Construction of sliced space-filling designs based on balanced sliced orthogonal arrays

Mingyao Ai 1, Bochuan Jiang ${ }^{1,2}$, $\operatorname{Kang} \mathrm{Li}^{1}$
${ }^{1}$ Peking University and ${ }^{2}$ Science and Technology on Complex Land Systems Simulation Laboratory

Appendix: Proofs of Lemmas and Theorems

Proof of Lemma 2

Since \boldsymbol{A} is a balanced $D\left(s_{1}, \lambda, s_{1}\right)$ and $\boldsymbol{C}_{\left(l_{1}, \ldots, l_{\lambda}\right)}(:, j)=\boldsymbol{A}(:, j)+\Gamma\left(1, l_{j}\right)$ for $j=1, \ldots, \lambda$, we know that $\boldsymbol{C}_{\left(l_{1}, \ldots, l_{\lambda}\right)}$ is also a balanced $D\left(s_{1}, \lambda, s_{1}\right)$. From the formula (2.1), the label of the i-th row of \boldsymbol{A} can be uniquely represented as $\left(b_{i 0}, b_{i 1}, \ldots, b_{i, \lambda-1}\right) \boldsymbol{u}$ for $i=1, \ldots, s_{1}$. Let \boldsymbol{B} be the $s_{1} \times \lambda$ matrix with $\left(b_{i 0}, b_{i 1}, \ldots, b_{i, \lambda-1}\right)$ as the i-th row. Clearly, $\boldsymbol{A}=\boldsymbol{B u} \boldsymbol{u}^{\prime}$. By using Lemma 1 in Qian and Wu (2009), we have $\phi(\boldsymbol{A})=\boldsymbol{B} \phi\left(\boldsymbol{u} \boldsymbol{u}^{\prime}\right)$.

Next we are ready to prove that $\phi\left(\boldsymbol{u} \boldsymbol{u}^{\prime}\right)$ has full rank over G. Note that $\phi\left(\alpha^{i}\right)=\beta^{i}$ for $i=0,1, \ldots, \lambda-1$. By performing some row transformations, the matrix $\phi\left(\boldsymbol{u} \boldsymbol{u}^{\prime}\right)$ can be transfered to

$$
\left(\begin{array}{ccccc}
1 & \beta & \cdots & \beta^{\lambda-2} & \beta^{\lambda-1} \\
0 & 0 & \cdots & 0 & \phi\left(\alpha^{\lambda}\right)-\beta^{\lambda} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \phi\left(\alpha^{\lambda}\right)-\beta^{\lambda} & \cdots & \phi\left(\alpha^{2 \lambda-3}\right)-\beta^{2 \lambda-3} & \phi\left(\alpha^{2 \lambda-2}\right)-\beta^{2 \lambda-2}
\end{array}\right)
$$

