Construction of sliced space-filling designs based on balanced sliced orthogonal arrays

Mingyao Ai¹, Bochuan Jiang^{1,2}, Kang Li¹

¹Peking University and ²Science and Technology on Complex Land Systems Simulation Laboratory

Appendix: Proofs of Lemmas and Theorems

Proof of Lemma 2

Since \boldsymbol{A} is a balanced $D(s_1, \lambda, s_1)$ and $\boldsymbol{C}_{(l_1,...,l_\lambda)}(:, j) = \boldsymbol{A}(:, j) + \Gamma(1, l_j)$ for $j = 1, ..., \lambda$, we know that $\boldsymbol{C}_{(l_1,...,l_\lambda)}$ is also a balanced $D(s_1, \lambda, s_1)$. From the formula (2.1), the label of the *i*-th row of \boldsymbol{A} can be uniquely represented as $(b_{i0}, b_{i1}, \ldots, b_{i,\lambda-1})\boldsymbol{u}$ for $i = 1, \ldots, s_1$. Let \boldsymbol{B} be the $s_1 \times \lambda$ matrix with $(b_{i0}, b_{i1}, \ldots, b_{i,\lambda-1})$ as the *i*-th row. Clearly, $\boldsymbol{A} = \boldsymbol{B}\boldsymbol{u}\boldsymbol{u}'$. By using Lemma 1 in Qian and Wu (2009), we have $\phi(\boldsymbol{A}) = \boldsymbol{B}\phi(\boldsymbol{u}\boldsymbol{u}')$.

Next we are ready to prove that $\phi(\boldsymbol{uu'})$ has full rank over G. Note that $\phi(\alpha^i) = \beta^i$ for $i = 0, 1, ..., \lambda - 1$. By performing some row transformations, the matrix $\phi(\boldsymbol{uu'})$ can be transferred to

$$\begin{pmatrix} 1 & \beta & \cdots & \beta^{\lambda-2} & \beta^{\lambda-1} \\ 0 & 0 & \cdots & 0 & \phi(\alpha^{\lambda}) - \beta^{\lambda} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \phi(\alpha^{\lambda}) - \beta^{\lambda} & \cdots & \phi(\alpha^{2\lambda-3}) - \beta^{2\lambda-3} & \phi(\alpha^{2\lambda-2}) - \beta^{2\lambda-2} \end{pmatrix}^{*}$$

which has the same rank as $\phi(\boldsymbol{u}\boldsymbol{u'})$ over G. Suppose that α^{λ} is uniquely represented as $b_0 + b_1\alpha + \cdots + b_{\lambda-1}\alpha^{\lambda-1}$, where $b_i \in G$, $0 \leq i \leq \lambda - 1$. If $\phi(\alpha^{\lambda}) = \beta^{\lambda}$, then $\phi(\alpha^{\lambda+1}) = \phi(b_0\alpha + b_1\alpha^2 + \cdots + b_{\lambda-1}\alpha^{\lambda}) = b_0\beta + b_1\beta^2 + \cdots + b_{\lambda-1}\beta^{\lambda} = \beta\phi(\alpha^{\lambda}) = \beta^{\lambda+1}$. It can be further shown that $\phi(\alpha^j) = \beta^j$ for any j, which implies that ϕ only projects the element zero of F to zero of G, a contradiction. Hence, $\phi(\alpha^{\lambda}) \neq \beta^{\lambda}$ and $\phi(\boldsymbol{u}\boldsymbol{u'})$ has full rank over G. Note that \boldsymbol{B} has no repeated rows. Thus, $\phi(\boldsymbol{A})$ also has no repeated rows and consists of all the s_2^{λ} possible λ -tuples from G, i.e., $\phi(\boldsymbol{A})$ is an $OA(s_2^{\lambda}, s_2^{\lambda}, \lambda)$. The part (ii) of Lemma 2 follows by noting $\phi(\boldsymbol{v}_{(l_1,\ldots,l_{\lambda})}) = \boldsymbol{0} \text{ for any } (l_1,\ldots,l_{\lambda}) \in Q^{\lambda}.$

Pick any two distinct λ -tuples $(l_1, \ldots, l_{\lambda}), (l'_1, \ldots, l'_{\lambda}) \in Q^{\lambda}$. Obviously, the *i*-th rows of $C_{(l_1,\ldots,l_{\lambda})}$ and $C_{(l'_1,\ldots,l'_{\lambda})}$ are distinct for $i = 1, \ldots, s_1$. Since $\phi(C_{(l_1,\ldots,l_{\lambda})}) = \phi(C_{(l'_1,\ldots,l'_{\lambda})}) = \phi(A)$ and $\phi(A)$ has no repeated rows, it can be shown that $C_{(l_1,\ldots,l_{\lambda})}$ and $C_{(l'_1,\ldots,l'_{\lambda})}$ have no same rows. Thus, C has no repeated rows and consists of all the s_1^{λ} possible λ -tuples from F, i.e., C is an $OA(s_1^{\lambda}, s_1^{\lambda}, \lambda)$. The proof of Lemma 2 is complete.

