TWO-SAMPLE HYPOTHESIS TESTING UNDER LEHMANN ALTERNATIVES AND POLYA TREE PRIORS

LEI HUANG and MALAY GHOSH
UNIVERSITY OF FLORIDA and UNIVERSITY OF FLORIDA

Supplementary Material

This supplementary material contains the proof of Theorem 1. The proof of Theorem 2 is very similar to that of Theorem 1 and thus omitted.

S1 Proof of Theorem 1

We have $X_{1}, \cdots, X_{n_{1}} \mid P \sim F(x)$ and $Y_{1}, \cdots, Y_{n_{2}} \mid P \sim H(x)=1-\{1-F(x)\}^{\alpha}$ and want to test

$$
H_{0}: \alpha=1 \quad \text { vs } \quad H_{1}: \alpha>1(\text { or } \alpha<1) .
$$

where $P \sim \mathrm{PT}(\mathrm{G})$ is the probability measure induced by $F(x)$, and $\alpha>0$. For simplicity, let P^{\prime} be the probability measure induced by $H(x)$.

Proof. First we put these two samples together and denote them by $V_{1}, \cdots, V_{n_{1}+n_{2}}$ and define $Z_{1}, \cdots, Z_{n_{1}+n_{2}}$ as described in Section 3. Let $n=n_{1}+n_{2}$.

In case that there is no censoring, take $m>n$, such that at level m, V_{1}, \ldots, V_{n} are separated in different intervals. For $v \in[0,+\infty)$, let $\epsilon_{m}(v)=\epsilon_{1}, \ldots, \epsilon_{m}$ such that $v \in B_{\epsilon_{1}, \ldots, \epsilon_{m}}$. In addition, with appropriate parameters, P is continuous with probability 1 . Thus without loss of generality, assume $V_{1}<\ldots<V_{n}$. Write ${\overrightarrow{\epsilon_{m}}}^{i}=\overrightarrow{\epsilon_{m}}\left(V_{i}\right)=\epsilon_{1}^{i}, \ldots, \epsilon_{m}^{i}$.

Under the null hypothesis, V_{1}, \cdots, V_{n} are independent and identially distributed conditional on P. Hence, at level m of the tree, given P, the joint pdf of V_{1}, \ldots, V_{n} is

$$
\begin{align*}
f_{m}\left(v_{1}, \ldots, v_{n} \mid P\right) & =\frac{\prod_{i=1}^{n} \operatorname{Pr}\left(B_{\epsilon_{\vec{m}}^{i}} \mid P\right)}{\prod_{i=1}^{n} \lambda\left(B_{\epsilon_{\vec{m}}^{i}}\right)} \\
& =\frac{\prod_{i=1}^{n} \prod_{\epsilon_{j}^{i}=0} Y_{\epsilon_{1}^{i}, \ldots, \epsilon_{j}^{i}} \prod_{\epsilon_{j}=1}\left(1-Y_{\epsilon_{1}^{i}, \ldots, \epsilon_{j}^{i}}\right)}{\prod_{i=1}^{n} \lambda\left(B_{\epsilon_{m}{ }^{i}}\right)} \tag{S1.1}
\end{align*}
$$

The exact marginal joint pdf is given by letting m goes to $+\infty$ and then taking the expectation. By repeated use of the Theorem 2 in Lavine (1992), the existence and finiteness of the limit
is guaranteed. We denote this limit by f. By dominated convergence theorem, the order of expectation and limit can be exchanged.