which has the same rank as $\phi\left(\boldsymbol{u} \boldsymbol{u}^{\prime}\right)$ over G. Suppose that α^{λ} is uniquely represented as $b_{0}+b_{1} \alpha+\cdots+b_{\lambda-1} \alpha^{\lambda-1}$, where $b_{i} \in G, 0 \leq i \leq \lambda-1$. If $\phi\left(\alpha^{\lambda}\right)=\beta^{\lambda}$, then $\phi\left(\alpha^{\lambda+1}\right)=\phi\left(b_{0} \alpha+b_{1} \alpha^{2}+\cdots+b_{\lambda-1} \alpha^{\lambda}\right)=b_{0} \beta+b_{1} \beta^{2}+\cdots+b_{\lambda-1} \beta^{\lambda}=$ $\beta \phi\left(\alpha^{\lambda}\right)=\beta^{\lambda+1}$. It can be further shown that $\phi\left(\alpha^{j}\right)=\beta^{j}$ for any j, which implies that ϕ only projects the element zero of F to zero of G, a contradiction. Hence, $\phi\left(\alpha^{\lambda}\right) \neq \beta^{\lambda}$ and $\phi\left(\boldsymbol{u} \boldsymbol{u}^{\prime}\right)$ has full rank over G. Note that \boldsymbol{B} has no repeated rows. Thus, $\phi(\boldsymbol{A})$ also has no repeated rows and consists of all the s_{2}^{λ} possible λ-tuples from G, i.e., $\phi(\boldsymbol{A})$ is an $O A\left(s_{2}^{\lambda}, s_{2}^{\lambda}, \lambda\right)$. The part (ii) of Lemma 2 follows by noting
$\phi\left(\boldsymbol{v}_{\left(l_{1}, \ldots, l_{\lambda}\right)}\right)=\mathbf{0}$ for any $\left(l_{1}, \ldots, l_{\lambda}\right) \in Q^{\lambda}$.
Pick any two distinct λ-tuples $\left(l_{1}, \ldots, l_{\lambda}\right),\left(l_{1}^{\prime}, \ldots, l_{\lambda}^{\prime}\right) \in Q^{\lambda}$. Obviously, the i-th rows of $\boldsymbol{C}_{\left(l_{1}, \ldots, l_{\lambda}\right)}$ and $\boldsymbol{C}_{\left(l_{1}^{\prime}, \ldots, l_{\lambda}^{\prime}\right)}$ are distinct for $i=1, \ldots, s_{1}$. Since $\phi\left(\boldsymbol{C}_{\left(l_{1}, \ldots, l_{\lambda}\right)}\right)=\phi\left(\boldsymbol{C}_{\left(l_{1}^{\prime}, \ldots, l_{\lambda}^{\prime}\right)}\right)=\phi(\boldsymbol{A})$ and $\phi(\boldsymbol{A})$ has no repeated rows, it can be shown that $\boldsymbol{C}_{\left(l_{1}, \ldots, l_{\lambda}\right)}$ and $\boldsymbol{C}_{\left(l_{1}^{\prime}, \ldots, l_{\lambda}^{\prime}\right)}$ have no same rows. Thus, \boldsymbol{C} has no repeated rows and consists of all the s_{1}^{λ} possible λ-tuples from F, i.e., \boldsymbol{C} is an $O A\left(s_{1}^{\lambda}, s_{1}^{\lambda}, \lambda\right)$. The proof of Lemma 2 is complete.

Proof of Theorem 1

Since any element of F can be uniquely represented in the expression (2.1), all the elements of $\boldsymbol{u}^{\prime} \boldsymbol{Z}$ are distinct and nonzero. By noting that $\boldsymbol{A} \boldsymbol{Z}$ is the matrix obtained by taking the columns of \boldsymbol{A}_{0} labeled with the elements of $\boldsymbol{u}^{\prime} \boldsymbol{Z}$, we know that $\boldsymbol{A} \boldsymbol{Z}$ is a balanced $D\left(s_{1}, m, s_{1}\right)$. Since $\boldsymbol{C}_{\left(l_{1}, \ldots, l_{\lambda}\right)} \boldsymbol{Z}=\boldsymbol{A} \boldsymbol{Z}+\mathbf{1}_{s_{1}} \boldsymbol{v}_{\left(l_{1}, \ldots, l_{\lambda}\right)}^{\prime} \boldsymbol{Z}$, it can be shown that $\boldsymbol{C}_{\left(l_{1}, \ldots, l_{\lambda}\right)} \boldsymbol{Z}$ is also a balanced $D\left(s_{1}, m, s_{1}\right)$. So the part (ii) of Theorem 1 follows. Furthermore, because $\boldsymbol{H}=\left(\alpha_{0}, \ldots, \alpha_{s_{1}-1}\right)^{\prime} \oplus\left(\boldsymbol{C}_{\left(l_{1}, \ldots, l_{\lambda}\right)} \boldsymbol{Z}\right)$, the part (i) of Theorem 1 follows easily from Lemma 1.