Proof of Theorem 1

Since any element of F can be uniquely represented in the expression (2.1), all the elements of $\boldsymbol{u'Z}$ are distinct and nonzero. By noting that \boldsymbol{AZ} is the matrix obtained by taking the columns of \boldsymbol{A}_0 labeled with the elements of $\boldsymbol{u'Z}$, we know that \boldsymbol{AZ} is a balanced $D(s_1, m, s_1)$. Since $\boldsymbol{C}_{(l_1,...,l_\lambda)}\boldsymbol{Z} = \boldsymbol{AZ} + \mathbf{1}_{s_1}\boldsymbol{v}'_{(l_1,...,l_\lambda)}\boldsymbol{Z}$, it can be shown that $\boldsymbol{C}_{(l_1,...,l_\lambda)}\boldsymbol{Z}$ is also a balanced $D(s_1, m, s_1)$. So the part (ii) of Theorem 1 follows. Furthermore, because $\boldsymbol{H} = (\alpha_0, \ldots, \alpha_{s_1-1})' \oplus (\boldsymbol{C}_{(l_1,...,l_\lambda)}\boldsymbol{Z})$, the part (i) of Theorem 1 follows easily from Lemma 1.

Suppose now any t columns of \mathbf{Z} are linearly independent over G. Let \mathbf{Z}_0 be a $\lambda \times t$ submatrix of \mathbf{Z} . From Lemma 2 (ii), $\phi(\mathbf{C}_{(l_1,...,l_\lambda)})$ is an $OA(s_2^{\lambda}, s_2^{\lambda}, \lambda)$. Thus, for any fixed t-tuple $\boldsymbol{\eta}$ from G, the number of times that $\boldsymbol{\eta}$ appears as a row in $\phi(\mathbf{C}_{(l_1,...,l_\lambda)})\mathbf{Z}_0$ is equal to the number of λ -tuples **b**'s from G such that $b\mathbf{Z}_0 = \boldsymbol{\eta}$. Since \mathbf{Z}_0 has full column rank over G, it is known that this number is equal to $s_2^{\lambda-t}$. Therefore, $\phi(\mathbf{C}_{(l_1,...,l_\lambda)})\mathbf{Z}$ is an $OA(s_1, s_2^m, t)$ and the part (iii) of Theorem 1 follows.

Proof of Theorem 2

Since the part (i) of Theorem 2 can be easily obtained by following the similar proof of Theorem 1 (ii), here we need only to prove the part (ii) of Theorem 2.

Assume now that there is a $\lambda \times t$ submatrix of \mathbf{Z} , denoted by \mathbf{Z}_0 , which has full column rank over G. It can be shown that \mathbf{Z}_0 also has full column rank over F. Otherwise, there exists a nonzero vector $(a_1, \ldots, a_t)'$ over F such that $\mathbf{Z}_0(a_1, \ldots, a_t)' = \mathbf{0}$. Note that each a_i can be uniquely represented in (2.1) as the form of $\mathbf{b}'_i \mathbf{u}$, where \mathbf{b}_i is a λ -vector over G for $i = 1, \ldots, t$. Thus, we have $\phi(\mathbf{Z}_0(\mathbf{b}_1, \ldots, \mathbf{b}_t)'\mathbf{u}\mathbf{u}') = \mathbf{Z}_0(\mathbf{b}_1, \ldots, \mathbf{b}_t)'\phi(\mathbf{u}\mathbf{u}') = \mathbf{0}$. It is known from the proof of Lemma 2 that $\phi(\mathbf{u}\mathbf{u}')$ has full rank over G. Therefore, $\mathbf{Z}_0(\mathbf{b}_1, \ldots, \mathbf{b}_t)' = \mathbf{0}$, a contradiction.

From Lemma 2, we know that C is an $OA(s_1^{\lambda}, s_1^{\lambda}, \lambda)$ over F and $\phi(C_{(l_1,...,l_{\lambda})})$ is an $OA(s_2^{\lambda}, s_2^{\lambda}, \lambda)$ over G. Then the conclusion in the part (ii) of Theorem 2 can be proved similar to Theorem 1 (iii) and so the remainder of the proof is omitted here.

