Local Polynomial and Penalized Trigonometric Series Regression

Li-Shan Huang and Kung-Sik Chan
National Tsing Hua University and University of Iowa

Supplementary Material

Appendix

Conditions (A).
(A1). The design density $f(x)$ is bounded away from 0 and ∞, and $f(x)$ has a continuous fourth derivative on a compact support which, with no loss of generality, is taken to be $[0,1]$.
(A2). The kernel $K(\cdot)$ is a Lipschitz continuous, bounded and symmetric probability density function, having a support on a compact interval, say $[-1,1]$.
(A3). The error ε is from a symmetric distribution with mean 0 , variance σ^{2}, and finite fourth moment.
(A4). The $(2 p+3)$-th derivative of $m(\cdot)$ exists.
(A5). The bandwidth $h=h_{n}$ is a non-random sequence of positive numbers satisfying $h \rightarrow 0$ and $n h \rightarrow \infty$ as $n \rightarrow \infty$.

Lemma: Under Conditions (A1)-(A4), H_{p}^{*} is a shrinking matrix, i.e. $\left\|H_{p}^{*} \mathbf{y}\right\| \leq\|\mathbf{y}\|$.
Proof: From Huang and Chen (2008),

$$
\mathbf{y}^{T} H_{p}^{*} \mathbf{y}=n^{-1} \int \sum_{i=1}^{n}\left(\sum_{j=0}^{p} \hat{\beta}_{j}(x)\left(X_{i}-x\right)^{j}\right)^{2} K_{h}\left(X_{i}-x\right) d x .
$$

Therefore H_{p}^{*} is positive-definite except in degenerating cases. Being both symmetric and positive-definite, the eigenvalues of H_{p}^{*} are >0. From (2.3) and (2.5), $\left(I-H_{p}^{*}\right)$ is nonnegative-definite. Then for any n-vector v with a Euclidean norm $1, v^{T}\left(I-H_{p}^{*}\right) v \geq 0$ implies $v^{T} H_{p}^{*} v \leq 1$. Therefore H_{p}^{*} is a shrinking matrix.

Proof of property c:

Based on (2.6), for $i=1, \ldots, n$ and $l=1, \ldots, n$, the (i, l)-th element in H_{p}^{*} is

$$
\begin{equation*}
\int \sum_{j=1}^{(p+1)} \sum_{k=1}^{(p+1)} K_{h}\left(X_{i}-x\right) K_{h}\left(X_{l}-x\right)\left(X_{i}-x\right)^{(j-1)}\left(X_{l}-x\right)^{(k-1)} s_{j, k}(x) d x \tag{S0.1}
\end{equation*}
$$

where $s_{j, k}(x)$ denotes the asymptotic expression for (j, k)-th element of $\left(X_{p}^{T} W X_{p}\right)^{-1}$. From Fan and Gijbels (1996), $s_{j, k}(x)$ involves $f^{-1}(x)$ that relates to x. With X_{i} 's equally spaced, (S0.1) is a function of $\left(X_{i}-X_{l}\right)$ and hence H_{p}^{*} is asymptotically a Toeplitz matrix. The matrix is banded because the summand in (S0.1) equals 0 if $\left|X_{i}-X_{l}\right|>h$. This completes the proof.

Proofs of Theorem 1 and 2:

The proofs for $p=2$ and $p=3$ in Theorem 1(a) are similar to the case of $p=1$ in Huang and Davidson (2010) but with more tedious derivations. In short, it involves the following steps: (1) deriving an asymptotic form of $\left(X_{p}^{T} W X_{p}\right)^{-1}$ as in Section 3.7 in Fan and Gijbels (1996); (2) deriving the equivalent kernels for $\hat{\beta}_{0}, \ldots, \hat{\beta}_{p}$ (some are already given in Table 3.1 in Fan and Gijbels (1996)); and (3) the weighted integration in (2.7) implies the convolution operations between the equivalent kernel of $\hat{\beta}_{j}$ in (2) and $u^{j} K(u), j=0, \ldots, p$. Then the moments of the equivalent kernels are calculated to show the order of $(0,2(p+1))$ in Theorem $1(\mathrm{~b})$ and the order of the asymptotic variance in Theorem $1(\mathrm{c})$ is proved based on the definition of the equivalent kernels.

For Theorem 2(a)(i), it is similar to Theorem 1(a) but the convolution operations are with $u^{j} L(u), j=0, \ldots, p$. To show Theorem 2(a)(ii) for $t=(1+c) h$, the weighted integration in (2.7) is split into two parts, $[h,(2+c) h]$ and $[c h, h]$. The latter part involves $\hat{\beta}_{j}(x)$ with $x \in[0, h)$ and their equivalent kernels $K_{j, d}^{e}$ are different from the first part. Similarly for Theorem 2(a)(iii), the integration in (2.7) is split into two parts, $[h,(1+c) h]$ and $[0, h]$, yielding the two-part expression in (3.6).