Suppose now any t columns of \boldsymbol{Z} are linearly independent over G. Let \boldsymbol{Z}_{0} be a $\lambda \times t$ submatrix of \boldsymbol{Z}. From Lemma $2(\mathrm{ii}), \phi\left(\boldsymbol{C}_{\left(l_{1}, \ldots, l_{\lambda}\right)}\right)$ is an $O A\left(s_{2}^{\lambda}, s_{2}^{\lambda}, \lambda\right)$. Thus, for any fixed t-tuple $\boldsymbol{\eta}$ from G, the number of times that $\boldsymbol{\eta}$ appears as a row in $\phi\left(\boldsymbol{C}_{\left(l_{1}, \ldots, l_{\lambda}\right)}\right) \boldsymbol{Z}_{0}$ is equal to the number of λ-tuples \boldsymbol{b} 's from G such that $\boldsymbol{b} \boldsymbol{Z}_{0}=\boldsymbol{\eta}$. Since \boldsymbol{Z}_{0} has full column rank over G, it is known that this number is equal to $s_{2}^{\lambda-t}$. Therefore, $\phi\left(\boldsymbol{C}_{\left(l_{1}, \ldots, l_{\lambda}\right)}\right) \boldsymbol{Z}$ is an $O A\left(s_{1}, s_{2}^{m}, t\right)$ and the part (iii) of Theorem 1 follows.

Proof of Theorem 2

Since the part (i) of Theorem 2 can be easily obtained by following the similar proof of Theorem 1 (ii), here we need only to prove the part (ii) of Theorem 2.

Assume now that there is a $\lambda \times t$ submatrix of \boldsymbol{Z}, denoted by \boldsymbol{Z}_{0}, which has full column rank over G. It can be shown that \boldsymbol{Z}_{0} also has full column rank over F. Otherwise, there exists a nonzero vector $\left(a_{1}, \ldots, a_{t}\right)^{\prime}$ over F such that $\boldsymbol{Z}_{0}\left(a_{1}, \ldots, a_{t}\right)^{\prime}=\mathbf{0}$. Note that each a_{i} can be uniquely represented in (2.1) as the form of $\boldsymbol{b}_{i}^{\prime} \boldsymbol{u}$, where \boldsymbol{b}_{i} is a λ-vector over G for $i=1, \ldots, t$. Thus, we have $\phi\left(\boldsymbol{Z}_{0}\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{t}\right)^{\prime} \boldsymbol{u} \boldsymbol{u}^{\prime}\right)=\boldsymbol{Z}_{0}\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{t}\right)^{\prime} \phi\left(\boldsymbol{u} \boldsymbol{u}^{\prime}\right)=\mathbf{0}$. It is known from the proof of Lemma 2 that $\phi\left(\boldsymbol{u} \boldsymbol{u}^{\prime}\right)$ has full rank over G. Therefore, $\boldsymbol{Z}_{0}\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{t}\right)^{\prime}=\mathbf{0}$, a
contradiction.
From Lemma 2, we know that \boldsymbol{C} is an $O A\left(s_{1}^{\lambda}, s_{1}^{\lambda}, \lambda\right)$ over F and $\phi\left(\boldsymbol{C}_{\left(l_{1}, \ldots, l_{\lambda}\right)}\right)$ is an $O A\left(s_{2}^{\lambda}, s_{2}^{\lambda}, \lambda\right)$ over G. Then the conclusion in the part (ii) of Theorem 2 can be proved similar to Theorem 1 (iii) and so the remainder of the proof is omitted here.

Proof of Theorem 3

From Theorem 1 (i), it is easy to see that the matrix \boldsymbol{H} constructed in Method 1 has no repeated rows. Similar to the proof of Theorem 2, it can be shown that the rows of \boldsymbol{Z} are also linearly independent over F. It is known from Lemma 2 that \boldsymbol{C} has no repeated rows. So, the matrix $\boldsymbol{H}=\boldsymbol{C} \boldsymbol{Z}$ constructed in Method 2 also has no repeated rows. The similar conclusion for each projected slice can be obtained by following the above arguments again.

