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Appendix: Proofs of Lemmas and Theorems

Proof of Lemma 2

Since A is a balanced D(s1, λ, s1) and C(l1,...,lλ)(:, j) = A(:, j) + Γ(1, lj)

for j = 1, . . . , λ, we know that C(l1,...,lλ) is also a balanced D(s1, λ, s1). From

the formula (2.1), the label of the i-th row of A can be uniquely represented

as (bi0, bi1, . . . , bi,λ−1)u for i = 1, . . . , s1. Let B be the s1 × λ matrix with

(bi0, bi1, . . . , bi,λ−1) as the i-th row. Clearly, A = Buu′. By using Lemma 1 in

Qian and Wu (2009), we have φ(A) = Bφ(uu′).

Next we are ready to prove that φ(uu′) has full rank over G. Note that

φ(αi) = βi for i = 0, 1, . . . , λ− 1. By performing some row transformations, the

matrix φ(uu′) can be transfered to



1 β · · · βλ−2 βλ−1

0 0 · · · 0 φ(αλ)− βλ

...
...

...
...

...

0 φ(αλ)− βλ · · · φ(α2λ−3)− β2λ−3 φ(α2λ−2)− β2λ−2




,

which has the same rank as φ(uu′) over G. Suppose that αλ is uniquely repre-

sented as b0 + b1α + · · ·+ bλ−1α
λ−1, where bi ∈ G, 0 ≤ i ≤ λ− 1. If φ(αλ) = βλ,

then φ(αλ+1) = φ(b0α + b1α
2 + · · · + bλ−1α

λ) = b0β + b1β
2 + · · · + bλ−1β

λ =

βφ(αλ) = βλ+1. It can be further shown that φ(αj) = βj for any j, which implies

that φ only projects the element zero of F to zero of G, a contradiction. Hence,

φ(αλ) 6= βλ and φ(uu′) has full rank over G. Note that B has no repeated rows.

Thus, φ(A) also has no repeated rows and consists of all the sλ
2 possible λ-tuples

from G, i.e., φ(A) is an OA(sλ
2 , sλ

2 , λ). The part (ii) of Lemma 2 follows by noting
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φ(v(l1,...,lλ)) = 0 for any (l1, . . . , lλ) ∈ Qλ.

Pick any two distinct λ-tuples (l1, . . . , lλ), (l′1, . . . , l
′
λ) ∈ Qλ. Obviously,

the i-th rows of C(l1,...,lλ) and C(l′1,...,l′λ) are distinct for i = 1, . . . , s1. Since

φ(C(l1,...,lλ)) = φ(C(l′1,...,l′λ)) = φ(A) and φ(A) has no repeated rows, it can be

shown that C(l1,...,lλ) and C(l′1,...,l′λ) have no same rows. Thus, C has no repeated

rows and consists of all the sλ
1 possible λ-tuples from F , i.e., C is an OA(sλ

1 , sλ
1 , λ).

The proof of Lemma 2 is complete.

Proof of Theorem 1

Since any element of F can be uniquely represented in the expression (2.1),

all the elements of u′Z are distinct and nonzero. By noting that AZ is the matrix

obtained by taking the columns of A0 labeled with the elements of u′Z, we know

that AZ is a balanced D(s1,m, s1). Since C(l1,...,lλ)Z = AZ + 1s1v
′
(l1,...,lλ)Z, it

can be shown that C(l1,...,lλ)Z is also a balanced D(s1,m, s1). So the part (ii) of

Theorem 1 follows. Furthermore, because H = (α0, . . . , αs1−1)′ ⊕ (C(l1,...,lλ)Z),

the part (i) of Theorem 1 follows easily from Lemma 1.

Suppose now any t columns of Z are linearly independent over G. Let Z0

be a λ× t submatrix of Z. From Lemma 2 (ii), φ(C(l1,...,lλ)) is an OA(sλ
2 , sλ

2 , λ).

Thus, for any fixed t-tuple η from G, the number of times that η appears as a

row in φ(C(l1,...,lλ))Z0 is equal to the number of λ-tuples b’s from G such that

bZ0 = η . Since Z0 has full column rank over G, it is known that this number

is equal to sλ−t
2 . Therefore, φ(C(l1,...,lλ))Z is an OA(s1, s

m
2 , t) and the part (iii)

of Theorem 1 follows.

