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Appendix

Conditions (A).

(A1). The design density f(x) is bounded away from 0 and ∞, and f(x) has a continuous
fourth derivative on a compact support which, with no loss of generality, is taken
to be [0, 1].

(A2). The kernel K(·) is a Lipschitz continuous, bounded and symmetric probability
density function, having a support on a compact interval, say [−1, 1].

(A3). The error ε is from a symmetric distribution with mean 0, variance σ2, and finite
fourth moment.

(A4). The (2p+ 3)-th derivative of m(·) exists.

(A5). The bandwidth h = hn is a non-random sequence of positive numbers satisfying
h → 0 and nh → ∞ as n → ∞.

Lemma: Under Conditions (A1)-(A4), H∗
p is a shrinking matrix, i.e. ||H∗

py|| ≤ ||y||.
Proof: From Huang and Chen (2008),

yTH∗
py = n−1

∫ n∑
i=1

⎛
⎝ p∑

j=0

β̂j(x)(Xi − x)j

⎞
⎠

2

Kh (Xi − x) dx.

Therefore H∗
p is positive-definite except in degenerating cases. Being both symmetric

and positive-definite, the eigenvalues of H∗
p are > 0. From (2.3) and (2.5), (I −H∗

p ) is

nonnegative-definite. Then for any n-vector v with a Euclidean norm 1, vT (I−H∗
p )v ≥ 0

implies vTH∗
pv ≤ 1. Therefore H∗

p is a shrinking matrix.

Proof of property c:



S2 Li-Shan Huang and Kung-Sik Chan

Based on (2.6), for i = 1, . . . , n and l = 1, . . . , n, the (i, l)-th element in H∗
p is

∫ (p+1)∑
j=1

(p+1)∑
k=1

Kh(Xi − x)Kh(Xl − x)(Xi − x)(j−1)(Xl − x)(k−1)sj,k(x)dx, (S0.1)

where sj,k(x) denotes the asymptotic expression for (j, k)-th element of (XT
p WXp)

−1.
From Fan and Gijbels (1996), sj,k(x) involves f

−1(x) that relates to x. With Xi’s equally
spaced, (S0.1) is a function of (Xi−Xl) and henceH∗

p is asymptotically a Toeplitz matrix.
The matrix is banded because the summand in (S0.1) equals 0 if |Xi − Xl| > h. This
completes the proof.

Proofs of Theorem 1 and 2:

The proofs for p = 2 and p = 3 in Theorem 1(a) are similar to the case of p = 1
in Huang and Davidson (2010) but with more tedious derivations. In short, it involves
the following steps: (1) deriving an asymptotic form of (XT

p WXp)
−1 as in Section 3.7

in Fan and Gijbels (1996); (2) deriving the equivalent kernels for β̂0, . . . , β̂p (some are
already given in Table 3.1 in Fan and Gijbels (1996)); and (3) the weighted integration

in (2.7) implies the convolution operations between the equivalent kernel of β̂j in (2)
and ujK(u), j = 0, . . . , p. Then the moments of the equivalent kernels are calculated to
show the order of (0, 2(p+1)) in Theorem 1(b) and the order of the asymptotic variance
in Theorem 1(c) is proved based on the definition of the equivalent kernels.

For Theorem 2(a)(i), it is similar to Theorem 1(a) but the convolution operations
are with ujL(u), j = 0, . . . , p. To show Theorem 2(a)(ii) for t = (1 + c)h, the weighted
integration in (2.7) is split into two parts, [h, (2+c)h] and [ch, h]. The latter part involves

β̂j(x) with x ∈ [0, h) and their equivalent kernels Ke
j,d are different from the first part.

Similarly for Theorem 2(a)(iii), the integration in (2.7) is split into two parts, [h, (1+c)h]
and [0, h], yielding the two-part expression in (3.6).

We next show Theorem 2(b)(i) for p = 1 while the cases of p = 2 and 3 are analogous.
First note that ∫ (

β0(x) + β̂1(x)(t− x)
)
Lg(t− x)dx −

∫
m(t)Lg(t− x)dx

=

∫ (
(β̂0(x) − β0(x)) + (β̂1(x) − β1(x))(t − x)

)
Lg(t− x)dx

−
∫
(β2(x)(t − x)2 + r(x, t))Lg(t− x)dx, (S0.2)

where r(x, t) denotes the remainder terms after a Taylor expansion. Then the bias of

(3.3) with p = 1 is the expectation of (S0.2) and by using the bias expressions of β̂j(x),
j = 0, 1 from Fan and Gijbels (1996), (3.7) is obtained.