Proof of Lemma 3

When $\boldsymbol{Z}_{2}=\left(\boldsymbol{I}_{\lambda}, \mathbf{1}_{\lambda}\right)$ with $\lambda \geq s_{2}$, the conclusion obviously holds.
Now suppose that there exist a $\lambda \times \lambda$ submatrix of \boldsymbol{Z}_{2}, denoted by \boldsymbol{Z}_{0}, and a nonzero vector $\boldsymbol{b}=\left(b_{0}, \ldots, b_{\lambda-1}\right)^{\prime}$ over G such that $\boldsymbol{b}^{\prime} \boldsymbol{Z}_{0}=\mathbf{0}$. Let $\Psi(Y)=$ $b_{0}+b_{1} Y+\cdots+b_{\lambda-1} Y^{\lambda-1}$.

Now consider the case of $\boldsymbol{Z}_{2}=\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{\lambda}, \boldsymbol{W}_{\lambda}\right)$. Note that $\boldsymbol{b}^{\prime} \boldsymbol{Z}_{2}=\left(\Psi(0), b_{\lambda-1}\right.$, $\left.\Psi(\beta), \ldots, \Psi\left(\beta^{s_{2}-1}\right)\right)$. If \boldsymbol{e}_{λ} is a column of \boldsymbol{Z}_{0}, then $b_{\lambda-1}=0$ and $\Psi(Y)$ has $\lambda-1$ distinct roots over G, a contradiction. Otherwise, $\Psi(Y)=0$ has λ distinct roots over G, a contradiction again. Thus, the above \boldsymbol{Z}_{0} doesn't exist.

Next, we focus on the case of $\boldsymbol{Z}_{2}=\left(\boldsymbol{I}_{3}, \boldsymbol{W}_{3}\right)$ with the conditions that $\lambda=3$ and s_{2} is even. Note that $\boldsymbol{b}^{\prime} \boldsymbol{Z}_{2}=\left(\Psi(0), b_{1}, b_{2}, \Psi(\beta), \ldots, \Psi\left(\beta^{s_{2}-1}\right)\right)$. From the previous paragraph, we need only to consider the situation when \boldsymbol{e}_{2} is a column of \boldsymbol{Z}_{0}. Then $b_{1}=0$. If \boldsymbol{e}_{3} is also a column of \boldsymbol{Z}_{0}, then $b_{2}=0$ and $b_{0}=0$, a contradiction. Otherwise, there exist two elements of G, say η_{1} and η_{2}, satisfying $b_{0}+b_{2} \eta_{1}^{2}=b_{0}+b_{2} \eta_{2}^{2}=0$. By using the fact $\eta_{1}^{2}=\eta_{2}^{2}$ if and only if $\eta_{1}=\eta_{2}$ when s_{2} is even, we conclude that $b_{0}=b_{2}=0$, a contradiction again. Thus, the above Z_{0} doesn't exist yet.

Finally, we consider the case of $\boldsymbol{Z}_{2}=\left(\boldsymbol{W}_{3}^{\prime}, \boldsymbol{I}_{s_{2}-1}\right)$ with the conditions that $\lambda=s_{2}-1$ and s_{2} is even. Note that $\boldsymbol{b}^{\prime} \boldsymbol{Z}_{2}=\left(\boldsymbol{b}^{\prime} \boldsymbol{W}_{3}^{\prime}, \boldsymbol{b}^{\prime}\right)$. If $\boldsymbol{Z}_{0}=\boldsymbol{I}_{s_{2}-1}$, then $\boldsymbol{b}=\mathbf{0}$, a contradiction. Otherwise, without loss of generality, suppose the last
$s_{2}-2-k$ columns of $\boldsymbol{I}_{s_{2}-1}$ are involved in \boldsymbol{Z}_{0}, where $0 \leq k \leq 2$. Then $b_{i}=0$ for $k<i \leq s_{2}-2$. Obtain a matrix \boldsymbol{W} by collecting the $k+1$ columns of $\boldsymbol{W}_{3}^{\prime}$ involved in \boldsymbol{Z}_{0}. Then $\boldsymbol{b}^{\prime} \boldsymbol{W}=0$ and $\left(b_{0}, \ldots, b_{k}\right) \boldsymbol{W}^{(k+1)}=0$, where $\boldsymbol{W}^{(k+1)}$ is the submatrix obtained by taking the first $k+1$ rows of \boldsymbol{W}. It can be easily verified that any $(k+1) \times(k+1)$ submatrix of \boldsymbol{W}_{3} has full rank over G for $0 \leq k \leq 2$ when s_{2} is even. Thus, $b_{i}=0$ for $0 \leq i \leq k$, a contradiction again. So, the above \boldsymbol{Z}_{0} doesn't exist yet.

