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This appendix consists of (1) examples of ¢(y) motivated by parametric models for
(F, @) and (2) proofs of theoretical results stated in the main text.

S1 Examples of t(y) Motivated by Parametric Models
for (F,G)

We restrict attention to a single endpoint in this section. If we assume F' = N (g1, 002)
and G = N (61, 012), then the reverse regression model involves y and y? with respective
regression coefficients 61,075 — 00105, and 271 (0, — 013'). If we assume, in addition,
that Opy = 615 = 6o, then the y? term is not needed and the regression coefficient for
y becomes (011 — 0p1)05 *, which equals 0 if and only if F = G. As another example,
consider the following gamma model:

y"1 L exp(—y/6-)
T'(61)65"

po(y) = po,.0,(y) = . y>0.

If f = poy,,00, and g = po,, 6,,, then the corresponding reverse regression involves logy
and y, with coefficients 011 — 61 and 90_21 — 01_21, respectively. The logy term can be
omitted if we assume p; = 017 (i.e., common shape), while the y term is unnecessary if
Bo2 = 612 (i.e., common scale). In the latter case, the reverse regression takes the same
form as in the normal case with equal variance.

For a categorical outcome, the reverse regression typically involves a collection of
dummy variables unless additional structure is imposed. For example, one could set
the right side of (2) to a + Zszl Brly=k if Y takes its value from {0,..., K} for some
K > 1. If the values of Y follow a natural order, it may be appropriate to specify a linear
association structure as in Agresti (1990, Section 8.1). Let vg < --- < vk be given; then
linear association between Z and Y means that the following log-odds ratio is linear in
some unknown parameter 3:

P[Y = k|Z =1]P[Y = j|Z = 0]
P[Y =k|Z =0|P[Y =j|Z = 1]

log = B(vg — vj), 0<j<k<K.
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A simple and intuitive characterization of the above is available through the correspond-
ing reverse regression model:

logit(P[Z = 1|Y]) = a + BV,
where V' = Zszl vgly—g. Thus, in the present setting, imposing a linear association

structure amounts to assigning a numerical score to each level of Y and treating it as a
continuous variable in the logistic regression.

S2 Proofs

In the proofs of Theorems 1-3, we shall use the subscript 0 to denote the true value of
a parameter and abbreviate s = s(-,; o, Bo) and Iy = I, g,- We also write Py for the
true distribution of (Z,Y), PP, for the empirical distribution, and Q,, = v/n(P,, — Py) for
the empirical process based on the (Z;,Y;),i=1,...,n.

Proof of Theorem 1

Let us write

V(F = Fo)h
h(Y) h(Y)

= P, — —P
vn 1 -7+ 7exp{ar + BT(Y)}  1—mo+moexplag + Aet(Y)}
= \/ﬁ[inﬁ@ﬁ(Y) - PO’lpﬂoyao,ﬁo (Y)]

= anﬁag(y) + \/ﬁPo[wﬁ,a,g(Y) = Yrg,a0.8 (Y)];

where
Urap(y) = (1—m) " hiy)[L —logit™ {a + 5Tt(y)}].

It follows from Lemma 2.6.18 of van der Vaart and Wellner (1996) that the class of func-
tions ¢¥r o, With (7, o, ) ranging over a neighborhood of (g, cg, o) is VC-subgraph and
hence Donsker. By the dominated convergence theorem, the map (7, a, ) — ¥z a5 €
Ly(Pg) is continuous at (mg, g, Bo). Further, by the continuous mapping theorem,
¥z 2.5 = ¥mosa0.80ll2 = 0p(1), where the Lo-norm is evaluated under the true distri-
bution of (Z,Y) with (7, a, §) regarded as an index. Now it follows from theorem 19.24
of van der Vaart (1998) that

anaaﬁ = @"wﬂoﬂoyﬁo + Op(l)' (82'1)

Again by the dominated convergence theorem, the map (7, a, 8) — Potp(7, v, 8) is differ-
entiable at (7o, g, Bp) with derivative (1—mg) " (Foh, —a™)T, where a = E{E[Z|Y](1—
E[Z|Y)h(Y)(1,t(Y)T)}. Hence

