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This appendix consists of (1) examples of t(y) motivated by parametric models for
(F,G) and (2) proofs of theoretical results stated in the main text.

S1 Examples of t(y) Motivated by Parametric Models
for (F,G)

We restrict attention to a single endpoint in this section. If we assume F = N(θ01, θ02)
and G = N(θ11, θ12), then the reverse regression model involves y and y2 with respective
regression coefficients θ11θ

−1
12 − θ01θ

−1
02 and 2−1(θ−1

02 − θ−1
12 ). If we assume, in addition,

that θ02 = θ12 = θ2, then the y2 term is not needed and the regression coefficient for
y becomes (θ11 − θ01)θ

−1
2 , which equals 0 if and only if F = G. As another example,

consider the following gamma model:

pθ(y) = pθ1,θ2(y) =
yθ1−1 exp(−y/θ2)

Γ(θ1)θ
θ1
2

, y > 0.

If f = pθ01,θ02 and g = pθ11,θ12 , then the corresponding reverse regression involves log y
and y, with coefficients θ11 − θ01 and θ−1

02 − θ−1
12 , respectively. The log y term can be

omitted if we assume θ01 = θ11 (i.e., common shape), while the y term is unnecessary if
θ02 = θ12 (i.e., common scale). In the latter case, the reverse regression takes the same
form as in the normal case with equal variance.

For a categorical outcome, the reverse regression typically involves a collection of
dummy variables unless additional structure is imposed. For example, one could set
the right side of (2) to α +

∑K
k=1 βk1y=k if Y takes its value from {0, . . . ,K} for some

K ≥ 1. If the values of Y follow a natural order, it may be appropriate to specify a linear
association structure as in Agresti (1990, Section 8.1). Let v0 ≤ · · · ≤ vK be given; then
linear association between Z and Y means that the following log-odds ratio is linear in
some unknown parameter β:

log
P[Y = k|Z = 1]P[Y = j|Z = 0]

P[Y = k|Z = 0]P[Y = j|Z = 1]
= β(vk − vj), 0 ≤ j < k ≤ K.
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A simple and intuitive characterization of the above is available through the correspond-
ing reverse regression model:

logit(P[Z = 1|Y ]) = α+ βV,

where V =
∑K

k=1 vk1Y=k. Thus, in the present setting, imposing a linear association
structure amounts to assigning a numerical score to each level of Y and treating it as a
continuous variable in the logistic regression.

S2 Proofs

In the proofs of Theorems 1–3, we shall use the subscript 0 to denote the true value of
a parameter and abbreviate s0 = s(·, ·;α0, β0) and I0 = Iα0,β0

. We also write P0 for the
true distribution of (Z, Y ), Pn for the empirical distribution, and Qn =

√
n(Pn −P0) for

the empirical process based on the (Zi, Yi), i = 1, . . . , n.

Proof of Theorem 1

Let us write
√
n(F̂ − F0)h

=
√
n

[
Pn

h(Y )

1− π̂ + π̂ exp{α̂∗ + β̂Tt(Y )}
− P0

h(Y )

1− π0 + π0 exp{α∗
0 + βT

0 t(Y )}

]
=

√
n[Pnψπ̂,α̂,β̂(Y )− P0ψπ0,α0,β0(Y )]

= Qnψπ̂,α̂,β̂(Y ) +
√
nP0[ψπ̂,α̂,β̂(Y )− ψπ0,α0,β0(Y )],

where
ψπ,α,β(y) = (1− π)−1h(y)[1− logit−1{α+ βTt(y)}].

It follows from Lemma 2.6.18 of van der Vaart and Wellner (1996) that the class of func-
tions ψπ,α,β with (π, α, β) ranging over a neighborhood of (π0, α0, β0) is VC-subgraph and
hence Donsker. By the dominated convergence theorem, the map (π, α, β) 7→ ψπ,α,β ∈
L2(P0) is continuous at (π0, α0, β0). Further, by the continuous mapping theorem,
∥ψπ̂,α̂,β̂ − ψπ0,α0,β0∥2 = op(1), where the L2-norm is evaluated under the true distri-

bution of (Z, Y ) with (π, α, β) regarded as an index. Now it follows from theorem 19.24
of van der Vaart (1998) that

Qnψπ̂,α̂,β̂ = Qnψπ0,α0,β0 + op(1). (S2.1)

Again by the dominated convergence theorem, the map (π, α, β) 7→ P0ψ(π, α, β) is differ-
entiable at (π0, α0, β0) with derivative (1−π0)−1(F0h,−aT)T, where aT = E{E[Z|Y ](1−
E[Z|Y ])h(Y )(1, t(Y )T)}. Hence

√
nP0[ψπ̂,α̂,β̂ − ψπ0,α0,β0 ] =

(F0h)QnZ

1− π0
−

√
naT

1− π0

(
α̂− α0

β̂ − β0

)
+ op(1) (S2.2)
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by the delta method. Combining (S2.1), (S2.2) and (6) yields

√
n(F̂ − F0)h

= (1− π0)
−1Qn

{
(1− E[Z|Y ])h(Y )− aTI−1

0 s0(Z, Y )− (F0h)(1− Z)
}
+ op(1). (S2.3)

Similarly, we have

√
n(Ĝ−G0)h = π−1

0 Qn

{
E[Z|Y ]h(Y ) + aTI−1

0 s0(Z, Y )− (G0h)Z
}
+ op(1). (S2.4)

Subtracting (S2.3) from (S2.4) shows that (Ĝ−F̂ )h is asymptotically linear with influence
function U1+U2, where U1 and U2 are defined in the theorem. The asymptotic variance
of (Ĝ− F̂ )h is given by var(U1) + var(U2) because U1 and U2 are uncorrelated.

