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The following supplementary material contains the proof of Theorem 2.1.

S1 Technical appendix

Define the set of functions

Q = {g = (g1, g2, . . . , gk) ∈ C⊗k[0, 1] : g′is are linearly independent},

and let Gel(g) = maxλ∈Rk

∫ 1

0
log(1 + λ′g(t))dt be a nonlinear functional from C⊗k[0, 1]

to the real line R, where log(x) = −∞ for x < 0. We shall prove in the following
that Gel(g) is a continuous map for functions in Q under the sup norm (Seijo and Sen
(2011)). For any g ∈ C⊗k[0, 1], we define Hg = {λ ∈ Rk : mint∈[0,1](1 + λ′g(t)) ≥ 0}
and Lg(λ) = −

∫ 1

0
log(1 + λ′g(t))dt. It is straightforward to show that Lg(λ) is strictly

convex for g ∈ Q on the set Hg. We also note that Hg is a closed convex set, which

contains a neighborhood of the origin. Let λg = argmaxλ∈Rk

∫ 1

0
log(1 + λ′g(t))dt be the

maximizer of −Lg(λ).

We first show that Gel(g) < ∞ if and only if Hg is bounded. If Gel(g) = ∞,
then λg cannot be finite, which implies that Hg is unbounded. On the other hand,
suppose Hg is unbounded. Note that Hg = ∩t∈[0,1]{λ ∈ Rk : λ′g(t) ≥ −1} which is
the intersection of a set of closed half-spaces. The recession cone of Hg is then given
by 0+Hg = ∩t∈[0,1]{λ ∈ Rk : λ′g(t) ≥ 0} (see Section 8 of Rockafellar (1970)). By

Theorem 8.4 of Rockafellar (1970), there exists a nonzero vector λ̃ ∈ 0+Hg, and the

set {t ∈ [0, 1] : λ̃′g(t) > 0} has positive Lebesgue measure because of the linearly
independence of g. We have Gel(g) ≥ −Lg(aλ̃) for any a > 0, where −Lg(aλ̃) → ∞ as
a→∞. Thus we get Gel(g) =∞.

Next, we consider the case Gel(g) =∞. Following the discussion above, there exists
δ̃ such that the set B := {t ∈ [0, 1] : λ̃′g(t) > δ̃} has Lebesgue measure Λ(B) > 0. For
any A0 > 0, we choose ε0 ∈ (0, 1) and large enough a > 0 so that

Λ(B) log(1 + aδ̃ − ε0) + log(1− ε0) > A0.
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For any f ∈ Q with ||f − g|| := supt∈[0,1] |f(t)− g(t)| ≤ ε0/(|λ̃|a), we have∫ 1

0

log(1 + aλ̃′f(t))dt =

∫
B

log(1 + aλ̃′(f(t)− g(t)) + aλ̃′g(t))dt

+

∫
Bc

log(1 + aλ̃′(f(t)− g(t)) + aλ̃′g(t))dt

≥Λ(B) log(1 + aδ̃ − ε0) + log(1− ε0) > A0.

In what follows, we turn to the case Gel(g) <∞, i.e., Hg is bounded as shown before.

Case 1: we first consider the case that λg ∈ H̃g = {λ ∈ Rk : mint∈[0,1](1 +λ′g(t)) >

0}. Since H̃g is open, we can pick a positive number τ so that B̄(λg; τ) := {λ ∈
Rk : |λ − λg| ≤ τ} ⊆ H̃g. Then we have minλ∈B̄(λg ;τ) mint∈[0,1](1 + λ′g(t)) > c > 0.
Furthermore, there exists a sufficiently small δ such that for any f ∈ Q with ||f−g|| ≤ δ,
we have mint∈[0,1](1 + λ′f(t)) > c′ > 0 for any λ ∈ B̄(λg; τ), i.e., B̄(λg; τ) ⊆ H̃f . Notice
that the constant c′ only depends on g, δ and c.

Given any ε > 0, we shall first show that supλ∈B̄(λg;τ) |Lf (λ) − Lg(λ)| < ε for

any f ∈ Q with ||f − g|| < δ̃(ε), where 0 < δ̃(ε) < δ. Because Gel(g) < ∞, we have∫ 1

0
log(1 + λ′g(t))dt <∞ for any λ ∈ B̄(λg; τ). Simple algebra yields that∣∣∣∣∫ 1

0

log(1 + λ′f(t))dt−
∫ 1

0

log(1 + λ′g(t))dt

∣∣∣∣
≤max

{
log(1 +Mδ̃(ε)/c′), log(1 +Mδ̃(ε)/c)

}
,

(S1.1)

where M = |λg|+ τ. The RHS of (1) can be made arbitrarily small for sufficiently small

δ̃(ε). Therefore we get supλ∈B̄(λg ;τ) |Lf (λ)− Lg(λ)| < ε for small enough δ̃(ε), which

implies that |Gel(g) − supλ∈B̄(λg;τ)

∫ 1

0
log(1 + λ′f(t))dt| < ε. Next, we show that there

exists a local maxima of −Lf (λ) in B̄(λg; τ). Suppose ε is sufficiently small and choose
0 < ξ < τ such that −Lg(λg) > maxλ∈B̄(λg ;τ)∩Bc(λg ;ξ)−Lg(λ) + 2ε, where B(λg; ξ) =

{λ ∈ Rk : |λ− λg| < ξ}. Thus we get

max
λ∈B̄(λg ;τ)∩Bc(λg ;ξ)

−Lf (λ) ≤ max
λ∈B̄(λg;τ)∩Bc(λg ;ξ)

−Lg(λ) + ε

<− Lg(λg)− ε ≤ −Lf (λg) ≤ max
λ∈B̄(λg;ξ)

−Lf (λ).

