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This supplementary material contains the proof of Theorem 1. The proof of Theorem 2 is
very similar to that of Theorem 1 and thus omitted.

S1 Proof of Theorem 1

We have X1, · · · , Xn1
| P ∼ F (x) and Y1, · · · , Yn2

| P ∼ H(x) = 1−{1−F (x)}α and want
to test

H0 : α = 1 vs H1 : α > 1 (or α < 1).

where P ∼ PT(G) is the probability measure induced by F (x), and α > 0. For simplicity, let
P ′ be the probability measure induced by H(x).

Proof. First we put these two samples together and denote them by V1, · · · , Vn1+n2
and define

Z1, · · · , Zn1+n2
as described in Section 3. Let n = n1 + n2.

In case that there is no censoring, take m > n, such that at level m, V1, ..., Vn are separated
in different intervals. For v ∈ [0,+∞), let ~εm(v) = ε1, ..., εm such that v ∈ Bε1,...,εm . In
addition, with appropriate parameters, P is continuous with probability 1. Thus without loss of
generality, assume V1 < ... < Vn. Write ~εm

i = ~εm(Vi) = εi1, ..., ε
i
m.

Under the null hypothesis, V1, · · · , Vn are independent and identially distributed condi-
tional on P. Hence, at level m of the tree, given P , the joint pdf of V1, ..., Vn is

fm(v1, ..., vn | P ) =

∏n
i=1 Pr(B ~εm

i | P )∏n
i=1 λ(B ~εm

i)

=

∏n
i=1

∏
εij=0 Yεi1,...,εij

∏
εj=1 (1− Yεi1,...,εij )∏n

i=1 λ(B ~εm
i)

(S1.1)

The exact marginal joint pdf is given by letting m goes to +∞ and then taking the expectation.
By repeated use of the Theorem 2 in Lavine (1992), the existence and finiteness of the limit
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is guaranteed. We denote this limit by f . By dominated convergence theorem, the order of
expectation and limit can be exchanged.

The joint pdf under H1 is much more complicated. Take any v ∈ Bε1,...,εm . We need to
find P ′(B ~εm). To do this, we have to sum all the probabilities of the intervals to the right ofB ~εm ,
plus probability of B ~εm , and then raise to power α. This quantity is denoted by P ′(B ~εm+ | P ).
At mth level of the tree, given P , a simple expression is provided by,

P ′(B ~εm+ | P ) = {
m∑
n=1

Pr(Bε1,...,εn−1,1 | P )δ0(εn) + Pr(B ~εm | P )}α.

Therefore,

P ′(B ~εm | P ) =P ′(B ~εm+ | P )− P ′((B ~εm+)−B ~εm | P )

={
m∑
n=1

Pr(Bε1,...,εn−1,1 | P )δ0(εn) + Pr(B ~εm | P )}α

− {
m∑
n=1

Pr(Bε1,...,εn−1,1 | P )δ0(εn)}α (S1.2)

where the ”-” sign in the probability means exclusion. Now using the second order Taylor
Expansion for function h(t) = tα,

h(t+ ∆)− h(t) = αtα−1∆ + α(α− 1)(t+ θ)α−2∆2

where θ ∈ (0,∆). It follows that

P ′(B ~εm | P ) = α Pr(B ~εm | P ){
m∑
n=1

Pr(Bε1,...,εn−1,1 | P )δ0(εn)}α−1

+ α(α− 1)Pr(B ~εm | P )2{
m∑
n=1

Pr(Bε1,...,εn−1,1 | P )δ0(εn) + θ}α−2

where θ ∈ (0, P r(B ~εm | P )). For simplicity, write

Wm(x) =

m∑
n=1

Pr(Bε1,...,εn−1,1 | P )δ0(εn)

Wm depends on v because ε1, ..., εm depend on v.

Now we are in place to calculate the conditional joint pdf of Y1, · · · , Yn2
under H1.

f̄m(y1, ..., yn2
| P ) =

∏n2

i=1 P
′(B ~εm

i | P )∏n2

i=1 λ(B ~εm
i)

=
NUM∏n2

i=1 λ(B ~εm
i)
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where NUM is the numerator of the fraction, namely

NUM =

n2∏
i=1

P ′(B ~εm
i | P )

=

∏n2

i=1 Pr(B ~εm
i | P )

∏n2

i=1 {αWm(Yi)
α−1 + α(α− 1)[Wm(Yi) + θi]

α−2Pr(B ~εm
i | P )}∏n2

i=1 λ(B ~εm
i)

Again, the exact marginal joint pdf is found by lettingm→+∞ and then taking expected value.

