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Supplementary Material

The following supplementary material contains the proof of Theorem 2.1.

S1 Technical appendix

Define the set of functions
Q=1{9="(91,92,---,9r) € C®%[0,1] : g|s are linearly independent},

and let G.(g) = maxycpr fol log(1 + MNg(t))dt be a nonlinear functional from C®*[0,1]
to the real line R, where log(z) = —oo for x < 0. We shall prove in the following
that Ge;(g) is a continuous map for functions in ) under the sup norm (Seijo and Sen
(2011)). For any g € C®¥[0,1], we define Hy, = {A € R : minyc17(1 + Ng(t)) > 0}
and Lg(\) = — fol log(1 + Xg(t))dt. It is straightforward to show that L,(\) is strictly
convex for g € @ on the set H,. We also note that H, is a closed convex set, which
contains a neighborhood of the origin. Let A\, = argmax cp« fol log(1 + Ng(t))dt be the
maximizer of —Lg(\).

We first show that Gei(g) < oo if and only if H, is bounded. If Gg(g) = oo,
then A\, cannot be finite, which implies that H, is unbounded. On the other hand,
suppose Hy is unbounded. Note that Hy = Nepo.1){A € R* : Ng(t) > —1} which is
the intersection of a set of closed half-spaces. The recession cone of H, is then given
by 0THy = Niepo,1{X € R¥ : Ng(t) > 0} (see Section 8 of Rockafellar (1970)). By
Theorem 8.4 of Rockafellar (1970), there exists a nonzero vector A € 0T H,, and the
set {t € [0,1] : Ng(t) > 0} has positive Lebesgue measure because of the linearly
independence of g. We have Ge;(g) > —Ly(a)) for any a > 0, where —L,(a)) — oo as
a — 00. Thus we get G¢(g) = oo.

_ Next, we consider the case G;(g) = oo. Following the discussion above, there exists
d such that the set B := {t € [0,1] : N'g(¢) > d} has Lebesgue measure A(B) > 0. For
any Ao > 0, we choose ¢ € (0,1) and large enough a > 0 so that

A(B)log(1 + ad — ) + log(1 — €o) > Ao.
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For any f € Q with [|f — g|| := supycpo,1) |f(t) — 9(t)] < €0/(|A|a), we have

/ log(1+a5\’f(t))dt:/log(l—&-aS\’(f(t)—g(t))+a5\’g(t))dt
0 B

+ / log(1 4 aX (f(t) — g(t)) + aNg(t))dt
>A(B)log(1 4 ad — o) + log(1 — €9) > Ay.
In what follows, we turn to the case Gi(g) < oo, i.e., Hy is bounded as shown before.

Case 1: we first consider the case that A\, € I:Ig ={\ e RF: mingepo,17(1+Ng(t)) >
0}. Since ﬁg is open, we can pick a positive number 7 so that B(A\y;7) = {\ €
R* : [\ =\, < 7} C H,. Then we have minye g, ;) Mingepo ) (1 + Ng(t)) > ¢ > 0.
Furthermore, there exists a sufficiently small § such that for any f € Q with ||f —g|| <6,
we have mingejo 17(1 4+ X f(£)) > ¢/ > 0 for any A € B(Ag;7), i.e., B(Ag;7) C H. Notice
that the constant ¢’ only depends on g, ¢ and c.

Given any € > 0, we shall first show that supycpy,.r) [Lf(A) — Lg(N)| < € for

any f € Q with ||f — g|| < d(e), where 0 < d(e) < 8. Because Ge(g) < oo, we have
fol log(1+ Ng(t))dt < oo for any A € B(\y; 7). Simple algebra yields that

/O log (1 + N £(£))dt — /0
< max {1og(1 £ M&(e) /'), log(1 + Mb(e) /c)} :

1 log(1 + /\’g(t))dt)

(S1.1)

where M = |\;| + 7. The RHS of (1) can be made arbitrarily small for sufficiently small
5(e). Therefore we get SUPxcB(x,ir) [LF(A) — Lg(A)| < € for small enough 4(€), which
implies that |Gei(g) — supreg,;r) fol log(1 + X f(t))dt| < e. Next, we show that there
exists a local maxima of —L;(A) in B(Ay;7). Suppose ¢ is sufficiently small and choose
0 < & < 7 such that —Lg(Ag) > maxyecp(x,;r)npe(r,:e) —Lg(A) + 2€, where B(Ag; ) =
{AEeRF A=)y <&} Thus we get

_ max —Ly(N) < _ max —Lg(A) +e€
AEB(Ag;T)NB(Ag;8) AEB(Ag;T)NBe(Ag;E)
<—Ly\)—€e<—Li(\) < max —Ls(\).