The joint pdf under H_{1} is much more complicated. Take any $v \in B_{\epsilon_{1}, \ldots, \epsilon_{m}}$. We need to find $P^{\prime}\left(B_{\epsilon_{m}}\right)$. To do this, we have to sum all the probabilities of the intervals to the right of $B_{\epsilon_{m}}$, plus probability of $B_{\epsilon_{m}^{\vec{m}}}$, and then raise to power α. This quantity is denoted by $P^{\prime}\left(B_{\epsilon_{m}}+\mid P\right)$. At m th level of the tree, given P, a simple expression is provided by,

$$
P^{\prime}\left(B_{\epsilon_{m}}+\mid P\right)=\left\{\sum_{n=1}^{m} \operatorname{Pr}\left(B_{\epsilon_{1}, \ldots, \epsilon_{n-1}, 1} \mid P\right) \delta_{0}\left(\epsilon_{n}\right)+\operatorname{Pr}\left(B_{\epsilon_{m}} \mid P\right)\right\}^{\alpha} .
$$

Therefore,

$$
\begin{align*}
P^{\prime}\left(B_{\epsilon_{m}} \mid P\right)= & P^{\prime}\left(B_{\epsilon_{m}^{\vec{m}}}+\mid P\right)-P^{\prime}\left(\left(B_{\epsilon_{m}}+\right)-B_{\epsilon_{m}} \mid P\right) \\
= & \left\{\sum_{n=1}^{m} \operatorname{Pr}\left(B_{\epsilon_{1}, \ldots, \epsilon_{n-1}, 1} \mid P\right) \delta_{0}\left(\epsilon_{n}\right)+\operatorname{Pr}\left(B_{\epsilon_{m} \vec{m}} \mid P\right)\right\}^{\alpha} \\
& -\left\{\sum_{n=1}^{m} \operatorname{Pr}\left(B_{\epsilon_{1}, \ldots, \epsilon_{n-1}, 1} \mid P\right) \delta_{0}\left(\epsilon_{n}\right)\right\}^{\alpha} \tag{S1.2}
\end{align*}
$$

where the "." sign in the probability means exclusion. Now using the second order Taylor Expansion for function $h(t)=t^{\alpha}$,

$$
h(t+\Delta)-h(t)=\alpha t^{\alpha-1} \Delta+\alpha(\alpha-1)(t+\theta)^{\alpha-2} \Delta^{2}
$$

where $\theta \in(0, \Delta)$. It follows that

$$
\begin{aligned}
P^{\prime}\left(B_{\epsilon_{m}} \mid P\right)= & \alpha \operatorname{Pr}\left(B_{\epsilon_{\vec{m}}} \mid P\right)\left\{\sum_{n=1}^{m} \operatorname{Pr}\left(B_{\epsilon_{1}, \ldots, \epsilon_{n-1}, 1} \mid P\right) \delta_{0}\left(\epsilon_{n}\right)\right\}^{\alpha-1} \\
& +\alpha(\alpha-1) \operatorname{Pr}\left(B_{\epsilon_{\vec{m}}} \mid P\right)^{2}\left\{\sum_{n=1}^{m} \operatorname{Pr}\left(B_{\epsilon_{1}, \ldots, \epsilon_{n-1}, 1} \mid P\right) \delta_{0}\left(\epsilon_{n}\right)+\theta\right\}^{\alpha-2}
\end{aligned}
$$

where $\theta \in\left(0, \operatorname{Pr}\left(B_{\epsilon_{m}} \mid P\right)\right)$. For simplicity, write

$$
W_{m}(x)=\sum_{n=1}^{m} \operatorname{Pr}\left(B_{\epsilon_{1}, \ldots, \epsilon_{n-1}, 1} \mid P\right) \delta_{0}\left(\epsilon_{n}\right)
$$

W_{m} depends on v because $\epsilon_{1}, \ldots, \epsilon_{m}$ depend on v.
Now we are in place to calculate the conditional joint pdf of $Y_{1}, \cdots, Y_{n_{2}}$ under H_{1}.