Proof of Theorem 2

Since the part (i) of Theorem 2 can be easily obtained by following the similar

proof of Theorem 1 (ii), here we need only to prove the part (ii) of Theorem 2.

Assume now that there is a λ × t submatrix of Z, denoted by Z0, which

has full column rank over G. It can be shown that Z0 also has full column rank

over F . Otherwise, there exists a nonzero vector (a1, . . . , at)′ over F such that

Z0(a1, . . . , at)′ = 0. Note that each ai can be uniquely represented in (2.1) as

the form of b′iu, where bi is a λ-vector over G for i = 1, . . . , t. Thus, we have

φ(Z0(b1, . . . , bt)′uu′) = Z0(b1, . . . , bt)′φ(uu′) = 0. It is known from the proof

of Lemma 2 that φ(uu′) has full rank over G. Therefore, Z0(b1, . . . , bt)′ = 0, a
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contradiction.

From Lemma 2, we know that C is an OA(sλ
1 , sλ

1 , λ) over F and φ(C(l1,...,lλ))

is an OA(sλ
2 , sλ

2 , λ) over G. Then the conclusion in the part (ii) of Theorem 2 can

be proved similar to Theorem 1 (iii) and so the remainder of the proof is omitted

here.

Proof of Theorem 3

From Theorem 1 (i), it is easy to see that the matrix H constructed in

Method 1 has no repeated rows. Similar to the proof of Theorem 2, it can be

shown that the rows of Z are also linearly independent over F . It is known from

Lemma 2 that C has no repeated rows. So, the matrix H = CZ constructed in

Method 2 also has no repeated rows. The similar conclusion for each projected

slice can be obtained by following the above arguments again.

Proof of Lemma 3

When Z2 = (Iλ,1λ) with λ ≥ s2, the conclusion obviously holds.

Now suppose that there exist a λ× λ submatrix of Z2, denoted by Z0, and

a nonzero vector b = (b0, . . . , bλ−1)′ over G such that b′Z0 = 0. Let Ψ(Y ) =

b0 + b1Y + · · ·+ bλ−1Y
λ−1.

Now consider the case of Z2 = (e1, eλ,W λ). Note that b′Z2 = (Ψ(0), bλ−1,

Ψ(β), . . . ,Ψ(βs2−1)). If eλ is a column of Z0, then bλ−1 = 0 and Ψ(Y ) has λ− 1

distinct roots over G, a contradiction. Otherwise, Ψ(Y ) = 0 has λ distinct roots

over G, a contradiction again. Thus, the above Z0 doesn’t exist.

Next, we focus on the case of Z2 = (I3,W 3) with the conditions that λ = 3

and s2 is even. Note that b′Z2 = (Ψ(0), b1, b2,Ψ(β), . . . ,Ψ(βs2−1)). From the

previous paragraph, we need only to consider the situation when e2 is a column

of Z0. Then b1 = 0. If e3 is also a column of Z0, then b2 = 0 and b0 = 0, a

contradiction. Otherwise, there exist two elements of G, say η1 and η2, satisfying

b0 + b2η
2
1 = b0 + b2η

2
2 = 0. By using the fact η2

1 = η2
2 if and only if η1 = η2 when

s2 is even, we conclude that b0 = b2 = 0, a contradiction again. Thus, the above

Z0 doesn’t exist yet.

Finally, we consider the case of Z2 = (W ′
3, Is2−1) with the conditions that

λ = s2 − 1 and s2 is even. Note that b′Z2 = (b′W ′
3, b

′). If Z0 = Is2−1, then

b = 0, a contradiction. Otherwise, without loss of generality, suppose the last
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s2 − 2 − k columns of Is2−1 are involved in Z0, where 0 ≤ k ≤ 2. Then bi = 0

for k < i ≤ s2 − 2. Obtain a matrix W by collecting the k + 1 columns of W ′
3

involved in Z0. Then b′W = 0 and (b0, . . . , bk)W (k+1) = 0, where W (k+1) is the

submatrix obtained by taking the first k + 1 rows of W . It can be easily verified

that any (k + 1) × (k + 1) submatrix of W 3 has full rank over G for 0 ≤ k ≤ 2

when s2 is even. Thus, bi = 0 for 0 ≤ i ≤ k, a contradiction again. So, the above

Z0 doesn’t exist yet.