Proof of Theorem 3:

By straightforward linear algebra arguments, it is easy to see that H∗
p and H∗−1

p

share the same eigenvectors. From Lemma 1, the eigenvalues of H∗
p are positive and
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less than or equal to 1. Denote the eigenvectors of H∗
p as z1, . . . , zk1 , . . . , zk1+k2 , where

z1, . . . , zk1 correspond to the same eigenvalue 1, and zk1+1, . . . , zk1+k2 correspond to
non-zero eigenvalues 1 > λk1+1 ≥ . . . ≥ λk1+k2 > 0. Without loss of generality, assume
that {zk1+1, . . . , zk1+k2} are orthonormal and that the space spanned by {z1, . . . , zk1} is
of dimension k1. Let X = (z1, . . . , zk1) and Z = (zk1+1, . . . , zk1+k2). Then H∗

py can be

expressed as Xb̂+ Zû for some coefficient vectors b̂ and û. Since XT (H∗−1

p − I)X = 0

and ZT (H∗−1

p −I)X = 0, the penalty term in (4.2) is (Xb̂+Zû)T (H∗−1

p −I)(Xb̂+Zû) =

ûTDû with D a diagonal matrix with entries (1/λk − 1), k = k1 +1, . . . , k1 + k2. Hence
the connection between local polynomial regression and mixed models is established.

Proof of Theorem 4:

We provide the proof in the case of local linear regression in detail. The other cases
p = 0, 2, 3 can be established analogously by using their respective equivalent kernels.
Note that H∗

p is a symmetric matrix and therefore its eigenvectors corresponding to
distinct eigenvalues must be orthogonal. Moreover cos(2kπx) and sin(2kπx) form an
orthogonal basis for functions defined on [0, 1].

Let us first explore a special case of a finite k (and so kh → 0). From (2.8), the i-th
element of H∗

1 (cos 2kπx) is

1

nf(Xi)

∑
j

h−1

(
K∗

0

(
Xj −Xi

h

)
− μ−1

2 K∗
1

(
Xj −Xi

h

))
cos(2kπXj)

≈ 1

f(Xi)
h−1

∫ (
K∗

0

(
x−Xi

h

)
− μ−1

2 K∗
1

(
x−Xi

h

))
cos(2kπx)f(x)dx

=
1

f(Xi)

∫ (
K∗

0 (u)− μ−1
2 K∗

1 (u)
)
cos(2kπ(Xi + hu))f(Xi + hu)du. (S0.3)

Then for a finite k,

cos(2kπ(Xi + hu)) = cos(2kπXi) cos(2kπhu)− sin(2kπXi) sin(2kπhu),

with cos(2kπhu) = 1− (2kπhu)2/2! + . . . and sin(2kπhu) = 2kπhu− (2kπhu)3/3! + . . ..
Since (K∗

0 (u) − μ−1
2 K∗

1 (u)) is a kernel of order (0, 4), H∗
1 cos(2kπx) = cos(2kπx)(1 +

O(h4)) after expanding both cos(2kπ(Xi+hu)) and f(Xi+hu) in (S0.3). ForH∗
1 sin(2kπx),

the arguments are analogous except that

sin(2kπ(Xi + hu)) = sin(2kπXi) cos(2kπhu)− cos(2kπXi) sin(2kπhu).

Then H∗
1 sin(2kπx) = sin(2kπx)(1 +O(h4)).

The above discussion applies for finite k. For those k such that k → ∞ and kh → 0,
the above arguments continue to hold but with the term O(h4) replaced by O(k4h4).
Hence cos(2kπx) and sin(2kπx) are asymptotic eigenvectors of H∗

1 when k is finite and
when k → ∞ and kh → 0 as stated in Theorem 4(a).

We now consider the cases in (c): when kh → ∞ and kh → c, where c is a constant.
When k is of larger order than h so that kh → ∞,H∗

1 cos(2kπx) → 0 andH∗
1 sin(2kπx) →
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0 by the Riemann-Lebesgue Lemma. When kh converges to a constant,

cos(2kπ(Xi + hu)) = cos(2kπXi) cos(2cπu)− sin(2kπXi) sin(2cπu).

Since cos(2cπu) and sin(2cπu) are finite functions, by the Riemann-Lebesgue Lemma,
again H∗

1 cos(2kπx) → 0 and H∗ sin(2kπx) → 0.

To show Theorem 4(b), in the case of cos(2kπx), it can be seen that the correspond-
ing eigenvalue is 1 + O(k4h4), and the second order term O(k4h4) is negative since the
4-th moment of (K∗

0 (u) − μ−1
2 K∗

1 (u)) is 6(μ2
2 − μ4) < 0. Hence the larger the k, the

smaller the corresponding eigenvalue λk and the larger the penalty weight (1/λk − 1).
For sin(2kπx), analogous arguments applies.

For p = 0, 2, 3, the arguments are similar except that the equivalent kernel in (S0.3)
is replaced by the corresponding equivalent kernels stated in Theorem 1 and the second
order terms O(h4) replaced by O(h(2p+2)) and O(k4h4) replaced by O((kh)(2p+2)). For
p = 0 , the second moment ofK∗

0 (·) is positive but the h2-term in the geometric expansion
of cos(2kπhu) is negative. Hence the claim that “the larger the k, the more the penalty
weight” still holds. Similar arguments work for p = 2. For p = 3, the 8-th moment of
the equivalent kernel is not always negative unless (μ8−μ2

4)(μ4 −μ2
2) > (μ6−μ4μ2)

2. It
is negative for the Gaussian and Epanechnikov kennels but not for the Uniform kernel.