$$
\begin{aligned}
\bar{f}_{m}\left(y_{1}, \ldots, y_{n_{2}} \mid P\right) & =\frac{\prod_{i=1}^{n_{2}} P^{\prime}\left(B_{\epsilon_{m}{ }^{i}} \mid P\right)}{\prod_{i=1}^{n_{2}} \lambda\left(B_{\epsilon_{m}^{\prime}}\right)} \\
& =\frac{N U M}{\prod_{i=1}^{n_{2}} \lambda\left(B_{\epsilon_{\vec{m}}{ }^{i}}\right)}
\end{aligned}
$$

where $N U M$ is the numerator of the fraction, namely

$$
\begin{aligned}
N U M & =\prod_{i=1}^{n_{2}} P^{\prime}\left(B_{\epsilon_{m}^{i}} \mid P\right) \\
& =\frac{\prod_{i=1}^{n_{2}} \operatorname{Pr}\left(B_{\epsilon_{m}^{i}} \mid P\right) \prod_{i=1}^{n_{2}}\left\{\alpha W_{m}\left(Y_{i}\right)^{\alpha-1}+\alpha(\alpha-1)\left[W_{m}\left(Y_{i}\right)+\theta_{i}\right]^{\alpha-2} \operatorname{Pr}\left(B_{\epsilon_{m}^{i}} \mid P\right)\right\}}{\prod_{i=1}^{n_{2}} \lambda\left(B_{\vec{\epsilon}^{\vec{m}}}{ }^{i}\right)}
\end{aligned}
$$

Again, the exact marginal joint pdf is found by letting $m \rightarrow+\infty$ and then taking expected value.
Note that

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} E\left[\frac{N U M}{\prod_{i=1}^{n_{2}} \lambda\left(B_{\epsilon_{\vec{m}}}{ }^{i}\right)}\right]=\lim _{m \rightarrow+\infty} E\left[\frac{\prod_{i=1}^{n_{2}} \operatorname{Pr}\left(B_{\vec{\epsilon}_{\vec{m}}^{i}} \mid P\right) \prod_{i=1}^{n_{2}}\left\{\alpha W_{m}\left(Y_{i}\right)^{\alpha-1}\right\}}{\prod_{i=1}^{n_{2}} \lambda\left(B_{\epsilon_{\vec{m}}{ }^{i}}\right)}\right] \tag{S1.3}
\end{equation*}
$$

Indeed, if we write the products in the numerator as summation, we have

$$
\begin{array}{r}
\prod_{i=1}^{n_{2}}\left[\alpha W_{m}\left(Y_{i}\right)^{\alpha-1}+\alpha(\alpha-1)\left\{W_{m}\left(Y_{i}\right)+\theta_{i}\right\}^{\alpha-2} \operatorname{Pr}\left(B_{\epsilon_{\epsilon_{m}}} \mid P\right)\right] \\
=\sum_{S \subseteq \Omega}\left[\prod_{j \in S} \alpha W_{m}\left(X_{j}\right)^{\alpha-1} \prod_{k \in S^{c}} \alpha(\alpha-1)\left\{W_{m}\left(Y_{k}\right)+\theta_{k}\right\}^{\alpha-2} \operatorname{Pr}\left(B_{\epsilon_{\vec{m}}^{k}} \mid P\right)\right] \tag{S1.4}
\end{array}
$$

where $\Omega=\{1, \ldots, n\}$, and the summation is taken for all (proper and improper) subsets $S \subseteq \Omega$.
However, if $\left|S^{c}\right| \geq 1$, i.e. there exists $k_{0} \in S^{c}$, then

$$
\begin{aligned}
& \left|\left[\prod_{j \in S} \alpha W_{m}\left(Y_{j}\right)^{\alpha-1} \prod_{k \in S^{c}} \alpha(\alpha-1)\left\{W_{m}\left(Y_{k}\right)+\theta_{k}\right\}^{\alpha-2} \operatorname{Pr}\left(B_{\epsilon_{\vec{m}}^{k}} \mid P\right)\right]\right| \\
& \leq\left|\alpha^{n}(\alpha-1)^{\left|S^{c}\right|} \operatorname{Pr}\left(B_{\epsilon_{m}{ }^{k}} \mid P\right)\right|
\end{aligned}
$$