Note that

lim
m→+∞

E[
NUM∏n2

i=1 λ(B ~εm
i)

] = lim
m→+∞

E[

∏n2

i=1 Pr(B ~εm
i | P )

∏n2

i=1 {αWm(Yi)
α−1}∏n2

i=1 λ(B ~εm
i)

] (S1.3)

Indeed, if we write the products in the numerator as summation, we have

n2∏
i=1

[αWm(Yi)
α−1 + α(α− 1){Wm(Yi) + θi}α−2Pr(B ~εm

i | P )]

=
∑
S⊆Ω

[
∏
j∈S

αWm(Xj)
α−1

∏
k∈Sc

α(α− 1){Wm(Yk) + θk}α−2Pr(B ~εm
k | P )] (S1.4)

where Ω = {1, ..., n}, and the summation is taken for all (proper and improper) subsets S ⊆ Ω.

However, if | Sc |≥ 1, i.e. there exists k0 ∈ Sc, then

| [
∏
j∈S

αWm(Yj)
α−1

∏
k∈Sc

α(α− 1){Wm(Yk) + θk}α−2Pr(B ~εm
k | P )] |

≤| αn(α− 1)|S
c|Pr(B ~εm

k0 | P ) |

The above inequality uses the fact that

0 ≤Wm(Y ) ≤Wm(Y ) + θ ≤Wm(Y ) + Pr(B ~εm
k | P ) ≤

m∑
n=1

Pr(Bε1,...,εn | P )

= Pr([0,+∞) | P ) = 1.

Hence, the expectation of the corresponding term in summation satisfies

E[|
∏n2

i=1 Pr(B ~εm
i | P )[

∏
j∈S αWm(Yj)

α−1
∏
k∈Sc α(α− 1){Wm(Yk) + θk}α−2Pr(B ~εm

k | P )]∏n2

i=1 λ(B ~εm
i)

|]

≤ E[|
∏n2

i=1 Pr(B ~εm
i | P )αn(α− 1)|S

c|Pr(B ~εm
k0 | P )∏n2

i=1 λ(B ~εm
i)

|]

= const.E[
{
∏
i6=k0 Pr(B ~εm

i | P )}Pr(B ~εm
k0 | P )2∏n2

i=1 λ(B ~εm
i)

] (S1.5)
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Comparing (S1.5) to (S1.1), it follows that

E [
{
∏
i 6=k0 Pr(B ~εm

i | P )}Pr(B ~εm
k0 | P )2∏n2

i=1 λ(B ~εm
i)

]

= E[fm(y1, ..., yn2
| P )]

m∏
j=1

a
ε
k0
1 ,...,ε

k0
j

+ n
ε
k0
1 ,...,ε

k0
j−1

+ 1

a
ε
k0
1 ,...,ε

k0
j−1,0

+ a
ε
k0
1 ,...,ε

k0
j−1,1

+ n
ε
k0
1 ,...,ε

k0
j−1

+ 1

where n
ε
k0
1 ,...,ε

k0
j−1

= ]{j : Yj ∈ Bεk01 ,...,ε
k0
j−1
}.

When m > n, we specify the parameters as

aε1,...,ε,m−10 = aε1,...,εj−1,1 = m2

which implies that when m is large,

a
ε
k0
1 ,...,ε

k0
j

+ n
ε
k0
1 ,...,ε

k0
j−1

+ 1

a
ε
k0
1 ,...,ε

k0
j−1,0

+ a
ε
k0
1 ,...,ε

k0
j−1,1

+ n
ε
k0
1 ,...,ε

k0
j−1

+ 1
→ 1

2
.

Note that E[fm(y1, ..., yn2
| P )] is finite. Therefore,

E[
{
∏
i 6=k0 Pr(B ~εm

i | P )}Pr(B ~εm
k0 | P )2∏n2

i=1 λ(B ~εm
i)

]→ 0 as m→ +∞.

So all the terms with | Sc |≥ 1 in (S1.4) eventually goes to 0. The only term left is when
| Sc |= 0, i.e. S = Ω, which completes the proof to the claim.

