Statistica Sinica: Supplement

Reverse Regression: A Method for Joint Analysis of Multiple Endpoints in Randomized Clinical Trials

Zhiwei Zhang

U.S. Food and Drug Administration

Supplementary Material

This appendix consists of (1) examples of t(y) motivated by parametric models for (F, G) and (2) proofs of theoretical results stated in the main text.

S1 Examples of t(y) Motivated by Parametric Models for (F,G)

We restrict attention to a single endpoint in this section. If we assume $F = N(\theta_{01}, \theta_{02})$ and $G = N(\theta_{11}, \theta_{12})$, then the reverse regression model involves y and y^2 with respective regression coefficients $\theta_{11}\theta_{12}^{-1} - \theta_{01}\theta_{02}^{-1}$ and $2^{-1}(\theta_{02}^{-1} - \theta_{12}^{-1})$. If we assume, in addition, that $\theta_{02} = \theta_{12} = \theta_2$, then the y^2 term is not needed and the regression coefficient for y becomes $(\theta_{11} - \theta_{01})\theta_2^{-1}$, which equals 0 if and only if F = G. As another example, consider the following gamma model:

$$p_{\theta}(y) = p_{\theta_1,\theta_2}(y) = \frac{y^{\theta_1 - 1} \exp(-y/\theta_2)}{\Gamma(\theta_1)\theta_2^{\theta_1}}, \qquad y > 0.$$

If $f = p_{\theta_{01},\theta_{02}}$ and $g = p_{\theta_{11},\theta_{12}}$, then the corresponding reverse regression involves log y and y, with coefficients $\theta_{11} - \theta_{01}$ and $\theta_{02}^{-1} - \theta_{12}^{-1}$, respectively. The log y term can be omitted if we assume $\theta_{01} = \theta_{11}$ (i.e., common shape), while the y term is unnecessary if $\theta_{02} = \theta_{12}$ (i.e., common scale). In the latter case, the reverse regression takes the same form as in the normal case with equal variance.

For a categorical outcome, the reverse regression typically involves a collection of dummy variables unless additional structure is imposed. For example, one could set the right side of (2) to $\alpha + \sum_{k=1}^{K} \beta_k \mathbf{1}_{y=k}$ if Y takes its value from $\{0, \ldots, K\}$ for some $K \geq 1$. If the values of Y follow a natural order, it may be appropriate to specify a linear association structure as in Agresti (1990, Section 8.1). Let $v_0 \leq \cdots \leq v_K$ be given; then linear association between Z and Y means that the following log-odds ratio is linear in some unknown parameter β :

$$\log \frac{\mathbf{P}[Y=k|Z=1] \,\mathbf{P}[Y=j|Z=0]}{\mathbf{P}[Y=k|Z=0] \,\mathbf{P}[Y=j|Z=1]} = \beta(v_k - v_j), \qquad 0 \le j < k \le K.$$

A simple and intuitive characterization of the above is available through the corresponding reverse regression model:

$$logit(P[Z = 1|Y]) = \alpha + \beta V,$$

where $V = \sum_{k=1}^{K} v_k \mathbf{1}_{Y=k}$. Thus, in the present setting, imposing a linear association structure amounts to assigning a numerical score to each level of Y and treating it as a continuous variable in the logistic regression.

S2 Proofs

In the proofs of Theorems 1–3, we shall use the subscript 0 to denote the true value of a parameter and abbreviate $s_0 = s(\cdot, \cdot; \alpha_0, \beta_0)$ and $I_0 = I_{\alpha_0,\beta_0}$. We also write \mathbb{P}_0 for the true distribution of (Z, Y), \mathbb{P}_n for the empirical distribution, and $\mathbb{Q}_n = \sqrt{n}(\mathbb{P}_n - \mathbb{P}_0)$ for the empirical process based on the (Z_i, Y_i) , $i = 1, \ldots, n$.