Because f ∈ Q, Lf (λ) is strictly convex. Hence, the local maxima is also the global
maxima, which implies that |Gel(g)−Gel(f)| < ε.

Case 2: We now consider the case mint∈[0,1](1 + λ′gg(t)) = 0. For any 0 < δ∗ <
δ∗∗ < 1, let Hg(δ

∗) = {(1 − δ∗)λ : λ ∈ Hg} and Hf (δ∗∗) = {(1 − δ∗∗)λ : λ ∈ Hf}.
There exists a small enough δ > 0 such that for any f ∈ Q with ||f − g|| < δ, Hf (δ∗∗) ⊆
Hg(δ

∗) ∈ H̃f ∩ H̃g. By the continuity of Lg(λ), we know for any ε > 0, there exists a
δ∗ > 0 such that when |λ− λg| ≤ δ∗|λg|, −Lg(λg) < −Lg(λ) + ε/4. By the construction
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of Hg(δ
∗), we have

−Lg(λg) < −Lg((1− δ∗)λg) + ε/4 ≤ sup
λ∈Hg(δ∗)

−Lg(λ) + ε/4.

Using similar arguments in the first case and the boundness of Hg, we can show that∣∣∣∣∣ sup
λ∈Hg(δ∗)

−Lg(λ)− sup
λ∈Hg(δ∗)

−Lf (λ)

∣∣∣∣∣ < ε/8,

for sufficiently small δ. Furthermore, when λf ∈ Hg(δ
∗), we have −Lf (λf ) = supλ∈Hg(δ∗)

− Lf (λ). When λf /∈ Hg(δ
∗), by the convexity of Lf (λ), we get Lf ((1 − δ∗∗)λf ) ≤

(1− δ∗∗)Lf (λf ), which implies that

−Lf (λf ) ≤−Lf ((1− δ∗∗)λf )

1− δ∗∗
≤

supλ∈Hg(δ∗)−Lf (λ)

1− δ∗∗

≤
supλ∈Hg(δ∗)−Lg(λ) + ε/8

1− δ∗∗
≤ sup
λ∈Hg(δ∗)

−Lg(λ) + ε/4

< sup
λ∈Hg(δ∗)

−Lf (λ) + ε/2

for small enough δ∗∗ (e.g., δ∗∗ < min(1/3, ε
24Gel(g)

)). Thus we have

|Gel(f)−Gel(g)| ≤

∣∣∣∣∣−Lf (λf )− sup
λ∈Hg(δ∗)

−Lf (λ)

∣∣∣∣∣+

∣∣∣∣∣−Lg(λg)− sup
λ∈Hg(δ∗)

−Lg(λ)

∣∣∣∣∣∣∣∣∣∣ sup
λ∈Hg(δ∗)

−Lg(λ)− sup
λ∈Hg(δ∗)

−Lf (λ)

∣∣∣∣∣ < ε.

Combining the above arguments, we show that the map Gel is continuous under the sup
norm.

Next, we consider the limiting process Dk(r; b) =
∫ 1

0
K((r − s)/b)dWk(s) with

b ∈ (0, 1) being fixed in the asymptotics. Because the components of Dk(r; b) are
mutually independent, we have P (α′Dk(r; b) = 0 for some α ∈ Rk) = 0 which im-
plies that P (Dk(r; b) ∈ Q) = 1. Under the assumptions in Theorem 2.1, the set
{λ : minr∈[0,1](1 + λ′Dk(r; b)) ≥ 0} is compact and convex almost surely (note the
convexity and closeness of the set follow directly from its definition). Using summation
by parts, we get

√
nftn(θ0) =

√
n

Sn

t−1∑
s=t−n

K
(
s

Sn

)
ft−s(θ0) =

√
n

Sn

n∑
s=1

K
(
t− s
Sn

)
fs(θ0)

=
1

b
√
n
K
(
t− n
Sn

) n∑
k=1

fk(θ0) +
1

b
√
n

n−1∑
s=1

{
K
(
t− s
Sn

)
−K

(
t− s− 1

Sn

)} s∑
k=1

fk(θ0).
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By the continuous mapping theorem and Itô’s formula, we obtain

√
nftn(θ0)⇒dΛ

{
1

b
K
(
r − 1

b

)
Wk(1) +

1

b2

∫ 1

0

K′
(
r − s
b

)
Wk(s)ds

}
=d ΛDk(r; b)/b,

for t = bnrc with r ∈ [0, 1]. Finally, by the continuous mapping theorem, we get

elr(θ0) =
2

b
max
λ∈Rk

n∑
t=1

log(1 + λ̃′
√
nbΛ−1ftn(θ0))/n, λ̃ = Λ′λ/(

√
nb),

→dUel,k(b;K) :=
2

b
max
λ̃∈Rk

∫ 1

0

log
(

1 + λ̃′Dk(r; b)
)
dr.

(S1.2)

Remark S1.1. For ET and CUE, we have I = R. Given any g ∈ Q with Ggel(g) <∞,
we have Hg = {λ ∈ Rk : λ′g(t) ∈ I, for all t ∈ [0, 1]} = Rk and λg < ∞. Therefore,
λg is an interior point of Hg and the arguments in Case 1 can be applied to show the
continuity of Ggel(·) at g.
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