T AEB(M\g;E)

Because f € Q, Ly(\) is strictly convex. Hence, the local maxima is also the global
maxima, which implies that |Ge;(g) — Gei(f)] < e.

Case 2: We now consider the case mingcp,1)(1 + Ayg(t)) = 0. For any 0 < 0* <
0 < 1, let Hy(0*) = {(1 —0")X : X € Hy} and Hp(6™) = {(1 — ™)X : X\ € Hy}.
There exists a small enough § > 0 such that for any f € Q with ||f —g|| < J, Hy(6**) C
H,(5*) € Hy N H,. By the continuity of Ly()\), we know for any € > 0, there exists a
d* > 0 such that when |\ — Ag| < §*|Ay|, —Lgy(Ag) < —L4(X) + €/4. By the construction
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of Hy(6*), we have

“Ly(Ag) < —Lg((1—6")\g) +¢/4<  sup —Ly(\) + /4.
AEH,(5%)

Using similar arguments in the first case and the boundness of H,, we can show that
sup —Lg(A\)— sup —Ls(N)| <¢/8,
AEH,(6%) AEH,(6%)
for sufficiently small 6. Furthermore, when Ay € H,(6*), we have —L¢(Af) = supcp, (s+)
— Ly(N). When Ay ¢ Hy(6*), by the convexity of Ly(\), we get Lp((1 — 6**)Af) <
(1 —0**)L#(Af), which implies that

L (L= 8"")As) _ SUPxer, (5) —Ls(N)

su o —Lg(A) +¢/8
- Pacr, (61 ~Lo(A) ¢/ < sup —Ly(N\) +e/4
1 — 5 AEH ,(6%)
< sup —Lf(A)+e/2

NEH,(6%)

for small enough §** (e.g., ** < min(1/3 Thus we have

»s1Ga))

|Gei(f) = Ga(g)l < |=Lf(Ay) — sup —Lp(A)| +

AEH, (67)

—Lg(Ag) = sup  —Lg4(N)
AEH (%)

< €.

sup —Lg(A\)— sup —Ls(N)
AEH,(6%) AEH,(6%)

Combining the above arguments, we show that the map G¢; is continuous under the sup
norm.

Next, we consider the limiting process Dy(r;b) = fol K((r — s)/b)dWy(s) with
b € (0,1) being fixed in the asymptotics. Because the components of Dy(r;b) are
mutually independent, we have P(a’Dg(r;b) = 0 for some a € R¥) = 0 which im-
plies that P(Dg(r;b) € @) = 1. Under the assumptions in Theorem 2.1, the set
{A + minggjo1)(1 + N Dg(r;0)) > 0} is compact and convex almost surely (note the
convexity and closeness of the set follow directly from its definition). Using summation
by parts, we get

Vitfun(00) = L tzlnn(;n)ft (B) = Z_j ( )fs(Ho)

:b\l/ﬁ’c(t&:ﬁk;fk(a Z{ (ts) ]C<t;n1>}ki1fk(90)'
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By the continuous mapping theorem and It6’s formula, we obtain

Viifm(00) =A {ZIC (’" - 1) Wie(1) + b% /01 K’ <’" - S) Wk(s)ds} —4 ADy(r;b) /b,

for t = |nr] with r € [0,1]. Finally, by the continuous mapping theorem, we get

clr(00) = s D los(1 4 XVAA™ fn(O0) /. 3= A/ o

2 ! -
U k(b K) == = ;nax/ log (1 + N Dy (r; b)) dr.
b xerr Jo

REMARK S1.1. For ET and CUE, we have T = R. Given any g € Q with Gge(g) < 00,
we have H, = {\ € R* : Ng(t) € Z, for allt € [0,1]} = R* and A\, < oo. Therefore,
Ag 18 an interior point of Hy and the arguments in Case 1 can be applied to show the
continuity of Gger(-) at g.
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