# Fixed-b Asymptotics for Blockwise Empirical Likelihood 

Xianyang Zhang and Xiaofeng Shao<br>University of Missouri-Columbia and University of Illinois at Urbana-Champaign<br>\section*{Supplementary Material}

The following supplementary material contains the proof of Theorem 2.1.

## S1 Technical appendix

Define the set of functions

$$
Q=\left\{g=\left(g_{1}, g_{2}, \ldots, g_{k}\right) \in C^{\otimes k}[0,1]: g_{i}^{\prime} s \text { are linearly independent }\right\}
$$

and let $G_{e l}(g)=\max _{\lambda \in \mathbb{R}^{k}} \int_{0}^{1} \log \left(1+\lambda^{\prime} g(t)\right) d t$ be a nonlinear functional from $C^{\otimes k}[0,1]$ to the real line $\mathbb{R}$, where $\log (x)=-\infty$ for $x<0$. We shall prove in the following that $G_{e l}(g)$ is a continuous map for functions in $Q$ under the sup norm (Seijo and Sen (2011)). For any $g \in C^{\otimes k}[0,1]$, we define $H_{g}=\left\{\lambda \in \mathbb{R}^{k}: \min _{t \in[0,1]}\left(1+\lambda^{\prime} g(t)\right) \geq 0\right\}$ and $L_{g}(\lambda)=-\int_{0}^{1} \log \left(1+\lambda^{\prime} g(t)\right) d t$. It is straightforward to show that $L_{g}(\lambda)$ is strictly convex for $g \in Q$ on the set $H_{g}$. We also note that $H_{g}$ is a closed convex set, which contains a neighborhood of the origin. Let $\lambda_{g}=\operatorname{argmax}_{\lambda \in \mathbb{R}^{k}} \int_{0}^{1} \log \left(1+\lambda^{\prime} g(t)\right) d t$ be the maximizer of $-L_{g}(\lambda)$.

We first show that $G_{e l}(g)<\infty$ if and only if $H_{g}$ is bounded. If $G_{e l}(g)=\infty$, then $\lambda_{g}$ cannot be finite, which implies that $H_{g}$ is unbounded. On the other hand, suppose $H_{g}$ is unbounded. Note that $H_{g}=\cap_{t \in[0,1]}\left\{\lambda \in \mathbb{R}^{k}: \lambda^{\prime} g(t) \geq-1\right\}$ which is the intersection of a set of closed half-spaces. The recession cone of $H_{g}$ is then given by $0^{+} H_{g}=\cap_{t \in[0,1]}\left\{\lambda \in \mathbb{R}^{k}: \lambda^{\prime} g(t) \geq 0\right\}$ (see Section 8 of Rockafellar (1970)). By Theorem 8.4 of Rockafellar (1970), there exists a nonzero vector $\tilde{\lambda} \in 0^{+} H_{g}$, and the set $\left\{t \in[0,1]: \tilde{\lambda}^{\prime} g(t)>0\right\}$ has positive Lebesgue measure because of the linearly independence of $g$. We have $G_{e l}(g) \geq-L_{g}(a \tilde{\lambda})$ for any $a>0$, where $-L_{g}(a \tilde{\lambda}) \rightarrow \infty$ as $a \rightarrow \infty$. Thus we get $G_{e l}(g)=\infty$.

Next, we consider the case $G_{e l}(g)_{\sim}=\infty$. Following the discussion above, there exists $\tilde{\delta}$ such that the set $\mathcal{B}:=\left\{t \in[0,1]: \tilde{\lambda}^{\prime} g(t)>\tilde{\delta}\right\}$ has Lebesgue measure $\Lambda(\mathcal{B})>0$. For any $A_{0}>0$, we choose $\epsilon_{0} \in(0,1)$ and large enough $a>0$ so that

$$
\Lambda(\mathcal{B}) \log \left(1+a \tilde{\delta}-\epsilon_{0}\right)+\log \left(1-\epsilon_{0}\right)>A_{0}
$$

For any $f \in Q$ with $\|f-g\|:=\sup _{t \in[0,1]}|f(t)-g(t)| \leq \epsilon_{0} /(|\tilde{\lambda}| a)$, we have

$$
\begin{aligned}
\int_{0}^{1} \log \left(1+a \tilde{\lambda}^{\prime} f(t)\right) d t= & \int_{\mathcal{B}} \log \left(1+a \tilde{\lambda}^{\prime}(f(t)-g(t))+a \tilde{\lambda}^{\prime} g(t)\right) d t \\
& +\int_{\mathcal{B}^{c}} \log \left(1+a \tilde{\lambda}^{\prime}(f(t)-g(t))+a \tilde{\lambda}^{\prime} g(t)\right) d t \\
\geq & \Lambda(\mathcal{B}) \log \left(1+a \tilde{\delta}-\epsilon_{0}\right)+\log \left(1-\epsilon_{0}\right)>A_{0} .
\end{aligned}
$$