We next show Theorem $2(\mathrm{~b})(\mathrm{i})$ for $p=1$ while the cases of $p=2$ and 3 are analogous. First note that

$$
\begin{align*}
& \int\left(\beta_{0}(x)+\hat{\beta}_{1}(x)(t-x)\right) L_{g}(t-x) d x-\int m(t) L_{g}(t-x) d x \\
= & \int\left(\left(\hat{\beta}_{0}(x)-\beta_{0}(x)\right)+\left(\hat{\beta}_{1}(x)-\beta_{1}(x)\right)(t-x)\right) L_{g}(t-x) d x \\
& -\int\left(\beta_{2}(x)(t-x)^{2}+r(x, t)\right) L_{g}(t-x) d x \tag{S0.2}
\end{align*}
$$

where $r(x, t)$ denotes the remainder terms after a Taylor expansion. Then the bias of (3.3) with $p=1$ is the expectation of (S0.2) and by using the bias expressions of $\hat{\beta}_{j}(x)$, $j=0,1$ from Fan and Gijbels (1996), (3.7) is obtained.

Proof of Theorem 3:

By straightforward linear algebra arguments, it is easy to see that H_{p}^{*} and $H_{p}^{*^{-1}}$ share the same eigenvectors. From Lemma 1, the eigenvalues of H_{p}^{*} are positive and
less than or equal to 1 . Denote the eigenvectors of H_{p}^{*} as $\mathbf{z}_{1}, \ldots, \mathbf{z}_{k_{1}}, \ldots, \mathbf{z}_{k_{1}+k_{2}}$, where $\mathbf{z}_{1}, \ldots, \mathbf{z}_{k_{1}}$ correspond to the same eigenvalue 1 , and $\mathbf{z}_{k_{1}+1}, \ldots, \mathbf{z}_{k_{1}+k_{2}}$ correspond to non-zero eigenvalues $1>\lambda_{k_{1}+1} \geq \ldots \geq \lambda_{k_{1}+k_{2}}>0$. Without loss of generality, assume that $\left\{\mathbf{z}_{k_{1}+1}, \ldots, \mathbf{z}_{k_{1}+k_{2}}\right\}$ are orthonormal and that the space spanned by $\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{k_{1}}\right\}$ is of dimension k_{1}. Let $\mathbf{X}=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{k_{1}}\right)$ and $\mathbf{Z}=\left(\mathbf{z}_{k_{1}+1}, \ldots, \mathbf{z}_{k_{1}+k_{2}}\right)$. Then $H_{p}^{*} \mathbf{y}$ can be expressed as $\mathbf{X} \hat{\mathbf{b}}+\mathbf{Z} \hat{\mathbf{u}}$ for some coefficient vectors $\hat{\mathbf{b}}$ and $\hat{\mathbf{u}}$. Since $\mathbf{X}^{T}\left(H_{p}^{*^{-1}}-I\right) \mathbf{X}=0$ and $\mathbf{Z}^{T}\left(H_{p}^{*^{-1}}-I\right) \mathbf{X}=0$, the penalty term in (4.2) is $(\mathbf{X} \hat{\mathbf{b}}+\mathbf{Z} \hat{\mathbf{u}})^{T}\left(H_{p}^{*^{-1}}-I\right)(\mathbf{X} \hat{\mathbf{b}}+\mathbf{Z} \hat{\mathbf{u}})=$ $\hat{\mathbf{u}}^{T} D \hat{\mathbf{u}}$ with D a diagonal matrix with entries $\left(1 / \lambda_{k}-1\right), k=k_{1}+1, \ldots, k_{1}+k_{2}$. Hence the connection between local polynomial regression and mixed models is established.

Proof of Theorem 4:

We provide the proof in the case of local linear regression in detail. The other cases $p=0,2,3$ can be established analogously by using their respective equivalent kernels. Note that H_{p}^{*} is a symmetric matrix and therefore its eigenvectors corresponding to distinct eigenvalues must be orthogonal. Moreover $\cos (2 k \pi \mathbf{x})$ and $\sin (2 k \pi \mathbf{x})$ form an orthogonal basis for functions defined on $[0,1]$.

Let us first explore a special case of a finite k (and so $k h \rightarrow 0$). From (2.8), the i-th element of $H_{1}^{*}(\cos 2 k \pi \mathbf{x})$ is

$$
\begin{align*}
& \frac{1}{n f\left(X_{i}\right)} \sum_{j} h^{-1}\left(K_{0}^{*}\left(\frac{X_{j}-X_{i}}{h}\right)-\mu_{2}^{-1} K_{1}^{*}\left(\frac{X_{j}-X_{i}}{h}\right)\right) \cos \left(2 k \pi X_{j}\right) \\
& \approx \frac{1}{f\left(X_{i}\right)} h^{-1} \int\left(K_{0}^{*}\left(\frac{x-X_{i}}{h}\right)-\mu_{2}^{-1} K_{1}^{*}\left(\frac{x-X_{i}}{h}\right)\right) \cos (2 k \pi x) f(x) d x \\
&=\frac{1}{f\left(X_{i}\right)} \int\left(K_{0}^{*}(u)-\mu_{2}^{-1} K_{1}^{*}(u)\right) \cos \left(2 k \pi\left(X_{i}+h u\right)\right) f\left(X_{i}+h u\right) d u \tag{S0.3}
\end{align*}
$$