Furthermore, the conditional joint pdf of V1, · · · , Vn under H1 is given by

f̄m(v1, ..., vn | P ) = fm(x1, · · · , xn1 | P )f̄m(y1, · · · , yn2
| P )

=

∏n1

i=1 P (B ~εm
i | P )∏n1

i=1 λ(B ~εm
i)

∏n2

i=1 Pr(B ~εm
i | P )

∏n2

i=1 {αWm(Yi)
α−1}∏n2

i=1 λ(B ~εm
i)

=

∏n
i=1 Pr(B ~εm

i | P )
∏n2

i=1 {αWm(Yi)
α−1}∏n

i=1 λ(B ~εm
i)

Now we compute the Bayes factor. Before we do that, let us figure out what ~εm(vi) is.
By the mechanism of partition, for m > n, and i = 1, ..., n, vi is an end point at level i of the
tree. Before the ith level, vi lies in the right subinterval every time the current interval splits into
two; after ith level, vi would be always in the left subinterval generated by splitting the current
interval that contains vi. Thus,

~εm(vi) = 1, ..., 1︸ ︷︷ ︸
i

, 0, ..., 0︸ ︷︷ ︸
m−i

Clearly,
Pr(B ~εm

i | P ) = Y1Y11...Y1, ..., 1︸ ︷︷ ︸
i

Y1, ..., 1︸ ︷︷ ︸
i

,0...Y1, ..., 1︸ ︷︷ ︸
i

,0, ..., 0︸ ︷︷ ︸
m−i

.
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By definition of Wm(v),

Wm(v1) = Y1, Wm(v2) = Y1Y11, · · · , Wm(vn) = Y1Y11...Y1, ..., 1︸ ︷︷ ︸
n

.

Intuitively, Wm is the survival function at level m.

These lead to

n∏
i=1

Pr(B ~εm
i | P ) ={Y1Y10Y100...Y1,0, ..., 0︸ ︷︷ ︸

n−1

}{Y1Y11Y110Y1100...Y11,0, ..., 0︸ ︷︷ ︸
n−2

} · · ·

{Y1Y11...Y1, ..., 1︸ ︷︷ ︸
n

Y1, ..., 1︸ ︷︷ ︸
n

,0Y1, ..., 1︸ ︷︷ ︸
n

,00...Y1, ..., 1︸ ︷︷ ︸
n

,0, ..., 0︸ ︷︷ ︸
m−n

} (S1.6)

Also,

n∏
i=1

Pr(B ~εm
i | P )

n2∏
i=1

{αWm(Yi)
α−1} =

n∏
i=1

{Pr(B ~εm
i | P )}1−Zi{Pr(B ~εm

i | P )αWm(Vi)
α−1}Zi

(S1.7)

=αn2Y n1+n2α
1 Y

n−1+(α−1)t2
11 ...Y

n+1−k+(α−1)tk
1, ..., 1︸ ︷︷ ︸

k

...Y
1+(α−1)tn

1, ..., 1︸ ︷︷ ︸
n

{Y10Y100...Y1,0, ..., 0︸ ︷︷ ︸
n−1

}{Y110Y1100...Y11,0, ..., 0︸ ︷︷ ︸
n−2

} · · ·

{Y1, ..., 1︸ ︷︷ ︸
n

,0Y1, ..., 1︸ ︷︷ ︸
n

,00...Y1, ..., 1︸ ︷︷ ︸
n

,0, ..., 0︸ ︷︷ ︸
m−n

} (S1.8)

Where tk =
∑n
i=k Zi evaluates the ordering of X sample and Y sample. It turns out that all

these Y ′s are not independent because

Yε1,...,εj ,1 = 1− Yε1,...,εj ,0 (S1.9)

for all j = 1, ..., n and all (ε1, ..., εj). Taking into account that the denominators in (S1.1) and
(S1.3) are the same, the Bayes factor reduces to

BF01 = lim
m→+∞

E[
∏n
i=1 Pr(B ~εm

i | P )]

E[
∏n
i=1 Pr(B ~εm

i | P )
∏n2

i=1 {αWm(Yi)α−1}]
(S1.10)

Combining (S1.6), (S1.8) and (S1.9), and canceling the independent common terms in (S1.10),
we end up with