The above inequality uses the fact that

$$
\begin{aligned}
0 \leq W_{m}(Y) \leq W_{m}(Y)+\theta \leq W_{m}(Y)+\operatorname{Pr}\left(B_{\epsilon_{\vec{m}} k} \mid P\right) & \leq \sum_{n=1}^{m} \operatorname{Pr}\left(B_{\epsilon_{1}, \ldots, \epsilon_{n}} \mid P\right) \\
& =\operatorname{Pr}([0,+\infty) \mid P)=1
\end{aligned}
$$

Hence, the expectation of the corresponding term in summation satisfies

$$
\begin{align*}
& E\left[\left|\frac{\prod_{i=1}^{n_{2}} \operatorname{Pr}\left(B_{\epsilon_{m}} \mid P\right)\left[\prod_{j \in S} \alpha W_{m}\left(Y_{j}\right)^{\alpha-1} \prod_{k \in S^{c}} \alpha(\alpha-1)\left\{W_{m}\left(Y_{k}\right)+\theta_{k}\right\}^{\alpha-2} \operatorname{Pr}\left(B_{\epsilon_{m}{ }^{k}} \mid P\right)\right]}{\prod_{i=1}^{n 2} \lambda\left(B_{\epsilon_{m}^{i}}\right)}\right|\right] \\
& \leq E\left[\left|\frac{\prod_{i=1}^{n_{2}} \operatorname{Pr}\left(B_{\epsilon_{m}^{\vec{~}}} \mid P\right) \alpha^{n}(\alpha-1)^{\left|S^{c}\right|} \operatorname{Pr}\left(B_{\epsilon_{m}{ }^{k}} \mid P\right)}{\prod_{i=1}^{n_{2}} \lambda\left(B_{\epsilon_{m}{ }^{i}}\right)}\right|\right] \\
& =\text { const. } E\left[\frac{\left\{\prod_{i \neq k_{0}} \operatorname{Pr}\left(B_{\epsilon_{m^{i}}} \mid P\right)\right\} \operatorname{Pr}\left(B_{\epsilon_{m} k_{0}} \mid P\right)^{2}}{\prod_{i=1}^{n_{2}} \lambda\left(B_{\epsilon_{m}^{i}}\right)}\right] \tag{S1.5}
\end{align*}
$$

Comparing (S1.5) to (S1.1), it follows that

$$
\begin{aligned}
& E\left[\frac{\left\{\prod_{i \neq k_{0}} \operatorname{Pr}\left(B_{\epsilon_{\vec{m}}} \mid P\right)\right\} \operatorname{Pr}\left(B_{\epsilon_{\vec{m}} k_{0}} \mid P\right)^{2}}{\prod_{i=1}^{n_{2}} \lambda\left(B_{\epsilon_{\vec{\prime}}^{i}}\right)}\right] \\
& =E\left[f_{m}\left(y_{1}, \ldots, y_{n_{2}} \mid P\right)\right] \prod_{j=1}^{m} \frac{a_{\epsilon_{1}^{k_{0}}, \ldots, \epsilon_{j}^{k_{0}}}+n_{\epsilon_{1}^{k_{0}}, \ldots, \epsilon_{j-1}^{k_{0}}}+1}{a_{\epsilon_{1}^{k_{0}}, \ldots, \epsilon_{j-1}^{k_{0}}, 0}+a_{\epsilon_{1}^{k_{0}}, \ldots, \epsilon_{j-1}^{k_{0}}, 1}+n_{\epsilon_{1}^{k_{0}}, \ldots, \epsilon_{j-1}^{k_{0}}}+1}
\end{aligned}
$$