Proof of Theorem 2

For estimating (G0 − F0)h, substituting π0 and/or λ0 in (5) amounts to adding a con-
stant multiple of Z to the influence function. Therefore it suffices to show that Z is
uncorrelated with the influence function for (Ĝ − F̂ )h (i.e., U1 + U2). To this end, we
write

⟨Z,U1⟩2 = ⟨E[Z|Y ], U1⟩2 = E{E[Z|Y ]U1}, (S2.5)

where ⟨·, ·⟩2 denotes inner product in L2(P0). Next, define the operator A by

Ah′ = E{(Z − E[Z|Y ])2h′(Y )(1, t(Y )T)}T = ⟨(Z − E[Z|Y ])h′(Y ), s0(Z, Y )⟩2,

where the inner product is taken elementwise. Note that a in the proof of Theorem 1 is
just Ah. Obviously, A is linear. Furthermore, for any constant c, we have

(Ac)TI−1
0 s0 = ⟨c(Z − E[Z|Y ]), sT0 ⟩2I−1

0 s0 = ⟨ceT1 s0, sT0 ⟩2I−1
0 s0

= ceT1 ⟨s0, sT0 ⟩2I−1
0 s0 = ceT1 I0I

−1
0 s0 = ceT1 s0 = c(Z − E[Z|Y ]),

where e1 = (1, 0, . . . , 0)T. Now we can write U2 = aT0 I
−1
0 s0 where a0 = Ah0 and

h0 =
h

π0(1− π0)
− G0h

π0
− F0h

1− π0
=
h−G0h

π0
+
h− F0h

1− π0
.

It follows that

⟨Z,U2⟩2 = ⟨Z − E[Z|Y ], U2⟩2 = ⟨eT1 s0, aT0 I−1
0 s0⟩2 = eT1 ⟨s0, sT0 ⟩2I−1

0 a0 = eT1 I0I
−1
0 a0

= eT1 a0 = ⟨(Z − E[Z|Y ])h0, e
T
1 s0⟩2 = E{(Z − E[Z|Y ])2h0(Y )}

= E{E[Z|Y ](1− E[Z|Y ])h0(Y )}.
(S2.6)

It is now straightforward to verify that (S2.5) and (S2.6) cancel each other, proving the
theorem.
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Proof of Theorem 3

We shall borrow notation and results from the previous proofs. It can be argued as in
the proof of Theorem 1 that (G̃ − F̃ )h is asymptotically linear with influence function
U1+U

′
2 with U ′

2 = (Z−E[Z|Y ])h0(Y ). Since U1 and U ′
2 are uncorrelated, the asymptotic

variance of (G̃− F̃ )h is given by var(U1) + var(U ′
2). Recall that the asymptotic variance

of (Ĝ − F̂ )h is var(U1) + var(U2) with U2 = aT0 I
−1
0 s0. Thus it suffices to show that

var(U2) ≤ var(U ′
2). To this end, we write

var(U2) = aT0 I
−1
0 var(s0)I

−1
0 a0 = aT0 I

−1
0 I0I

−1
0 a0 = aT0 I

−1
0 a0 = ∥I−1/2

0 a0∥2.

Denote b = I
−1/2
0 a0 = ⟨(Z − E[Z|Y ])h0, I

−1/2
0 s0⟩2 = ⟨U ′

2, I
−1/2
0 s0⟩2. Then

∥b∥2 = bTb = bT⟨U ′
2, I

−1/2
0 s0⟩2 = ⟨U ′

2, b
TI

−1/2
0 s0⟩2 ≤ ∥U ′

2∥2∥bTI
−1/2
0 s0∥2

= sd(U ′
2) sd(b

TI
−1/2
0 s0) = sd(U ′

2)(b
TI

−1/2
0 I0I

−1/2
0 b)1/2 = sd(U ′

2)∥b∥ (S2.7)

by the Cauchy-Schwartz inequality. It follows that var(U2) = ∥b∥2 ≤ var(U ′
2).