VARO[ 1 5~ Yrpraobo) = (Foh)QuZ  /na™ (a — ag

-7  1—mp Bﬂo) +0p(1) (52.2)
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by the delta method. Combining (S2.1), (S2.2) and (6) yields
Vn(F — Fo)h
= (1= m0) "' Qu {(1 — EZIYDA(Y) — a7 [ 50(Z,Y) — (Foh) (1 — 2)} + 0p(1). (52:3)
Similarly, we have
V(G — Go)h = 75 Qu {EIZ|YIW(Y) + aT 15 50(Z,Y) — (Goh)Z} +0,(1).  (S2.4)

Subtracting (52.3) from (S2.4) shows that ((/j —F )h is asymptotically linear with influence
function Uy + Us, where Uy and Uz are defined in the theorem. The asymptotic variance
of (G — F)h is given by var(Uy) + var(Us) because Uy and Uy are uncorrelated.

Proof of Theorem 2

For estimating (Goy — Fp)h, substituting my and/or A in (5) amounts to adding a con-
stant multiple of Z to the influence function. Therefore it suffices to show that Z is
uncorrelated with the influence function for (G — F)h (i.e., Uy + Usy). To this end, we
write

(Z,Ur)2 = (E[Z|Y],U1)2 = E{E[Z|Y]|UL}, (52.5)
where (-, )2 denotes inner product in Lo(Pg). Next, define the operator A by
AW = B{(Z = BELZIY]))2H (V) (Lt} = (Z = BZIYDH(Y), 50(Z,Y ),

where the inner product is taken elementwise. Note that @ in the proof of Theorem 1 is
just Ah. Obviously, A is linear. Furthermore, for any constant ¢, we have

(Ac)Tlglso = {c(Z — E[Z|Y]),Sg>2[6180 = <celTso,soT>glglso

= ceq (s0,80 )2l ' so = cei InIy tsog = cel so = ¢(Z — E[Z|Y)),

where e; = (1,0,...,0)T. Now we can write U = aoTlo_lso where ag = Ahg and
h Goh  Foh  h—Goh h—Fyh
ho = — — = + .
7T0(1—7T0) ) 1—71'0 ) 1—7T0

It follows that

(Z,Us)g = (Z — E[Z|Y],Us)2 = (e s0,ag Iy 's0)2 = 1 (s0, 50 )2l tao = el oI L ag
= eiap = ((Z — E[Z|Y])ho, e1 s50)2 = E{(Z — E[Z|Y])?ho(Y)}
— B{E[ZIY](1 - E[Z[Yho(Y)}.
(S2.6)

It is now straightforward to verify that (S2.5) and (S2.6) cancel each other, proving the
theorem.

S3
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Proof of Theorem 3

We shall borrow notation and results from the previous proofs. It can be argued as in
the proof of Theorem 1 that (G — F)h is asymptotically linear with influence function
U+ U} with Uy = (Z—E[Z|Y])ho(Y). Since Uy and U} are uncorrelated, the asymptotic
variance of (G — F)h is given by var(Uy) + var(U3). Recall that the asymptotic variance
of (é - ﬁ)h is var(U;) + var(Us) with Uy = ad I;'so. Thus it suffices to show that
var(Us) < var(Uj). To this end, we write

var(Uy) = ag Iy var(so) Iy tag = ag Ig ' Io Iy tag = ad I ag = |\I(;1/2a0||2.
Denote b =I5 ?ag = ((Z — E[Z|Y])ho, I; **s0)2 = (U}, I; **s0)2. Then
017 = b0 = 7 (UL, Iy s50)2 = (U3, 071 502 < U3 a[167 Ty 5ol
= sd(U3) sd(b" I, 2 s0) = sd(Us) (b Iy P IoIy Pb)M? = sd(U3)[bl] - (S2.7)
by the Cauchy-Schwartz inequality. It follows that var(Us) = ||b]|? < var(U3).