where $n_{\epsilon_{1}^{k_{0}}, \ldots, \epsilon_{j-1}^{k_{0}}}=\sharp\left\{j: Y_{j} \in B_{\epsilon_{1}^{k_{0}}, \ldots, \epsilon_{j-1}^{k_{0}}}\right\}$.
When $m>n$, we specify the parameters as

$$
a_{\epsilon_{1}, \ldots, \epsilon_{m-1}^{\prime} 0}=a_{\epsilon_{1}, \ldots, \epsilon_{j-1}, 1}=m^{2}
$$

which implies that when m is large,

$$
\frac{a_{\epsilon_{1}^{k_{0}}, \ldots, \epsilon_{j}^{k_{0}}}+n_{\epsilon_{1}^{k_{0}}, \ldots, \epsilon_{j-1}^{k_{0}}}+1}{a_{\epsilon_{1}^{k_{0}}, \ldots, \epsilon_{j-1}^{k_{0}}, 0}+a_{\epsilon_{1}^{k_{0}}, \ldots, \epsilon_{j-1}^{k_{0}, 1}}+n_{\epsilon_{1}^{k_{0}}, \ldots, \epsilon_{j-1}^{k_{0}}}+1} \rightarrow \frac{1}{2}
$$

Note that $E\left[f_{m}\left(y_{1}, \ldots, y_{n_{2}} \mid P\right)\right]$ is finite. Therefore,

$$
E\left[\frac{\left\{\prod_{i \neq k_{0}} \operatorname{Pr}\left(B_{\epsilon_{\vec{m}^{i}}} \mid P\right)\right\} \operatorname{Pr}\left(B_{\epsilon_{m}^{\vec{b}}} \mid P\right)^{2}}{\prod_{i=1}^{n_{2}} \lambda\left(B_{\epsilon_{m^{3}}}\right)}\right] \rightarrow 0 \quad \text { as } \quad m \rightarrow+\infty .
$$

So all the terms with $\left|S^{c}\right| \geq 1$ in (S1.4) eventually goes to 0 . The only term left is when $\left|S^{c}\right|=0$, i.e. $S=\Omega$, which completes the proof to the claim.

Furthermore, the conditional joint pdf of V_{1}, \cdots, V_{n} under H_{1} is given by

$$
\begin{aligned}
\bar{f}_{m}\left(v_{1}, \ldots, v_{n} \mid P\right) & =f_{m}\left(x_{1}, \cdots, x_{n 1} \mid P\right) \bar{f}_{m}\left(y_{1}, \cdots, y_{n_{2}} \mid P\right) \\
& =\frac{\prod_{i=1}^{n_{1}} P\left(B_{\epsilon_{\vec{m}}} \mid P\right)}{\prod_{i=1}^{n_{1}} \lambda\left(B_{\epsilon_{\vec{m}}}{ }^{i}\right)} \frac{\prod_{i=1}^{n_{2}} \operatorname{Pr}\left(B_{\epsilon_{\vec{m}}} \mid P\right) \prod_{i=1}^{n_{2}}\left\{\alpha W_{m}\left(Y_{i}\right)^{\alpha-1}\right\}}{\prod_{i=1}^{n_{2}} \lambda\left(B_{\epsilon_{\vec{m}}}{ }^{\alpha}\right)} \\
& =\frac{\prod_{i=1}^{n} \operatorname{Pr}\left(B_{\epsilon_{\vec{m}}}{ }^{i} \mid P\right) \prod_{i=1}^{n_{2}}\left\{\alpha W_{m}\left(Y_{i}\right)^{\alpha-1}\right\}}{\prod_{i=1}^{n} \lambda\left(B_{\epsilon_{\vec{m}}{ }^{i}}^{n}\right)}
\end{aligned}
$$