Proof of Theorem 3

From Theorem 1 (i), it is easy to see that the matrix H constructed in Method 1 has no repeated rows. Similar to the proof of Theorem 2, it can be shown that the rows of Z are also linearly independent over F. It is known from Lemma 2 that C has no repeated rows. So, the matrix H = CZ constructed in Method 2 also has no repeated rows. The similar conclusion for each projected slice can be obtained by following the above arguments again.

Proof of Lemma 3

When $\mathbf{Z}_2 = (\mathbf{I}_{\lambda}, \mathbf{1}_{\lambda})$ with $\lambda \geq s_2$, the conclusion obviously holds.

Now suppose that there exist a $\lambda \times \lambda$ submatrix of \mathbb{Z}_2 , denoted by \mathbb{Z}_0 , and a nonzero vector $\mathbf{b} = (b_0, \ldots, b_{\lambda-1})'$ over G such that $\mathbf{b}' \mathbb{Z}_0 = \mathbf{0}$. Let $\Psi(Y) = b_0 + b_1 Y + \cdots + b_{\lambda-1} Y^{\lambda-1}$.

Now consider the case of $\mathbf{Z}_2 = (\mathbf{e}_1, \mathbf{e}_\lambda, \mathbf{W}_\lambda)$. Note that $\mathbf{b}' \mathbf{Z}_2 = (\Psi(0), b_{\lambda-1}, \Psi(\beta), \dots, \Psi(\beta^{s_2-1}))$. If \mathbf{e}_λ is a column of \mathbf{Z}_0 , then $b_{\lambda-1} = 0$ and $\Psi(Y)$ has $\lambda - 1$ distinct roots over G, a contradiction. Otherwise, $\Psi(Y) = 0$ has λ distinct roots over G, a contradiction again. Thus, the above \mathbf{Z}_0 doesn't exist.

Next, we focus on the case of $\mathbf{Z}_2 = (\mathbf{I}_3, \mathbf{W}_3)$ with the conditions that $\lambda = 3$ and s_2 is even. Note that $\mathbf{b}'\mathbf{Z}_2 = (\Psi(0), b_1, b_2, \Psi(\beta), \dots, \Psi(\beta^{s_2-1}))$. From the previous paragraph, we need only to consider the situation when \mathbf{e}_2 is a column of \mathbf{Z}_0 . Then $b_1 = 0$. If \mathbf{e}_3 is also a column of \mathbf{Z}_0 , then $b_2 = 0$ and $b_0 = 0$, a contradiction. Otherwise, there exist two elements of G, say η_1 and η_2 , satisfying $b_0 + b_2\eta_1^2 = b_0 + b_2\eta_2^2 = 0$. By using the fact $\eta_1^2 = \eta_2^2$ if and only if $\eta_1 = \eta_2$ when s_2 is even, we conclude that $b_0 = b_2 = 0$, a contradiction again. Thus, the above \mathbf{Z}_0 doesn't exist yet.

Finally, we consider the case of $\mathbf{Z}_2 = (\mathbf{W}'_3, \mathbf{I}_{s_2-1})$ with the conditions that $\lambda = s_2 - 1$ and s_2 is even. Note that $\mathbf{b}'\mathbf{Z}_2 = (\mathbf{b}'\mathbf{W}'_3, \mathbf{b}')$. If $\mathbf{Z}_0 = \mathbf{I}_{s_2-1}$, then $\mathbf{b} = \mathbf{0}$, a contradiction. Otherwise, without loss of generality, suppose the last

 $s_2 - 2 - k$ columns of I_{s_2-1} are involved in Z_0 , where $0 \le k \le 2$. Then $b_i = 0$ for $k < i \le s_2 - 2$. Obtain a matrix W by collecting the k + 1 columns of W'_3 involved in Z_0 . Then b'W = 0 and $(b_0, \ldots, b_k)W^{(k+1)} = 0$, where $W^{(k+1)}$ is the submatrix obtained by taking the first k + 1 rows of W. It can be easily verified that any $(k + 1) \times (k + 1)$ submatrix of W_3 has full rank over G for $0 \le k \le 2$ when s_2 is even. Thus, $b_i = 0$ for $0 \le i \le k$, a contradiction again. So, the above Z_0 doesn't exist yet.

In all, the conclusion in Lemma 3 holds for different generator matrices Z_2 in (4.2). The proof is complete.