We now show that var(Uy) = var(U}) if and only if h € lin{1,t}, where lin{-}
denotes linear span. First, suppose h € lin{l,t} so that hy € lin{1,¢}. Then there
exists a vector b* such that U) = (Z — E[Z|Y])ho = b*Tlo_l/250. By definition, b =
<Ué,[61/280>2 = 151/2.,0[071/26* = b*. Hence Uj = bTI(;l/Zso and equality in (52.7)
holds. Conversely, suppose var(Us) = var(U}). In the trivial case that b = 0 (which
implies 0 = var(Uz) = var(U})), we have 0 = Uj = (Z — E[Z|Y])ho(Y) almost surely. It
follows that, almost surely, hg = 0, h is a constant, and hence h € lin{l,¢}. So assume
b # 0; then equality in (S2.7) implies that

Uy = b 15?50 (S2.8)

for some constant c. (In fact, ¢ = 1 because b = <U§,IO_1/280>2 = cb.) Because Z —
E[Z|Y] # 0, (S2.8) implies that ho = bTI, /*(1,¢T)T € lin{1,t} and hence h € lin{1,t}.
This completes the proof.

Proof of Theorem 4

Because stochastic ordering is preserved under a monotone transformation, we may as-
sume without loss of generality that each t; is identity. It suffices to show that F} is
stochastically smaller than G; under the given conditions. Let y; € R be given. If
Fi(y;) =0 or 1, then G1(y7) = Fi(y]) because F and G are assumed to have the same
support. Otherwise, we write

Gi(yr)/Fi(y1) = Elg(Y)/F(Y) Y < w1, Z = 0. (52.9)
On the other hand, we have

1=E[g(Y)/f(Y)|Z =0]
=PV <wilZ =01 E[g(Y)/F (Y)Y <91, Z = 0]
+ Py > w12 = 0 E[g(Y)/f (Y)Y > y1,Z = 0.
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Hence (S2.9) will be < 1 if and only if
Elg(Y)/f(Y)[Yy <1, Z =0 <E[g(Y)/f(Y)[Y1y > 91, Z = 0. (52.10)
To this end, we define

J
hi(y) =gW)/fy) =exp | o™+ By |,
=1
hy-1(yi,-- - ys-1) = EhsY)Yu =y, Yy—y = ys-1,Z = 0],
h’J*Q(ylv s 7yJ72) = E[thl(Y)Df[l] =Yy Y—[J—Q] =Yj-2, Z = 0}7

ey

hi(y1) = Elha (Y, Yig) 1Y) = v1, Z = 0].

Because each 3; is nonnegative, h; is increasing in each of its arguments. Next, the
positive dependence assumption applied to [Y};|Ypy,..., Y —1),Z = 0], together with
Lemma 1 below, implies that hj_; is increasing in each argument. Repeat this argument
k — 2 more times to conclude that h; is increasing in its only argument. It follows that

LHS of (S2.10) = E[h1 (Y)Y < %1, Z = 0] < ha(y7)
< Elh (Y)Y > v1, Z = 0] = RHS of (S2.10),
and the proof is complete.

Lemma 1. Let Py and Py be probability measures on R and let h : R — [0,00) be
increasing. If Py is stochastically smaller than Py, then Pith < Psh.

Proof. The result is immediate for h = 1(; ). A limiting argument can be used to prove

the result for h = 1[, oy and hence for h = PO 1z, 00) With cp > 0 for all k. A
left-continuous increasing function h can be approximated by the sequence of functions

22'm+1
R = Z Cm,kl[a:m’k,oo)v
k=0
where Ty, 1, = —2"+k27", o = M(Tm,0)s Cmk = B(@m k) —h(@mp—1), k=1,..., 22m+1

m > 1. Since h is nonnegative and increasing, each c,,  is nonnegative so P h,, < Pyh,
for every m. Further, h,, T h because h is assumed left-continuous. Hence, by the
monotone convergence theorem,

m—0o0 m—o0

Finally, consider an increasing function h that is not left-continuous, and denote by h_
its left-hand limit. For m > 1, let D,, = {z € [-2™,2™] : h(x) — h_(z) > 27}
then D,, is finite for every m. Let x’mvk, k > 0, denote the distinct values in D,, U
{=2m + k27" : k = 0,...,2?"1} arranged in ascending order. Let ¢, o = h(z), ),
Crnp = h(@y, ) = (2, ;) for k> 1, and

ro_ /
hm - Z Cm)kl[m;n,k’oo).
£>0
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This definition ensures that h!, 1 h even though h is not left-continuous. The result
again follows from the monotone convergence theorem. O
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