Now we compute the Bayes factor. Before we do that, let us figure out what $\vec{\epsilon}_{m}\left(v_{i}\right)$ is. By the mechanism of partition, for $m>n$, and $i=1, \ldots, n, v_{i}$ is an end point at level i of the tree. Before the i th level, v_{i} lies in the right subinterval every time the current interval splits into two; after i th level, v_{i} would be always in the left subinterval generated by splitting the current interval that contains v_{i}. Thus,

$$
\epsilon_{m}^{\vec{m}}\left(v_{i}\right)=\underbrace{1, \ldots, 1}_{i}, \underbrace{0, \ldots, 0}_{m-i}
$$

Clearly,

$$
\operatorname{Pr}\left(B_{\epsilon_{\vec{m}}} \mid P\right)=Y_{1} Y_{11} \ldots Y_{\underbrace{1, \ldots, 1}_{i}}^{Y_{i}} \underbrace{\underbrace{}_{i}, \ldots, 1}_{i}, 0 \cdots \underbrace{Y_{1, \ldots, 1}}_{i}, \underbrace{0, \ldots, 0}_{m-i} .
$$

By definition of $W_{m}(v)$,

$$
W_{m}\left(v_{1}\right)=Y_{1}, W_{m}\left(v_{2}\right)=Y_{1} Y_{11}, \cdots, W_{m}\left(v_{n}\right)=Y_{1} Y_{11} \ldots \underbrace{Y_{1, \ldots, 1}}_{n}
$$

Intuitively, W_{m} is the survival function at level m.
These lead to

$$
\begin{align*}
\prod_{i=1}^{n} \operatorname{Pr}\left(B_{\epsilon_{m}}{ }^{i} \mid P\right)= & \{Y_{1} Y_{10} Y_{100} \ldots Y_{1,0} \underbrace{\ldots, 0}_{n-1}\}\{Y_{1} Y_{11} Y_{110} Y_{1100} \ldots Y_{11,0, \underbrace{}_{n-2}, 0,0}\} \cdots \\
& \{Y_{1} Y_{11} \ldots \underbrace{1, \ldots, 1}_{n} \underbrace{Y_{1}, \ldots, 1,0}_{n} Y^{Y_{n}, \ldots, 1}, 00 \cdots \underbrace{1, \ldots, 1, \underbrace{1, \ldots, 0}_{m-n}}_{n}\} \tag{S1.6}
\end{align*}
$$

Also,

$$
\begin{align*}
& \prod_{i=1}^{n} \operatorname{Pr}\left(B_{\epsilon_{\vec{m}}{ }^{i}} \mid P\right) \prod_{i=1}^{n_{2}}\left\{\alpha W_{m}\left(Y_{i}\right)^{\alpha-1}\right\}=\prod_{i=1}^{n}\left\{\operatorname{Pr}\left(B_{\epsilon_{\vec{m}}}{ }^{i} \mid P\right)\right\}^{1-Z_{i}}\left\{\operatorname{Pr}\left(B_{\epsilon_{\vec{m}}}{ }^{i} \mid P\right) \alpha W_{m}\left(V_{i}\right)^{\alpha-1}\right\}^{Z_{i}} \\
& =\alpha^{n_{2}} Y_{1}^{n_{1}+n_{2} \alpha} Y_{11}^{n-1+(\alpha-1) t_{2}} \ldots \underbrace{Y_{1}^{n+1-k+(\alpha-1) t_{k}}}_{k} \ldots \underbrace{Y_{1}^{1+(\alpha-1) t_{n}}}_{n} \tag{S1.7}\\
& \{Y_{10} Y_{100} \ldots Y_{1}, \underbrace{0, \ldots, 0}_{n-1}\}\{Y_{110} Y_{1100} \ldots Y_{11}, \underbrace{0, \ldots, 0}_{n-2}\} \cdots \\
& \{Y_{\underbrace{}_{n}, \ldots, 1}^{1,0} Y_{\underbrace{}_{n}, \ldots, 1}^{1,00} \cdots Y_{\underbrace{}_{n}, \ldots, 1}^{\underbrace{0, \ldots, 0}_{n-n}}\} \tag{S1.8}
\end{align*}
$$

