−1)]E(m̃2(X2)m̃12(X1, X2)).

Also, using (3.2), and the facts E(m̃12(X1, X2)) = 0, and n−3/4
∑n

i=1 ξi = op(1),
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the second term in (3.7) goes to pE(m̃2(X2))E(m̃12(X1, X2)) in probability.

Next, the component of the first term in (3.7) that corresponds to

n∑
j=1

n∑
k=1

n∑
i=1

m̃12(X1j , X2j)(ξk −∆m1(X1k))I(j ∈Wi)I(k ∈Wi)

goes to zero in probability by arguments similar to those used for the last

term in (3.7). Set m̄i
2(X2i) = 1

p

∑n
j=1 m̃2(X2j)I(j ∈ Wi) and m̄i

12(., X2i) =
1
p

∑n
j=1 m̃12(X1j , X2i)I(j ∈Wi), so that

1

p

n∑
j=1

m̃12(X1j , X2j)I(j ∈Wi) = m̄i
12(., X2i) + op(1),

1

p

n∑
j=1

m̃2(X2j)I(j ∈Wi) = m̄i
2(X2i) + op(1).

The remaining component of the first term in (3.7) can be written as

(np− 1)

n(n− 1)p(p− 1)

n∑
j=1

n∑
k=1

n∑
i=1

m̃12(X1j , X2j)m̃2(X2k)I(j ∈Wi)I(k ∈Wi)

=
(np− 1)p

(n− 1)(p− 1)

1

n

n∑
i=1

m̄i
12(., X2i)m̄

i
2(X2i) + op(1)

p→ p2

p− 1
E [m̃12(X1, X2)m̃2(X2)] ,

completing the proof.

Lemma 3.0.11. The third term in (2.9) converges in probability to

pV ar(m̃12(X1, X2)), i.e.

√
n(n−1/4)2m̃′12VAm̃12V

p→ pV ar(m̃12(X1, X2)).
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Proof. Note that we can write
√
n(n−1/4)2m̃′12VAm̃12V as

(np− 1)

n(n− 1)p(p− 1)

n∑
i=1

 n∑
j=1

m̃12(X1j , X2j)I(j ∈Wi)

×
[

n∑
k=1

m̃12(X1k, X2k))I(k ∈Wi)

]

− p

n(n− 1)

[
n∑
i=1

m̃12(X1i, X2i)

][
n∑
i=1

m̃12(X1i, X2i)

]

− p

n(p− 1)

n∑
i=1

m̃12(X1i, X2i)
2. (3.8)

Clearly, the third term in (3.8) goes to [p/(p−1)]E[m̃12(X1, X2)
2] in probability,

and the second term in (3.8) goes to p[E(m̃12(X1, X2))]
2 in probability. Using

the same notation as in lemma 3.0.10, the first term in (3.8) is equal to

(np− 1)p

n(n− 1)(p− 1)

n∑
i=1

[
m̄i

12(., X2i)
]2

+ op(1)
p→ p2

p− 1
E[(m̃12(X1i, X2i))

2],

completing the proof.
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