In all, the conclusion in Lemma 3 holds for different generator matrices \boldsymbol{Z}_{2} in (4.2). The proof is complete.

Proof of Lemma 4

By noting that \boldsymbol{B}_{j} is a subarray of the multiplication table of F, the part (i) of Lemma 4 follows. Recall that $\Gamma(:, 1)$ is a permutation of all elements in $F_{0}=\left\{a_{0}+a_{1} x+\cdots+a_{u_{2}-1} x^{u_{2}-1} \mid a_{j} \in G F(p)\right\}$. From Lemma 2 in Qian and Wu (2009), we know $\varphi\left(\boldsymbol{B}_{11}\right)=\varphi(\boldsymbol{\Gamma}(:, 1)) \varphi(\boldsymbol{\Gamma}(:, 1))^{\prime}$ for $u_{1} \geq 2 u_{2}-1$ and thus $\varphi\left(\boldsymbol{B}_{11}\right)$ is a $D\left(s_{2}, s_{2}, s_{2}\right)$. For $1 \leq k_{1}<k_{2} \leq q$, from the formula (2.5) we have $\varphi\left(\boldsymbol{B}_{i j}\left(:, k_{1}\right)\right)-\varphi\left(\boldsymbol{B}_{i j}\left(:, k_{2}\right)\right)=\varphi\left(\boldsymbol{B}_{11}\left(:, k_{1}\right)\right)-\varphi\left(\boldsymbol{B}_{11}\left(:, k_{2}\right)\right)+\varphi\left(\boldsymbol{\Gamma}\left(k_{1}, 1\right) c_{i}(x)-\right.$ $\left.\boldsymbol{\Gamma}\left(k_{2}, 1\right) c_{i}(x)\right)$. Hence, $\varphi\left(\boldsymbol{B}_{i j}\right)$ is also a $D\left(s_{2}, s_{2}, s_{2}\right)$ for $i, j=1, \ldots, q$.

Proof of Theorem 9

Since $\boldsymbol{H}=\left(\boldsymbol{\Gamma}(:, 1)^{\prime}, \ldots \boldsymbol{\Gamma}(:, q)^{\prime}\right)^{\prime} \oplus \boldsymbol{B}_{2}$, the part (i) of Theorem 9 follows from Lemma 1 and Lemma 4. Note that $\varphi\left(\boldsymbol{B}_{j 2}\right)$ is a $D\left(s_{2}, s_{2}, s_{2}\right)$ and $\varphi(\boldsymbol{\Gamma}(:, i))$ is an $O A\left(s_{2}, s_{2}^{1}, 1\right)$. By following Lemma 1, we know $\varphi\left(\boldsymbol{H}_{i j}\right)$ is an $O A\left(s_{2}^{2}, s_{2}^{s_{2}}, 2\right)$ for $i, j=1, \ldots, q$.