In all, the conclusion in Lemma 3 holds for different generator matrices Z2

in (4.2). The proof is complete.

Proof of Lemma 4

By noting that Bj is a subarray of the multiplication table of F , the part

(i) of Lemma 4 follows. Recall that Γ(:, 1) is a permutation of all elements in

F0 = {a0 + a1x + · · · + au2−1x
u2−1|aj ∈ GF (p)}. From Lemma 2 in Qian and

Wu (2009), we know ϕ(B11) = ϕ(Γ(:, 1))ϕ(Γ(:, 1))′ for u1 ≥ 2u2 − 1 and thus

ϕ(B11) is a D(s2, s2, s2). For 1 ≤ k1 < k2 ≤ q, from the formula (2.5) we have

ϕ(Bij(:, k1)) − ϕ(Bij(:, k2)) = ϕ(B11(:, k1)) − ϕ(B11(:, k2)) + ϕ(Γ(k1, 1)ci(x) −
Γ(k2, 1)ci(x)). Hence, ϕ(Bij) is also a D(s2, s2, s2) for i, j = 1, . . . , q.

Proof of Theorem 9

Since H = (Γ(:, 1)′, . . .Γ(:, q)′)′⊕B2, the part (i) of Theorem 9 follows from

Lemma 1 and Lemma 4. Note that ϕ(Bj2) is a D(s2, s2, s2) and ϕ(Γ(:, i)) is an

OA(s2, s
1
2, 1). By following Lemma 1, we know ϕ(H ij) is an OA(s2

2, s
s2
2 , 2) for

i, j = 1, . . . , q.

Let deg{f(x)} denote the degree of a polynomial f(x) ∈ F , or more precisely

the polynomial f(x) modulo p1(x). If two elements of F are in the same column

of Γ, from the formula (2.5) we know the degree of their difference is less than

u2. Now partition the elements of Γ(:, 1) into p groups, each of size q = s1/s2 =

pu2−1, according to the rule that any two elements f1(x) and f2(x) of Γ(:, 1)

are in the same group if and only if deg{f1(x) − f2(x)} ≤ u2 − 2. Suppose

Γ(l1, 1),Γ(l2, 1), . . . ,Γ(lq, 1) are from the same group. For 1 ≤ k ≤ s2, we have

Bj2(l1, k)−Bj2(l2, k) = [Γ(l1, 1)−Γ(l2, 1)][Γ(k, 1) + c2(x)], where deg{c2(x)} =

u2. Then deg{Bj2(l1, k) − Bj2(l2, k)} ≥ u2 and Bj2(l1, k) and Bj2(l2, k) are

in different columns of Γ. As a result, Bj2(l1, k), . . . ,Bj2(lq, k) are in distinct
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columns of Γ and thus each column of Γ contains exactly p elements of Bj2(:, k).

From H ij(:, k) = Γ(:, i)⊕Bj2(:, k) = Γ(:, 1)⊕Bj2(:, k) + ci(x), it can be easily

verified that H ij(:, k) is balanced for i, j = 1, . . . , q. The proof is complete.

Proof of Theorem 10

Since the k-th elements of ui1, . . . ,uiq form a permutation of {1, . . . , q} for

k = 1, . . . , t, it is easy to see that each H i is balanced for i = 1, . . . , qt−1. For

any (l1, . . . , lt) ∈ Qt, by noting that the first t columns of ρ(H(l1,...,lt)) have each

of the st
2 possible t-tuples from G as a row and the last column is the sum of

the first t columns, we know that ρ(H(l1,...,lt)) is an OA(st
2, s

t+1
2 , t). The proof is

complete.

Proof of Theorem 11

The part (ii) of Theorem 11 follows by noting that ρ(A) = A0 and ρ(v(l1,...,lt))

= 0 for any (l1, . . . , lt) ∈ Qt. Since any st
2 × t submatrix of H(l1,...,lt) or

ρ(H(l1,...,lt)) has no repeated rows, it can be shown that any st
1 × t submatrix of

H has no repeated rows and thus consists of all the st
1 possible t-tuples from F ,

i.e., H is an OA(st
1, s

t+1
1 , t).