Proof of Theorem 1

Let us write

$$\begin{split} &\sqrt{n}(F-F_0)h\\ &=\sqrt{n}\left[\mathbb{P}_n\frac{h(Y)}{1-\hat{\pi}+\hat{\pi}\exp\{\widehat{\alpha}^*+\widehat{\beta}^{\mathrm{T}}t(Y)\}}-\mathbb{P}_0\frac{h(Y)}{1-\pi_0+\pi_0\exp\{\alpha_0^*+\beta_0^{\mathrm{T}}t(Y)\}}\right]\\ &=\sqrt{n}[\mathbb{P}_n\psi_{\widehat{\pi},\widehat{\alpha},\widehat{\beta}}(Y)-\mathbb{P}_0\psi_{\pi_0,\alpha_0,\beta_0}(Y)]\\ &=\mathbb{Q}_n\psi_{\widehat{\pi},\widehat{\alpha},\widehat{\beta}}(Y)+\sqrt{n}\mathbb{P}_0[\psi_{\widehat{\pi},\widehat{\alpha},\widehat{\beta}}(Y)-\psi_{\pi_0,\alpha_0,\beta_0}(Y)],\end{split}$$

where

$$\psi_{\pi,\alpha,\beta}(y) = (1-\pi)^{-1}h(y)[1-\text{logit}^{-1}\{\alpha+\beta^{\mathrm{T}}t(y)\}]$$

It follows from Lemma 2.6.18 of van der Vaart and Wellner (1996) that the class of functions $\psi_{\pi,\alpha,\beta}$ with (π, α, β) ranging over a neighborhood of $(\pi_0, \alpha_0, \beta_0)$ is VC-subgraph and hence Donsker. By the dominated convergence theorem, the map $(\pi, \alpha, \beta) \mapsto \psi_{\pi,\alpha,\beta} \in L_2(\mathbb{P}_0)$ is continuous at $(\pi_0, \alpha_0, \beta_0)$. Further, by the continuous mapping theorem, $\|\psi_{\hat{\pi},\hat{\alpha},\hat{\beta}} - \psi_{\pi_0,\alpha_0,\beta_0}\|_2 = o_p(1)$, where the L_2 -norm is evaluated under the true distribution of (Z, Y) with (π, α, β) regarded as an index. Now it follows from theorem 19.24 of van der Vaart (1998) that

$$\mathbb{Q}_n \psi_{\widehat{\pi},\widehat{\alpha},\widehat{\beta}} = \mathbb{Q}_n \psi_{\pi_0,\alpha_0,\beta_0} + o_p(1).$$
(S2.1)

Again by the dominated convergence theorem, the map $(\pi, \alpha, \beta) \mapsto \mathbb{P}_0 \psi(\pi, \alpha, \beta)$ is differentiable at $(\pi_0, \alpha_0, \beta_0)$ with derivative $(1 - \pi_0)^{-1} (F_0 h, -a^T)^T$, where $a^T = \mathrm{E} \{ \mathrm{E}[Z|Y] (1 - \mathrm{E}[Z|Y]) h(Y) (1, t(Y)^T) \}$. Hence

$$\sqrt{n}\mathbb{P}_{0}[\psi_{\widehat{\pi},\widehat{\alpha},\widehat{\beta}} - \psi_{\pi_{0},\alpha_{0},\beta_{0}}] = \frac{(F_{0}h)\mathbb{Q}_{n}Z}{1 - \pi_{0}} - \frac{\sqrt{n}a^{\mathrm{T}}}{1 - \pi_{0}} \left(\widehat{\beta} - \alpha_{0}\right) + o_{p}(1)$$
(S2.2)

by the delta method. Combining (S2.1), (S2.2) and (6) yields

$$\sqrt{n}(\widehat{F} - F_0)h$$

= $(1 - \pi_0)^{-1} \mathbb{Q}_n \left\{ (1 - \mathbb{E}[Z|Y])h(Y) - a^T I_0^{-1} s_0(Z, Y) - (F_0 h)(1 - Z) \right\} + o_p(1).$ (S2.3)

Similarly, we have

$$\sqrt{n}(\widehat{G} - G_0)h = \pi_0^{-1}\mathbb{Q}_n\left\{ \mathbb{E}[Z|Y]h(Y) + a^{\mathrm{T}}I_0^{-1}s_0(Z,Y) - (G_0h)Z \right\} + o_p(1).$$
(S2.4)

Subtracting (S2.3) from (S2.4) shows that $(\widehat{G}-\widehat{F})h$ is asymptotically linear with influence function $U_1 + U_2$, where U_1 and U_2 are defined in the theorem. The asymptotic variance of $(\widehat{G}-\widehat{F})h$ is given by $\operatorname{var}(U_1) + \operatorname{var}(U_2)$ because U_1 and U_2 are uncorrelated.