Let $\operatorname{deg}\{f(x)\}$ denote the degree of a polynomial $f(x) \in F$, or more precisely the polynomial $f(x)$ modulo $p_{1}(x)$. If two elements of F are in the same column of $\boldsymbol{\Gamma}$, from the formula (2.5) we know the degree of their difference is less than u_{2}. Now partition the elements of $\boldsymbol{\Gamma}(:, 1)$ into p groups, each of size $q=s_{1} / s_{2}=$ $p^{u_{2}-1}$, according to the rule that any two elements $f_{1}(x)$ and $f_{2}(x)$ of $\boldsymbol{\Gamma}(:, 1)$ are in the same group if and only if $\operatorname{deg}\left\{f_{1}(x)-f_{2}(x)\right\} \leq u_{2}-2$. Suppose $\boldsymbol{\Gamma}\left(l_{1}, 1\right), \boldsymbol{\Gamma}\left(l_{2}, 1\right), \ldots, \boldsymbol{\Gamma}\left(l_{q}, 1\right)$ are from the same group. For $1 \leq k \leq s_{2}$, we have $\boldsymbol{B}_{j 2}\left(l_{1}, k\right)-\boldsymbol{B}_{j 2}\left(l_{2}, k\right)=\left[\boldsymbol{\Gamma}\left(l_{1}, 1\right)-\boldsymbol{\Gamma}\left(l_{2}, 1\right)\right]\left[\boldsymbol{\Gamma}(k, 1)+c_{2}(x)\right]$, where $\operatorname{deg}\left\{c_{2}(x)\right\}=$ u_{2}. Then $\operatorname{deg}\left\{\boldsymbol{B}_{j 2}\left(l_{1}, k\right)-\boldsymbol{B}_{j 2}\left(l_{2}, k\right)\right\} \geq u_{2}$ and $\boldsymbol{B}_{j 2}\left(l_{1}, k\right)$ and $\boldsymbol{B}_{j 2}\left(l_{2}, k\right)$ are in different columns of $\boldsymbol{\Gamma}$. As a result, $\boldsymbol{B}_{j 2}\left(l_{1}, k\right), \ldots, \boldsymbol{B}_{j 2}\left(l_{q}, k\right)$ are in distinct
columns of $\boldsymbol{\Gamma}$ and thus each column of $\boldsymbol{\Gamma}$ contains exactly p elements of $\boldsymbol{B}_{j 2}(:, k)$. From $\boldsymbol{H}_{i j}(:, k)=\boldsymbol{\Gamma}(:, i) \oplus \boldsymbol{B}_{j 2}(:, k)=\boldsymbol{\Gamma}(:, 1) \oplus \boldsymbol{B}_{j 2}(:, k)+c_{i}(x)$, it can be easily verified that $\boldsymbol{H}_{i j}(:, k)$ is balanced for $i, j=1, \ldots, q$. The proof is complete.

Proof of Theorem 10

Since the k-th elements of $\boldsymbol{u}_{i 1}, \ldots, \boldsymbol{u}_{i q}$ form a permutation of $\{1, \ldots, q\}$ for $k=1, \ldots, t$, it is easy to see that each \boldsymbol{H}_{i} is balanced for $i=1, \ldots, q^{t-1}$. For any $\left(l_{1}, \ldots, l_{t}\right) \in Q^{t}$, by noting that the first t columns of $\rho\left(\boldsymbol{H}_{\left(l_{1}, \ldots, l_{t}\right)}\right)$ have each of the s_{2}^{t} possible t-tuples from G as a row and the last column is the sum of the first t columns, we know that $\rho\left(\boldsymbol{H}_{\left(l_{1}, \ldots, l_{t}\right)}\right)$ is an $O A\left(s_{2}^{t}, s_{2}^{t+1}, t\right)$. The proof is complete.

Proof of Theorem 11

The part (ii) of Theorem 11 follows by noting that $\rho(\boldsymbol{A})=\boldsymbol{A}_{0}$ and $\rho\left(\boldsymbol{v}_{\left(l_{1}, \ldots, l_{t}\right)}\right)$ $=0$ for any $\left(l_{1}, \ldots, l_{t}\right) \in Q^{t}$. Since any $s_{2}^{t} \times t$ submatrix of $\boldsymbol{H}_{\left(l_{1}, \ldots, l_{t}\right)}$ or $\rho\left(\boldsymbol{H}_{\left(l_{1}, \ldots, l_{t}\right)}\right)$ has no repeated rows, it can be shown that any $s_{1}^{t} \times t$ submatrix of \boldsymbol{H} has no repeated rows and thus consists of all the s_{1}^{t} possible t-tuples from F, i.e., \boldsymbol{H} is an $O A\left(s_{1}^{t}, s_{1}^{t+1}, t\right)$.