Proof of Lemma 4

By noting that B_j is a subarray of the multiplication table of F, the part (i) of Lemma 4 follows. Recall that $\Gamma(:,1)$ is a permutation of all elements in $F_0 = \{a_0 + a_1x + \dots + a_{u_2-1}x^{u_2-1} | a_j \in GF(p)\}$. From Lemma 2 in Qian and Wu (2009), we know $\varphi(B_{11}) = \varphi(\Gamma(:,1))\varphi(\Gamma(:,1))'$ for $u_1 \ge 2u_2 - 1$ and thus $\varphi(B_{11})$ is a $D(s_2, s_2, s_2)$. For $1 \le k_1 < k_2 \le q$, from the formula (2.5) we have $\varphi(B_{ij}(:,k_1)) - \varphi(B_{ij}(:,k_2)) = \varphi(B_{11}(:,k_1)) - \varphi(B_{11}(:,k_2)) + \varphi(\Gamma(k_1,1)c_i(x) - \Gamma(k_2,1)c_i(x))$. Hence, $\varphi(B_{ij})$ is also a $D(s_2, s_2, s_2)$ for $i, j = 1, \dots, q$.

Proof of Theorem 9

Since $\boldsymbol{H} = (\boldsymbol{\Gamma}(:,1)', \dots \boldsymbol{\Gamma}(:,q)')' \oplus \boldsymbol{B}_2$, the part (i) of Theorem 9 follows from Lemma 1 and Lemma 4. Note that $\varphi(\boldsymbol{B}_{j2})$ is a $D(s_2, s_2, s_2)$ and $\varphi(\boldsymbol{\Gamma}(:,i))$ is an $OA(s_2, s_2^1, 1)$. By following Lemma 1, we know $\varphi(\boldsymbol{H}_{ij})$ is an $OA(s_2^2, s_2^{s_2}, 2)$ for $i, j = 1, \dots, q$.

Let $deg\{f(x)\}$ denote the degree of a polynomial $f(x) \in F$, or more precisely the polynomial f(x) modulo $p_1(x)$. If two elements of F are in the same column of Γ , from the formula (2.5) we know the degree of their difference is less than u_2 . Now partition the elements of $\Gamma(:, 1)$ into p groups, each of size $q = s_1/s_2 =$ p^{u_2-1} , according to the rule that any two elements $f_1(x)$ and $f_2(x)$ of $\Gamma(:, 1)$ are in the same group if and only if $deg\{f_1(x) - f_2(x)\} \leq u_2 - 2$. Suppose $\Gamma(l_1, 1), \Gamma(l_2, 1), \ldots, \Gamma(l_q, 1)$ are from the same group. For $1 \leq k \leq s_2$, we have $B_{j2}(l_1, k) - B_{j2}(l_2, k) = [\Gamma(l_1, 1) - \Gamma(l_2, 1)][\Gamma(k, 1) + c_2(x)]$, where $deg\{c_2(x)\} =$ u_2 . Then $deg\{B_{j2}(l_1, k) - B_{j2}(l_2, k)\} \geq u_2$ and $B_{j2}(l_1, k)$ and $B_{j2}(l_2, k)$ are in different columns of Γ . As a result, $B_{j2}(l_1, k), \ldots, B_{j2}(l_q, k)$ are in distinct columns of Γ and thus each column of Γ contains exactly p elements of $B_{j2}(:,k)$. From $H_{ij}(:,k) = \Gamma(:,i) \oplus B_{j2}(:,k) = \Gamma(:,1) \oplus B_{j2}(:,k) + c_i(x)$, it can be easily verified that $H_{ij}(:,k)$ is balanced for i, j = 1, ..., q. The proof is complete.

Proof of Theorem 10

Since the k-th elements of u_{i1}, \ldots, u_{iq} form a permutation of $\{1, \ldots, q\}$ for $k = 1, \ldots, t$, it is easy to see that each H_i is balanced for $i = 1, \ldots, q^{t-1}$. For any $(l_1, \ldots, l_t) \in Q^t$, by noting that the first t columns of $\rho(H_{(l_1,\ldots,l_t)})$ have each of the s_2^t possible t-tuples from G as a row and the last column is the sum of the first t columns, we know that $\rho(H_{(l_1,\ldots,l_t)})$ is an $OA(s_2^t, s_2^{t+1}, t)$. The proof is complete.

Proof of Theorem 11

The part (ii) of Theorem 11 follows by noting that $\rho(\mathbf{A}) = \mathbf{A}_0$ and $\rho(\mathbf{v}_{(l_1,...,l_t)})$ = 0 for any $(l_1,...,l_t) \in Q^t$. Since any $s_2^t \times t$ submatrix of $\mathbf{H}_{(l_1,...,l_t)}$ or $\rho(\mathbf{H}_{(l_1,...,l_t)})$ has no repeated rows, it can be shown that any $s_1^t \times t$ submatrix of \mathbf{H} has no repeated rows and thus consists of all the s_1^t possible t-tuples from F, i.e., \mathbf{H} is an $OA(s_1^t, s_1^{t+1}, t)$.