Proof of Theorem 2

For estimating $(G_0 - F_0)h$, substituting π_0 and/or λ_0 in (5) amounts to adding a constant multiple of Z to the influence function. Therefore it suffices to show that Z is uncorrelated with the influence function for $(\widehat{G} - \widehat{F})h$ (i.e., $U_1 + U_2$). To this end, we write

$$\langle Z, U_1 \rangle_2 = \langle \mathbf{E}[Z|Y], U_1 \rangle_2 = \mathbf{E}\{\mathbf{E}[Z|Y]U_1\}, \qquad (S2.5)$$

where $\langle \cdot, \cdot \rangle_2$ denotes inner product in $L_2(\mathbb{P}_0)$. Next, define the operator A by

$$Ah' = \mathbf{E}\{(Z - \mathbf{E}[Z|Y])^2 h'(Y)(1, t(Y)^{\mathrm{T}})\}^{\mathrm{T}} = \langle (Z - \mathbf{E}[Z|Y])h'(Y), s_0(Z, Y) \rangle_2$$

where the inner product is taken elementwise. Note that a in the proof of Theorem 1 is just Ah. Obviously, A is linear. Furthermore, for any constant c, we have

$$(Ac)^{\mathrm{T}}I_{0}^{-1}s_{0} = \langle c(Z - \mathrm{E}[Z|Y]), s_{0}^{\mathrm{T}}\rangle_{2}I_{0}^{-1}s_{0} = \langle ce_{1}^{\mathrm{T}}s_{0}, s_{0}^{\mathrm{T}}\rangle_{2}I_{0}^{-1}s_{0} = ce_{1}^{\mathrm{T}}\langle s_{0}, s_{0}^{\mathrm{T}}\rangle_{2}I_{0}^{-1}s_{0} = ce_{1}^{\mathrm{T}}I_{0}I_{0}^{-1}s_{0} = ce_{1}^{\mathrm{T}}s_{0} = c(Z - \mathrm{E}[Z|Y]),$$

where $e_1 = (1, 0, ..., 0)^{T}$. Now we can write $U_2 = a_0^{T} I_0^{-1} s_0$ where $a_0 = Ah_0$ and

$$h_0 = \frac{h}{\pi_0(1-\pi_0)} - \frac{G_0h}{\pi_0} - \frac{F_0h}{1-\pi_0} = \frac{h-G_0h}{\pi_0} + \frac{h-F_0h}{1-\pi_0}.$$

It follows that

$$\langle Z, U_2 \rangle_2 = \langle Z - \mathbf{E}[Z|Y], U_2 \rangle_2 = \langle e_1^{\mathrm{T}} s_0, a_0^{\mathrm{T}} I_0^{-1} s_0 \rangle_2 = e_1^{\mathrm{T}} \langle s_0, s_0^{\mathrm{T}} \rangle_2 I_0^{-1} a_0 = e_1^{\mathrm{T}} I_0 I_0^{-1} a_0$$

= $e_1^{\mathrm{T}} a_0 = \langle (Z - \mathbf{E}[Z|Y]) h_0, e_1^{\mathrm{T}} s_0 \rangle_2 = \mathbf{E} \{ (Z - \mathbf{E}[Z|Y])^2 h_0(Y) \}$
= $\mathbf{E} \{ \mathbf{E}[Z|Y] (1 - \mathbf{E}[Z|Y]) h_0(Y) \}.$ (S2.6)

It is now straightforward to verify that (S2.5) and (S2.6) cancel each other, proving the theorem.

Proof of Theorem 3

We shall borrow notation and results from the previous proofs. It can be argued as in the proof of Theorem 1 that $(\tilde{G} - \tilde{F})h$ is asymptotically linear with influence function $U_1 + U'_2$ with $U'_2 = (Z - \mathbb{E}[Z|Y])h_0(Y)$. Since U_1 and U'_2 are uncorrelated, the asymptotic variance of $(\tilde{G} - \tilde{F})h$ is given by $\operatorname{var}(U_1) + \operatorname{var}(U'_2)$. Recall that the asymptotic variance of $(\hat{G} - \hat{F})h$ is $\operatorname{var}(U_1) + \operatorname{var}(U_2)$ with $U_2 = a_0^{\mathrm{T}}I_0^{-1}s_0$. Thus it suffices to show that $\operatorname{var}(U_2) \leq \operatorname{var}(U'_2)$. To this end, we write

$$\operatorname{var}(U_2) = a_0^{\mathrm{T}} I_0^{-1} \operatorname{var}(s_0) I_0^{-1} a_0 = a_0^{\mathrm{T}} I_0^{-1} I_0 I_0^{-1} a_0 = a_0^{\mathrm{T}} I_0^{-1} a_0 = \|I_0^{-1/2} a_0\|^2.$$