BF01 =
1

αn2

E1

E2
(S1.11)
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where

E1 =E[(1− Y0)nY10(1− Y10)n−1...Y1, ..., 1︸ ︷︷ ︸
i

,0(1− Y1, ..., 1︸ ︷︷ ︸
i

,0)n−i...Y1, ..., 1︸ ︷︷ ︸
n−1

,0(1− Y1, ..., 1︸ ︷︷ ︸
n−1

,0)]

E2 =E[(1− Y0)n1+n2αY10(1− Y10)n−1+(α−1)t2 ...Y1, ..., 1︸ ︷︷ ︸
i

,0(1− Y1, ..., 1︸ ︷︷ ︸
i

,0)n−i+(α−1)ti

· · ·Y1, ..., 1︸ ︷︷ ︸
n−1

,0(1− Y1, ..., 1︸ ︷︷ ︸
n−1

,0)1+(α−1)tn ]

All the Y ’s appearing in the above equation are independent with Beta distributions, that is,

Y1, ..., 1︸ ︷︷ ︸
i

,0 independently ∼ Beta(a1, ..., 1︸ ︷︷ ︸
i

,0, a1, ..., 1︸ ︷︷ ︸
i

,1)

for i = 1, ..., n. Hence simple calculations of moments of Beta distributions yield the final result

BF01 =
1

αn2

Γ(a1 + n)Γ(a0 + a1 + n1 + n2α)

Γ(a0 + a1 + n)Γ(a1 + n1 + n2α)

n−1∏
i=1

Γ(a1, ..., 1︸ ︷︷ ︸
i

,1 + n− i)Γ(a1, ..., 1︸ ︷︷ ︸
i

,0 + a1, ..., 1︸ ︷︷ ︸
i

,1 + (α− 1)ti+1 + 1)

Γ(a1, ..., 1︸ ︷︷ ︸
i

,0 + a1, ..., 1︸ ︷︷ ︸
i

,1 + n− i+ 1)Γ(a1, ..., 1︸ ︷︷ ︸
i

,1 + (α− 1)ti+1)
(S1.12)

When data are censored, simply replace the term
Pr(B ~εmi

|P )

λ(B ~εmi
) or

P ′(B ~εmi
|P )

λ(B ~εmi
) by Pr(B~εi

i |
P ) or P ′(B~εi

i | P ) respectively depending on whether the observation is coming form sample
X or Y.

Analogous calculation leads to

BF01 =
1

αn
′
2

Ec1
Ec2

(S1.13)

where

Ec1 =E[(1− Y0)nY d110 (1− Y10)n−1...Y di1, ..., 1︸ ︷︷ ︸
i

,0(1− Y1, ..., 1︸ ︷︷ ︸
i

,0)n−i...Y
dn−1

1, ..., 1︸ ︷︷ ︸
n−1

,0
(1− Y1, ..., 1︸ ︷︷ ︸

n−1

,0)]

Ec2 =E[(1− Y0)n1+n2αY d110 (1− Y10)n−1+(α−1)t2 ...Y di1, ..., 1︸ ︷︷ ︸
i

,0(1− Y1, ..., 1︸ ︷︷ ︸
i

,0)n−i+(α−1)ti+1

· · ·Y1, ..., 1︸ ︷︷ ︸
n−1

,0(1− Y1, ..., 1︸ ︷︷ ︸
n−1

,0)1+(α−1)tn ],

and n′2 =
∑i=1
n diZi is the total number of uncensored observations in sample Y.
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Integration yields the Bayes factor for data with censoring as follows

BF01 =
1

αn
′
2

Γ(a1 + n)Γ(a0 + a1 + n1 + n2α)

Γ(a0 + a1 + n)Γ(a1 + n1 + n2α)

n−1∏
i=1

Γ(a1, ..., 1︸ ︷︷ ︸
i

,1 + n− i)Γ(a1, ..., 1︸ ︷︷ ︸
i

,0 + a1, ..., 1︸ ︷︷ ︸
i

,1 + (α− 1)ti+1 + di)

Γ(a1, ..., 1︸ ︷︷ ︸
i

,0 + a1, ..., 1︸ ︷︷ ︸
i

,1 + n− i+ di)Γ(a1, ..., 1︸ ︷︷ ︸
i

,1 + (α− 1)ti+1)
(S1.14)