Where $t_{k}=\sum_{i=k}^{n} Z_{i}$ evaluates the ordering of \mathfrak{X} sample and \mathfrak{Y} sample. It turns out that all these $Y^{\prime} s$ are not independent because

$$
\begin{equation*}
Y_{\epsilon_{1}, \ldots, \epsilon_{j}, 1}=1-Y_{\epsilon_{1}, \ldots, \epsilon_{j}, 0} \tag{S1.9}
\end{equation*}
$$

for all $j=1, \ldots, n$ and all $\left(\epsilon_{1}, \ldots, \epsilon_{j}\right)$. Taking into account that the denominators in (S1.1) and (S1.3) are the same, the Bayes factor reduces to

$$
\begin{equation*}
B F_{01}=\lim _{m \rightarrow+\infty} \frac{E\left[\prod_{i=1}^{n} \operatorname{Pr}\left(B_{\vec{\epsilon}_{\vec{m}}} \mid P\right)\right]}{E\left[\prod_{i=1}^{n} \operatorname{Pr}\left(B_{\epsilon_{\vec{m}}{ }^{i}} \mid P\right) \prod_{i=1}^{n}\left\{\alpha W_{m}\left(Y_{i}\right)^{\alpha-1}\right\}\right]} \tag{S1.10}
\end{equation*}
$$

Combining (S1.6), (S1.8) and (S1.9), and canceling the independent common terms in (S1.10), we end up with

$$
\begin{equation*}
B F_{01}=\frac{1}{\alpha^{n_{2}}} \frac{E_{1}}{E_{2}} \tag{S1.11}
\end{equation*}
$$

where

$$
\begin{aligned}
E_{1}= & E[\left(1-Y_{0}\right)^{n} Y_{10}\left(1-Y_{10}\right)^{n-1} \ldots Y_{Y_{1}, \ldots, 1,0}(1-\underbrace{Y_{1}, \ldots, 1,0}_{i})^{n-i} \ldots \underbrace{Y_{n-1}^{1, \ldots, 1,0}}_{i}(1-\underbrace{1,0}_{\underbrace{Y_{1}, \ldots, 1,0}_{n-1}})] \\
E_{2}= & E[\left(1-Y_{0}\right)^{n_{1}+n_{2} \alpha} Y_{10}\left(1-Y_{10}\right)^{n-1+(\alpha-1) t_{2}} \ldots \underbrace{Y_{1}, \ldots, 1,0}_{i}(1-\underbrace{\left.Y_{1, \ldots, 1,0}\right)^{n-i+(\alpha-1) t_{i}}}_{i} \\
& \ldots Y_{\underbrace{1, \ldots, 1,0}_{n-1}}(1-Y_{\underbrace{1, \ldots, 1}_{n-1}, 0}^{1})^{1+(\alpha-1) t_{n}}]
\end{aligned}
$$

All the Y 's appearing in the above equation are independent with Beta distributions, that is,

$$
\underbrace{Y_{1, \ldots, 1}^{1,0}}_{i} \text { independently } \sim \operatorname{Beta}(a_{i}^{a_{1}, \ldots, 1,0}, \underbrace{a_{i}^{1, \ldots, 1,1}}_{i})
$$

for $i=1, \ldots, n$. Hence simple calculations of moments of Beta distributions yield the final result