In what follows, we turn to the case $G_{e l}(g)<\infty$, i.e., $H_{g}$ is bounded as shown before.
Case 1: we first consider the case that $\lambda_{g} \in \tilde{H}_{g}=\left\{\lambda \in \mathbb{R}^{k}: \min _{t \in[0,1]}\left(1+\lambda^{\prime} g(t)\right)>\right.$ $0\}$. Since $\tilde{H}_{g}$ is open, we can pick a positive number $\tau$ so that $\bar{B}\left(\lambda_{g} ; \tau\right):=\{\lambda \in$ $\left.\mathbb{R}^{k}:\left|\lambda-\lambda_{g}\right| \leq \tau\right\} \subseteq \tilde{H}_{g}$. Then we have $\min _{\lambda \in \bar{B}\left(\lambda_{g} ; \tau\right)} \min _{t \in[0,1]}\left(1+\lambda^{\prime} g(t)\right)>c>0$. Furthermore, there exists a sufficiently small $\delta$ such that for any $f \in Q$ with $\|f-g\| \leq \delta$, we have $\min _{t \in[0,1]}\left(1+\lambda^{\prime} f(t)\right)>c^{\prime}>0$ for any $\lambda \in \bar{B}\left(\lambda_{g} ; \tau\right)$, i.e., $\bar{B}\left(\lambda_{g} ; \tau\right) \subseteq \tilde{H}_{f}$. Notice that the constant $c^{\prime}$ only depends on $g, \delta$ and $c$.

Given any $\epsilon>0$, we shall first show that $\sup _{\lambda \in \bar{B}\left(\lambda_{g} ; \tau\right)}\left|L_{f}(\lambda)-L_{g}(\lambda)\right|<\epsilon$ for any $f \in Q$ with $\|f-g\|<\tilde{\delta}(\epsilon)$, where $0<\tilde{\delta}(\epsilon)<\delta$. Because $G_{e l}(g)<\infty$, we have $\int_{0}^{1} \log \left(1+\lambda^{\prime} g(t)\right) d t<\infty$ for any $\lambda \in \bar{B}\left(\lambda_{g} ; \tau\right)$. Simple algebra yields that

$$
\begin{align*}
& \quad\left|\int_{0}^{1} \log \left(1+\lambda^{\prime} f(t)\right) d t-\int_{0}^{1} \log \left(1+\lambda^{\prime} g(t)\right) d t\right|  \tag{S1.1}\\
& \leq \max \left\{\log \left(1+M \tilde{\delta}(\epsilon) / c^{\prime}\right), \log (1+M \tilde{\delta}(\epsilon) / c)\right\},
\end{align*}
$$

where $M=\left|\lambda_{g}\right|+\tau$. The RHS of (1) can be made arbitrarily small for sufficiently small $\tilde{\delta}(\epsilon)$. Therefore we get $\sup _{\lambda \in \bar{B}\left(\lambda_{g} ; \tau\right)}\left|L_{f}(\lambda)-L_{g}(\lambda)\right|<\epsilon$ for small enough $\tilde{\delta}(\epsilon)$, which implies that $\left|G_{e l}(g)-\sup _{\lambda \epsilon \bar{B}\left(\lambda_{g} ; \tau\right)} \int_{0}^{1} \log \left(1+\lambda^{\prime} f(t)\right) d t\right|<\epsilon$. Next, we show that there exists a local maxima of $-L_{f}(\lambda)$ in $\bar{B}\left(\lambda_{g} ; \tau\right)$. Suppose $\epsilon$ is sufficiently small and choose $0<\xi<\tau$ such that $-L_{g}\left(\lambda_{g}\right)>\max _{\lambda \in \bar{B}\left(\lambda_{g} ; \tau\right) \cap B^{c}\left(\lambda_{g} ; \xi\right)}-L_{g}(\lambda)+2 \epsilon$, where $B\left(\lambda_{g} ; \xi\right)=$ $\left\{\lambda \in \mathbb{R}^{k}:\left|\lambda-\lambda_{g}\right|<\xi\right\}$. Thus we get

$$
\begin{aligned}
\max _{\lambda \in \bar{B}\left(\lambda_{g} ; \tau\right) \cap B^{c}\left(\lambda_{g} ; \xi\right)}-L_{f}(\lambda) & \leq \max _{\lambda \in \bar{B}\left(\lambda_{g} ; \tau\right) \cap B^{c}\left(\lambda_{g} ; \xi\right)}-L_{g}(\lambda)+\epsilon \\
& <-L_{g}\left(\lambda_{g}\right)-\epsilon \leq-L_{f}\left(\lambda_{g}\right) \leq \max _{\lambda \in \bar{B}\left(\lambda_{g} ; \xi\right)}-L_{f}(\lambda) .
\end{aligned}
$$

Because $f \in Q, L_{f}(\lambda)$ is strictly convex. Hence, the local maxima is also the global maxima, which implies that $\left|G_{e l}(g)-G_{e l}(f)\right|<\epsilon$.