Denote $b = I_0^{-1/2} a_0 = \langle (Z - \mathbb{E}[Z|Y])h_0, I_0^{-1/2} s_0 \rangle_2 = \langle U'_2, I_0^{-1/2} s_0 \rangle_2$. Then

$$||b||^{2} = b^{\mathrm{T}}b = b^{\mathrm{T}}\langle U_{2}', I_{0}^{-1/2}s_{0}\rangle_{2} = \langle U_{2}', b^{\mathrm{T}}I_{0}^{-1/2}s_{0}\rangle_{2} \le ||U_{2}'||_{2}||b^{\mathrm{T}}I_{0}^{-1/2}s_{0}||_{2}$$
$$= \mathrm{sd}(U_{2}')\,\mathrm{sd}(b^{\mathrm{T}}I_{0}^{-1/2}s_{0}) = \mathrm{sd}(U_{2}')(b^{\mathrm{T}}I_{0}^{-1/2}I_{0}I_{0}^{-1/2}b)^{1/2} = \mathrm{sd}(U_{2}')||b|| \quad (S2.7)$$

by the Cauchy-Schwartz inequality. It follows that $\operatorname{var}(U_2) = \|b\|^2 \leq \operatorname{var}(U'_2)$.

We now show that $\operatorname{var}(U_2) = \operatorname{var}(U'_2)$ if and only if $h \in \operatorname{lin}\{1,t\}$, where $\operatorname{lin}\{\cdot\}$ denotes linear span. First, suppose $h \in \operatorname{lin}\{1,t\}$ so that $h_0 \in \operatorname{lin}\{1,t\}$. Then there exists a vector b^* such that $U'_2 = (Z - \operatorname{E}[Z|Y])h_0 = b^{*\mathrm{T}}I_0^{-1/2}s_0$. By definition, $b = \langle U'_2, I_0^{-1/2}s_0 \rangle_2 = I_0^{-1/2}I_0I_0^{-1/2}b^* = b^*$. Hence $U'_2 = b^{\mathrm{T}}I_0^{-1/2}s_0$ and equality in (S2.7) holds. Conversely, suppose $\operatorname{var}(U_2) = \operatorname{var}(U'_2)$. In the trivial case that b = 0 (which implies $0 = \operatorname{var}(U_2) = \operatorname{var}(U'_2)$), we have $0 = U'_2 = (Z - \operatorname{E}[Z|Y])h_0(Y)$ almost surely. It follows that, almost surely, $h_0 = 0$, h is a constant, and hence $h \in \operatorname{lin}\{1,t\}$. So assume $b \neq 0$; then equality in (S2.7) implies that

$$U_2' = cb^{\rm T} I_0^{-1/2} s_0 \tag{S2.8}$$

for some constant c. (In fact, c = 1 because $b = \langle U'_2, I_0^{-1/2} s_0 \rangle_2 = cb$.) Because $Z - E[Z|Y] \neq 0$, (S2.8) implies that $h_0 = b^{\mathrm{T}} I_0^{-1/2} (1, t^{\mathrm{T}})^{\mathrm{T}} \in \mathrm{lin}\{1, t\}$ and hence $h \in \mathrm{lin}\{1, t\}$. This completes the proof.

Proof of Theorem 4

Because stochastic ordering is preserved under a monotone transformation, we may assume without loss of generality that each t_j is identity. It suffices to show that F_1 is stochastically smaller than G_1 under the given conditions. Let $y_1^* \in \mathbb{R}$ be given. If $F_1(y_1^*) = 0$ or 1, then $G_1(y_1^*) = F_1(y_1^*)$ because F and G are assumed to have the same support. Otherwise, we write

$$G_1(y_1^*)/F_1(y_1^*) = \mathbb{E}[g(Y)/f(Y)|Y_{[1]} \le y_1^*, Z = 0].$$
 (S2.9)

On the other hand, we have

$$\begin{split} 1 &= \mathrm{E}[g(Y)/f(Y)|Z=0] \\ &= \mathrm{P}[Y_{[1]} \leq y_1^*|Z=0] \, \mathrm{E}[g(Y)/f(Y)|Y_{[1]} \leq y_1^*, Z=0] \\ &\quad + \mathrm{P}[Y_{[1]} > y_1^*|Z=0] \, \mathrm{E}[g(Y)/f(Y)|Y_{[1]} > y_1^*, Z=0]. \end{split}$$