$$
\left.\left.\begin{array}{rl}
B F_{01}= & \frac{1}{\alpha^{n_{2}}} \frac{\Gamma\left(a_{1}+n\right) \Gamma\left(a_{0}+a_{1}+n_{1}+n_{2} \alpha\right)}{\Gamma\left(a_{0}+a_{1}+n\right) \Gamma\left(a_{1}+n_{1}+n_{2} \alpha\right)} \\
& \prod_{i=1}^{n-1} \frac{\Gamma(\underbrace{a_{1}, \ldots, 1,1}_{i}+n-i) \Gamma(\underbrace{a_{1}, \ldots, 1,0}_{i}}{\Gamma(\underbrace{a_{1}, \ldots, 1,0}_{i}}+\underbrace{a_{1}, \ldots, 1,1}_{\underbrace{}_{i}}+n-i+1) \Gamma(\underbrace{a_{1}, \ldots, \ldots, 1}_{i}, 1 \tag{S1.12}
\end{array}+(\alpha-1) t_{i+1}+1\right) \frac{1}{\left.1, \ldots-1) t_{i+1}\right)}\right)
$$

 $P)$ or $P^{\prime}\left(B_{\vec{\epsilon}_{i}} \mid P\right)$ respectively depending on whether the observation is coming form sample \mathfrak{X} or \mathfrak{Y}.

Analogous calculation leads to

$$
\begin{equation*}
B F_{01}=\frac{1}{\alpha^{n_{2}^{\prime}}} \frac{E_{1}^{c}}{E_{2}^{c}} \tag{S1.13}
\end{equation*}
$$

where

$$
\begin{aligned}
E_{1}^{c}= & E[\left(1-Y_{0}\right)^{n} Y_{10}^{d_{1}}\left(1-Y_{10}\right)^{n-1} \ldots Y_{\underbrace{d_{i}}_{i}}^{d_{i}, 1,0,}(1-\underbrace{Y_{1}^{1, \ldots, 1,0}}_{i})^{n-i} \ldots \underbrace{Y_{1}^{d_{n-1}}, 1,0,0}_{n-1}\left(1-Y_{Y_{n-1}, \ldots, 1,0}^{1,0}\right)] \\
E_{2}^{c}= & E[\left(1-Y_{0}\right)^{n_{1}+n_{2} \alpha} Y_{10}^{d_{1}}\left(1-Y_{10}\right)^{n-1+(\alpha-1) t_{2}} \ldots \underbrace{Y_{i}^{d_{i}} \ldots, 1,0}_{i}(1-Y_{\underbrace{1, \ldots, 1,0}_{i}}^{Y_{n-1}^{n-i+(\alpha-1) t_{i+1}}} \\
& \ldots \underbrace{1, \ldots, 1,0}_{n-1}(1-Y_{\underbrace{1, \ldots, 1,0}_{n-1}}^{1,)^{1+(\alpha-1) t_{n}}}]
\end{aligned}
$$

and $n_{2}^{\prime}=\sum_{n}^{i=1} d_{i} Z_{i}$ is the total number of uncensored observations in sample \mathfrak{Y}.

Integration yields the Bayes factor for data with censoring as follows

$$
\begin{align*}
B F_{01}= & \frac{1}{\alpha^{n_{2}^{\prime}}} \frac{\Gamma\left(a_{1}+n\right) \Gamma\left(a_{0}+a_{1}+n_{1}+n_{2} \alpha\right)}{\Gamma\left(a_{0}+a_{1}+n\right) \Gamma\left(a_{1}+n_{1}+n_{2} \alpha\right)} \\
& \prod_{i=1}^{n-1} \frac{\Gamma(\underbrace{a_{1, \ldots, 1}^{1, \ldots, 1}}_{i}+n-i) \Gamma(\underbrace{1, \ldots, 1}_{1}, 0}{\Gamma(\underbrace{a_{i}, \ldots, 1}_{i}, 0}+\underbrace{a_{1}, \ldots, 1,1}_{i}+\underbrace{a_{i}, \ldots, 1,1}_{i}, 1+(\alpha-1) t_{i+1}+d_{i}) \Gamma(\underbrace{\left.1,(\alpha-1) t_{i+1}\right)}_{\underbrace{1, \ldots, 1}_{i}, 1} \tag{S1.14}
\end{align*}
$$