Case 2: We now consider the case $\min _{t \in[0,1]}\left(1+\lambda_{g}^{\prime} g(t)\right)=0$. For any $0<\delta^{*}<$ $\delta^{* *}<1$, let $H_{g}\left(\delta^{*}\right)=\left\{\left(1-\delta^{*}\right) \lambda: \lambda \in H_{g}\right\}$ and $H_{f}\left(\delta^{* *}\right)=\left\{\left(1-\delta^{* *}\right) \lambda: \lambda \in H_{f}\right\}$. There exists a small enough $\delta>0$ such that for any $f \in Q$ with $\|f-g\|<\delta, H_{f}\left(\delta^{* *}\right) \subseteq$ $H_{g}\left(\delta^{*}\right) \in \tilde{H}_{f} \cap \tilde{H}_{g}$. By the continuity of $L_{g}(\lambda)$, we know for any $\epsilon>0$, there exists a $\delta^{*}>0$ such that when $\left|\lambda-\lambda_{g}\right| \leq \delta^{*}\left|\lambda_{g}\right|,-L_{g}\left(\lambda_{g}\right)<-L_{g}(\lambda)+\epsilon / 4$. By the construction
of $H_{g}\left(\delta^{*}\right)$, we have

$$
-L_{g}\left(\lambda_{g}\right)<-L_{g}\left(\left(1-\delta^{*}\right) \lambda_{g}\right)+\epsilon / 4 \leq \sup _{\lambda \in H_{g}\left(\delta^{*}\right)}-L_{g}(\lambda)+\epsilon / 4
$$

Using similar arguments in the first case and the boundness of $H_{g}$, we can show that

$$
\left|\sup _{\lambda \in H_{g}\left(\delta^{*}\right)}-L_{g}(\lambda)-\sup _{\lambda \in H_{g}\left(\delta^{*}\right)}-L_{f}(\lambda)\right|<\epsilon / 8
$$

for sufficiently small $\delta$. Furthermore, when $\lambda_{f} \in H_{g}\left(\delta^{*}\right)$, we have $-L_{f}\left(\lambda_{f}\right)=\sup _{\lambda \in H_{g}\left(\delta^{*}\right)}$ $-L_{f}(\lambda)$. When $\lambda_{f} \notin H_{g}\left(\delta^{*}\right)$, by the convexity of $L_{f}(\lambda)$, we get $L_{f}\left(\left(1-\delta^{* *}\right) \lambda_{f}\right) \leq$ $\left(1-\delta^{* *}\right) L_{f}\left(\lambda_{f}\right)$, which implies that

$$
\begin{aligned}
-L_{f}\left(\lambda_{f}\right) & \leq \frac{-L_{f}\left(\left(1-\delta^{* *}\right) \lambda_{f}\right)}{1-\delta^{* *}} \leq \frac{\sup _{\lambda \in H_{g}\left(\delta^{*}\right)}-L_{f}(\lambda)}{1-\delta^{* *}} \\
& \leq \frac{\sup _{\lambda \in H_{g}\left(\delta^{*}\right)}-L_{g}(\lambda)+\epsilon / 8}{1-\delta^{* *}} \leq \sup _{\lambda \in H_{g}\left(\delta^{*}\right)}-L_{g}(\lambda)+\epsilon / 4 \\
& <\sup _{\lambda \in H_{g}\left(\delta^{*}\right)}-L_{f}(\lambda)+\epsilon / 2
\end{aligned}
$$

for small enough $\delta^{* *}$ (e.g., $\left.\delta^{* *}<\min \left(1 / 3, \frac{\epsilon}{24 G_{e l}(g)}\right)\right)$. Thus we have

$$
\begin{aligned}
&\left|G_{e l}(f)-G_{e l}(g)\right| \leq\left|-L_{f}\left(\lambda_{f}\right)-\sup _{\lambda \in H_{g}\left(\delta^{*}\right)}-L_{f}(\lambda)\right|+\left|-L_{g}\left(\lambda_{g}\right)-\sup _{\lambda \in H_{g}\left(\delta^{*}\right)}-L_{g}(\lambda)\right| \\
& \sup _{\lambda \in H_{g}\left(\delta^{*}\right)}-L_{g}(\lambda)-\sup _{\lambda \in H_{g}\left(\delta^{*}\right)}-L_{f}(\lambda) \mid<\epsilon .
\end{aligned}
$$

Combining the above arguments, we show that the map $G_{e l}$ is continuous under the sup norm.