Then for a finite k,

$$
\cos \left(2 k \pi\left(X_{i}+h u\right)\right)=\cos \left(2 k \pi X_{i}\right) \cos (2 k \pi h u)-\sin \left(2 k \pi X_{i}\right) \sin (2 k \pi h u)
$$

with $\cos (2 k \pi h u)=1-(2 k \pi h u)^{2} / 2!+\ldots$ and $\sin (2 k \pi h u)=2 k \pi h u-(2 k \pi h u)^{3} / 3!+\ldots$. Since $\left(K_{0}^{*}(u)-\mu_{2}^{-1} K_{1}^{*}(u)\right)$ is a kernel of order $(0,4), H_{1}^{*} \cos (2 k \pi \mathbf{x})=\cos (2 k \pi \mathbf{x})(1+$ $\left.O\left(h^{4}\right)\right)$ after expanding both $\cos \left(2 k \pi\left(X_{i}+h u\right)\right)$ and $f\left(X_{i}+h u\right)$ in (S0.3). For $H_{1}^{*} \sin (2 k \pi \mathbf{x})$, the arguments are analogous except that

$$
\sin \left(2 k \pi\left(X_{i}+h u\right)\right)=\sin \left(2 k \pi X_{i}\right) \cos (2 k \pi h u)-\cos \left(2 k \pi X_{i}\right) \sin (2 k \pi h u)
$$

Then $H_{1}^{*} \sin (2 k \pi \mathbf{x})=\sin (2 k \pi \mathbf{x})\left(1+O\left(h^{4}\right)\right)$.
The above discussion applies for finite k. For those k such that $k \rightarrow \infty$ and $k h \rightarrow 0$, the above arguments continue to hold but with the term $O\left(h^{4}\right)$ replaced by $O\left(k^{4} h^{4}\right)$. Hence $\cos (2 k \pi \mathbf{x})$ and $\sin (2 k \pi \mathbf{x})$ are asymptotic eigenvectors of H_{1}^{*} when k is finite and when $k \rightarrow \infty$ and $k h \rightarrow 0$ as stated in Theorem 4(a).

We now consider the cases in (c): when $k h \rightarrow \infty$ and $k h \rightarrow c$, where c is a constant. When k is of larger order than h so that $k h \rightarrow \infty, H_{1}^{*} \cos (2 k \pi \mathbf{x}) \rightarrow 0$ and $H_{1}^{*} \sin (2 k \pi \mathbf{x}) \rightarrow$

0 by the Riemann-Lebesgue Lemma. When $k h$ converges to a constant,

$$
\cos \left(2 k \pi\left(X_{i}+h u\right)\right)=\cos \left(2 k \pi X_{i}\right) \cos (2 c \pi u)-\sin \left(2 k \pi X_{i}\right) \sin (2 c \pi u)
$$

Since $\cos (2 c \pi u)$ and $\sin (2 c \pi u)$ are finite functions, by the Riemann-Lebesgue Lemma, again $H_{1}^{*} \cos (2 k \pi \mathbf{x}) \rightarrow 0$ and $H^{*} \sin (2 k \pi \mathbf{x}) \rightarrow 0$.

To show Theorem $4(\mathrm{~b})$, in the case of $\cos (2 k \pi \mathbf{x})$, it can be seen that the corresponding eigenvalue is $1+O\left(k^{4} h^{4}\right)$, and the second order term $O\left(k^{4} h^{4}\right)$ is negative since the 4 -th moment of $\left(K_{0}^{*}(u)-\mu_{2}^{-1} K_{1}^{*}(u)\right)$ is $6\left(\mu_{2}^{2}-\mu_{4}\right)<0$. Hence the larger the k, the smaller the corresponding eigenvalue λ_{k} and the larger the penalty weight $\left(1 / \lambda_{k}-1\right)$. For $\sin (2 k \pi \mathbf{x})$, analogous arguments applies.

For $p=0,2,3$, the arguments are similar except that the equivalent kernel in (S0.3) is replaced by the corresponding equivalent kernels stated in Theorem 1 and the second order terms $O\left(h^{4}\right)$ replaced by $O\left(h^{(2 p+2)}\right)$ and $O\left(k^{4} h^{4}\right)$ replaced by $O\left((k h)^{(2 p+2)}\right)$. For $p=0$, the second moment of $K_{0}^{*}(\cdot)$ is positive but the h^{2}-term in the geometric expansion of $\cos (2 k \pi h u)$ is negative. Hence the claim that "the larger the k, the more the penalty weight" still holds. Similar arguments work for $p=2$. For $p=3$, the 8 -th moment of the equivalent kernel is not always negative unless $\left(\mu_{8}-\mu_{4}^{2}\right)\left(\mu_{4}-\mu_{2}^{2}\right)>\left(\mu_{6}-\mu_{4} \mu_{2}\right)^{2}$. It is negative for the Gaussian and Epanechnikov kennels but not for the Uniform kernel.