We now show that var(U2) = var(U ′
2) if and only if h ∈ lin{1, t}, where lin{·}

denotes linear span. First, suppose h ∈ lin{1, t} so that h0 ∈ lin{1, t}. Then there

exists a vector b∗ such that U ′
2 = (Z − E[Z|Y ])h0 = b∗TI

−1/2
0 s0. By definition, b =

⟨U ′
2, I

−1/2
0 s0⟩2 = I

−1/2
0 I0I

−1/2
0 b∗ = b∗. Hence U ′

2 = bTI
−1/2
0 s0 and equality in (S2.7)

holds. Conversely, suppose var(U2) = var(U ′
2). In the trivial case that b = 0 (which

implies 0 = var(U2) = var(U ′
2)), we have 0 = U ′

2 = (Z − E[Z|Y ])h0(Y ) almost surely. It
follows that, almost surely, h0 = 0, h is a constant, and hence h ∈ lin{1, t}. So assume
b ̸= 0; then equality in (S2.7) implies that

U ′
2 = cbTI

−1/2
0 s0 (S2.8)

for some constant c. (In fact, c = 1 because b = ⟨U ′
2, I

−1/2
0 s0⟩2 = cb.) Because Z −

E[Z|Y ] ̸= 0, (S2.8) implies that h0 = bTI
−1/2
0 (1, tT)T ∈ lin{1, t} and hence h ∈ lin{1, t}.

This completes the proof.

Proof of Theorem 4

Because stochastic ordering is preserved under a monotone transformation, we may as-
sume without loss of generality that each tj is identity. It suffices to show that F1 is
stochastically smaller than G1 under the given conditions. Let y∗1 ∈ R be given. If
F1(y

∗
1) = 0 or 1, then G1(y

∗
1) = F1(y

∗
1) because F and G are assumed to have the same

support. Otherwise, we write

G1(y
∗
1)/F1(y

∗
1) = E[g(Y )/f(Y )|Y[1] ≤ y∗1 , Z = 0]. (S2.9)

On the other hand, we have

1 = E[g(Y )/f(Y )|Z = 0]

= P[Y[1] ≤ y∗1 |Z = 0]E[g(Y )/f(Y )|Y[1] ≤ y∗1 , Z = 0]

+ P[Y[1] > y∗1 |Z = 0]E[g(Y )/f(Y )|Y[1] > y∗1 , Z = 0].
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Hence (S2.9) will be ≤ 1 if and only if

E[g(Y )/f(Y )|Y[1] ≤ y∗1 , Z = 0] ≤ E[g(Y )/f(Y )|Y[1] > y∗1 , Z = 0]. (S2.10)

To this end, we define

hJ (y) = g(y)/f(y) = exp

α∗ +

J∑
j=1

βjyj

 ,

hJ−1(y1, . . . , yJ−1) = E[hJ(Y )|Y[1] = y1, . . . , Y[J−1] = yJ−1, Z = 0],

hJ−2(y1, . . . , yJ−2) = E[hJ−1(Y )|Y[1] = y1, . . . , Y[J−2] = yJ−2, Z = 0],

. . . ,

h1(y1) = E[h2(Y[1], Y[2])|Y[1] = y1, Z = 0].

Because each βj is nonnegative, hJ is increasing in each of its arguments. Next, the
positive dependence assumption applied to [Y[J]|Y[1], . . . , Y[J−1], Z = 0], together with
Lemma 1 below, implies that hJ−1 is increasing in each argument. Repeat this argument
k − 2 more times to conclude that h1 is increasing in its only argument. It follows that

LHS of (S2.10) = E[h1(Y[1])|Y[1] ≤ y∗1 , Z = 0] ≤ h1(y
∗
1)

≤ E[h1(Y[1])|Y[1] > y∗1 , Z = 0] = RHS of (S2.10),

and the proof is complete.

Lemma 1. Let P1 and P2 be probability measures on R and let h : R → [0,∞) be
increasing. If P1 is stochastically smaller than P2, then P1h ≤ P2h.

Proof. The result is immediate for h = 1(x,∞). A limiting argument can be used to prove

the result for h = 1[x,∞) and hence for h =
∑K

k=1 ck1[xk,∞) with ck ≥ 0 for all k. A
left-continuous increasing function h can be approximated by the sequence of functions

hm =
22m+1∑
k=0

cm,k1[xm,k,∞),

where xm,k = −2m+k2−m, cm,0 = h(xm,0), cm,k = h(xm,k)−h(xm,k−1), k = 1, . . . , 22m+1,
m ≥ 1. Since h is nonnegative and increasing, each cm,k is nonnegative so P1hm ≤ P2hm
for every m. Further, hm ↑ h because h is assumed left-continuous. Hence, by the
monotone convergence theorem,

P1h = lim
m→∞

P1hm ≤ lim
m→∞

P2hm = P2h.

Finally, consider an increasing function h that is not left-continuous, and denote by h−
its left-hand limit. For m ≥ 1, let Dm = {x ∈ [−2m, 2m] : h(x) − h−(x) > 2−m};
then Dm is finite for every m. Let x′m,k, k ≥ 0, denote the distinct values in Dm ∪
{−2m + k2−m : k = 0, . . . , 22m+1} arranged in ascending order. Let c′m,0 = h(x′m,0),
c′m,k = h(x′m,k)− h(x′m,k−1) for k ≥ 1, and

h′m =
∑
k≥0

c′m,k1[x′
m,k,∞).
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This definition ensures that h′m ↑ h even though h is not left-continuous. The result
again follows from the monotone convergence theorem.
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