Next, we consider the limiting process $D_{k}(r ; b)=\int_{0}^{1} \mathcal{K}((r-s) / b) d W_{k}(s)$ with $b \in(0,1)$ being fixed in the asymptotics. Because the components of $D_{k}(r ; b)$ are mutually independent, we have $P\left(\alpha^{\prime} D_{k}(r ; b)=0\right.$ for some $\left.\alpha \in \mathbb{R}^{k}\right)=0$ which implies that $P\left(D_{k}(r ; b) \in Q\right)=1$. Under the assumptions in Theorem 2.1, the set $\left\{\lambda: \min _{r \in[0,1]}\left(1+\lambda^{\prime} D_{k}(r ; b)\right) \geq 0\right\}$ is compact and convex almost surely (note the convexity and closeness of the set follow directly from its definition). Using summation by parts, we get

$$
\begin{aligned}
& \sqrt{n} f_{t n}\left(\theta_{0}\right)=\frac{\sqrt{n}}{S_{n}} \sum_{s=t-n}^{t-1} \mathcal{K}\left(\frac{s}{S_{n}}\right) f_{t-s}\left(\theta_{0}\right)=\frac{\sqrt{n}}{S_{n}} \sum_{s=1}^{n} \mathcal{K}\left(\frac{t-s}{S_{n}}\right) f_{s}\left(\theta_{0}\right) \\
= & \frac{1}{b \sqrt{n}} \mathcal{K}\left(\frac{t-n}{S_{n}}\right) \sum_{k=1}^{n} f_{k}\left(\theta_{0}\right)+\frac{1}{b \sqrt{n}} \sum_{s=1}^{n-1}\left\{\mathcal{K}\left(\frac{t-s}{S_{n}}\right)-\mathcal{K}\left(\frac{t-s-1}{S_{n}}\right)\right\} \sum_{k=1}^{s} f_{k}\left(\theta_{0}\right) .
\end{aligned}
$$

By the continuous mapping theorem and Itô's formula, we obtain

$$
\sqrt{n} f_{t n}\left(\theta_{0}\right) \Rightarrow^{d} \Lambda\left\{\frac{1}{b} \mathcal{K}\left(\frac{r-1}{b}\right) W_{k}(1)+\frac{1}{b^{2}} \int_{0}^{1} \mathcal{K}^{\prime}\left(\frac{r-s}{b}\right) W_{k}(s) d s\right\}={ }^{d} \Lambda D_{k}(r ; b) / b
$$

for $t=\lfloor n r\rfloor$ with $r \in[0,1]$. Finally, by the continuous mapping theorem, we get

$$
\begin{align*}
& \operatorname{elr}\left(\theta_{0}\right)=\frac{2}{b} \max _{\lambda \in \mathbb{R}^{k}} \sum_{t=1}^{n} \log \left(1+\tilde{\lambda}^{\prime} \sqrt{n} b \Lambda^{-1} f_{t n}\left(\theta_{0}\right)\right) / n, \quad \tilde{\lambda}=\Lambda^{\prime} \lambda /(\sqrt{n} b)  \tag{S1.2}\\
& \quad \rightarrow{ }^{d} U_{e l, k}(b ; \mathcal{K}):=\frac{2}{b} \max _{\tilde{\lambda} \in \mathbb{R}^{k}} \int_{0}^{1} \log \left(1+\tilde{\lambda}^{\prime} D_{k}(r ; b)\right) d r
\end{align*}
$$

Remark S1.1. For ET and CUE, we have $\mathcal{I}=\mathbb{R}$. Given any $g \in Q$ with $G_{\text {gel }}(g)<\infty$, we have $H_{g}=\left\{\lambda \in \mathbb{R}^{k}: \lambda^{\prime} g(t) \in \mathcal{I}\right.$, for all $\left.t \in[0,1]\right\}=\mathbb{R}^{k}$ and $\lambda_{g}<\infty$. Therefore, $\lambda_{g}$ is an interior point of $H_{g}$ and the arguments in Case 1 can be applied to show the continuity of $G_{g e l}(\cdot)$ at $g$.

## References

Rockafellar, T. R. (1970). Convex Analysis. Princeton Univ. Press.
Seijo, E. and Sen, B. (2011). A continuous mapping theorem for the smallest argmax functional. Electron. J. Stat. 5, 421-439.