Hence (S2.9) will be ≤ 1 if and only if

$$\mathbf{E}[g(Y)/f(Y)|Y_{[1]} \le y_1^*, Z = 0] \le \mathbf{E}[g(Y)/f(Y)|Y_{[1]} > y_1^*, Z = 0].$$
(S2.10)

To this end, we define

$$h_J(y) = g(y)/f(y) = \exp\left(\alpha^* + \sum_{j=1}^J \beta_j y_j\right),$$

$$h_{J-1}(y_1, \dots, y_{J-1}) = \operatorname{E}[h_J(Y)|Y_{[1]} = y_1, \dots, Y_{[J-1]} = y_{J-1}, Z = 0],$$

$$h_{J-2}(y_1, \dots, y_{J-2}) = \operatorname{E}[h_{J-1}(Y)|Y_{[1]} = y_1, \dots, Y_{[J-2]} = y_{J-2}, Z = 0],$$

$$\dots,$$

$$h_1(y_1) = \operatorname{E}[h_2(Y_{[1]}, Y_{[2]})|Y_{[1]} = y_1, Z = 0].$$

Because each β_j is nonnegative, h_J is increasing in each of its arguments. Next, the positive dependence assumption applied to $[Y_{[J]}|Y_{[1]}, \ldots, Y_{[J-1]}, Z = 0]$, together with Lemma 1 below, implies that h_{J-1} is increasing in each argument. Repeat this argument k-2 more times to conclude that h_1 is increasing in its only argument. It follows that

LHS of (S2.10) =
$$E[h_1(Y_{[1]})|Y_{[1]} \le y_1^*, Z = 0] \le h_1(y_1^*)$$

 $\le E[h_1(Y_{[1]})|Y_{[1]} > y_1^*, Z = 0] = RHS of (S2.10),$

and the proof is complete.

Lemma 1. Let P_1 and P_2 be probability measures on \mathbb{R} and let $h : \mathbb{R} \to [0, \infty)$ be increasing. If P_1 is stochastically smaller than P_2 , then $P_1h \leq P_2h$.

Proof. The result is immediate for $h = 1_{(x,\infty)}$. A limiting argument can be used to prove the result for $h = 1_{[x,\infty)}$ and hence for $h = \sum_{k=1}^{K} c_k 1_{[x_k,\infty)}$ with $c_k \ge 0$ for all k. A left-continuous increasing function h can be approximated by the sequence of functions

$$h_m = \sum_{k=0}^{2^{2m+1}} c_{m,k} \mathbf{1}_{[x_{m,k},\infty)},$$

where $x_{m,k} = -2^m + k2^{-m}$, $c_{m,0} = h(x_{m,0})$, $c_{m,k} = h(x_{m,k}) - h(x_{m,k-1})$, $k = 1, \ldots, 2^{2m+1}$, $m \ge 1$. Since h is nonnegative and increasing, each $c_{m,k}$ is nonnegative so $P_1h_m \le P_2h_m$ for every m. Further, $h_m \uparrow h$ because h is assumed left-continuous. Hence, by the monotone convergence theorem,

$$P_1h = \lim_{m \to \infty} P_1h_m \le \lim_{m \to \infty} P_2h_m = P_2h.$$

Finally, consider an increasing function h that is not left-continuous, and denote by h_{-} its left-hand limit. For $m \geq 1$, let $D_m = \{x \in [-2^m, 2^m] : h(x) - h_{-}(x) > 2^{-m}\}$; then D_m is finite for every m. Let $x'_{m,k}, k \geq 0$, denote the distinct values in $D_m \cup \{-2^m + k2^{-m} : k = 0, \ldots, 2^{2m+1}\}$ arranged in ascending order. Let $c'_{m,0} = h(x'_{m,0}), c'_{m,k} = h(x'_{m,k}) - h(x'_{m,k-1})$ for $k \geq 1$, and

$$h'_m = \sum_{k \ge 0} c'_{m,k} \mathbf{1}_{[x'_{m,k},\infty)}$$

Zhiwei Zhang

This definition ensures that $h'_m \uparrow h$ even though h is not left-continuous. The result again follows from the monotone convergence theorem.

Bibliography

Agresti, A. (1990). Categorical Data Analysis. Wiley, New York.

- van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.
- van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes with Applications to Statistics. Springer-Verlag, New York.