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Supplementary Material

First we state our assumptions (see also Zhou et al. (1998) and Claeskens et al.
(2009)).

Assumption 1. Let δj = τj+1 − τj and δ = max
0≤j≤K

δj , where τ1, · · · , τK are the K

knots. There exists a constant M > 0, such that δ/( min
0≤j≤K

δj) ≤M and δ ∼ K−1. This

assumption is a weak restriction on the knot distribution, and assures that M−1 < Kδ <
M , which is required for stable numerical computations.

Assumption 2. For design points ui ∈ [a, b], i = 1, · · · , n, there exists a distribution
function Q with corresponding positive continuous design density ρ such that, with Qn
the empirical distribution of u1, · · · , un, sup

u∈[a,b]
|Qn(u)−Q(u)| = o(K−1).

Assumption 3. The number of knots K = o(n).

S1 Proof of Theorem 1

We state a Lemma proved in Eubank and Spiegelman (1990).

Lemma 1 (Eubank and Spiegelman 1990). Let Mn denote a sequence of n × n sym-
metric positive semidefinite matrices with eigenvalues τ1n ≤ · · · ≤ τnn. Assume that
yn ∼Nn(µn, σ

2In). Then

yT
nMnyn − σ2trace(Mn)− µT

nMnµn
σ2{2trace(M2

n)}1/2
→ N(0, 1), as n→∞ if

(A). max
i
τ2ni/

∑n
i=1 τ

2
ni → 0 and

(B). µT
nM

2
nµn/trace(M2

n)→ 0.

Next we state Lemma A3 in Claeskens et al. (2009) which is adapted from Speckman
(1985).
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Lemma 2 (Claeskens et al. 2009) Under Assumption A2 and for the eigenvalues ob-
tained in S,

s1 = · · · = sq = 0, sj = n−1(j − q)2q ĉ1 for j = q + 1, · · · ,K + p+ 1, (S1.1)

where c̃1 = c1(1 + o(1)) with c1 as a constant depending only on q and the design density
and o(1) converges to 0 as n → ∞ uniformly for j1n ≤ j ≤ j2n for any sequences

j1n →∞ and j2n = o(n
2

2q+1 ).

Proof of Theorem 1. Theorem 1 follows as a direct application of Lemma 1. We
verify condition (A) in Lemma 1. Using Lemma 2, we have

trace(H4
n) = trace[{A(IK+p+1 + λS)−1AT}4] =

K+p+1∑
j=1

1

(1 + λsj)4

= q +

K+p+1∑
j=q+1

1

{1 + λn−1c̃1(j − q)2q}4

= q + (
λc̃1
n

)−
1
2q

∫ Kq

0

1

(1 + u2q)4
du+ rn,

where rn = O(1) is the residual term from the Euler-Maclaurin formula. If Kq = o(1),
then

trace(H4
n) = q + (

λc̃1
n

)−
1
2q

∫ Kq

0

1

(1 + u2q)4
du+ rn

= q + (
λc̃1
n

)−
1
2qKqc+ r̃n

= q + cK + r̃n,

where c is a bounded constant r̃n = O(1). The second equality follows from integral
intermediate value theorem. If Kq = O(1), then∫ Kq

0

1

(1 + u2q)4
du ≤ 1 +

∫ ∞
1

u−8qdu = 2,

therefore

trace(H4
n) =

(
λ

n

)− 1
2q

+O(1). (S1.2)

To verify condition (A) in Lemma 1, note that when Kq = o(1) or Kq = O(1),

max
j
{1/(1 + λsj)

2}

trace(H4
n)

= O(K−1)→ 0.

Since under the null hypothesis µn = 0, condition (B) is automatically satisfied. There-
fore Tn is asymptotically normal under the H0. �
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S2 Proof of Theorem 2

The following notation will be used. Set

∑̃
ij

=
∑
i,i 6=j

∑
j

,
∑̃
ijk

=
∑
i,i6=j

∑
j,j 6=k

∑
k

, and
∑̃
ijkl

=
∑

i,i 6=j,j 6=l

∑
j,j 6=k,k 6=l

∑
k,i 6=l

∑
l,j 6=k

.

The following Lemma is from Chen (1994), which is an application of the results in De
Jong (1987).

Lemma 3 (Chen 1994) Let yn = (y1, · · · , yn)T be a random vector and set µn =
(f1, · · · , fn)T . Define ε = (ε1, · · · , εn)T = yn − µn, and suppose ε1, · · · , εn are in-
dependent, identically distributed random variables with E(ε1) = 0, var(ε1) = σ2 and
0 < E(ε41) < ∞. Let Mn be a symmetric n × n matrix of constants and mlj be its

(l, j)th element with m
(k)
lj denoting the (l, j)th element of Mk

n, for k = 2, 3, · · · . Define

σ2(n) =
n∑
j=1

(m
(2)
jj −m2

jj), α1 =
∑̃
l,j

m4
lj, α2 =

∑̃
l,j,k

m2
ijm

2
lk and α3 =

∑̃
i,j,k,l

mijmikmljmlk.

Then,

An =
yTnMnyn − σ2trace(Mn)− µTnMnµn

σ2

√
2trace(M2

n)
→ N(0, 1), as n→∞ if (S2.1)

A.
∑
j

m2
jj/trace(M2

n)→ 0 as n→∞,

B. µTnM
2
nµn/trace(M2

n)→ 0 as n→∞, and

C. αj = o(σ4(n)) for j = 1, 2, 3 as n→∞.

Define HK,n = 1
n (NTN + λDq). The following lemma is adapted from the Lemma A1

in Claesken et al. (2009).

Lemma 4 There exists a constant c0 > 0 independent of K and n such that |{H−1K,n}i,j | ≤
c0K for Kq = o(1) and |{H−1K,n}i,j | ≤ c0K(1 +K2q

q )−1 for Kq = O(1).

Proof of Theorem 2. Let Hn = N(NTN + λDq)
−1NT = 1

nNH
−1
K,nN

T . When
Kq = o(1), the (i, j)th element of Hn can be bounded as following:

|Hij | =
1

n
|
K+p+1∑
k=1

K+p+1∑
l=1

Nik{H−1K,n}klNjl| ≤
1

n
c0K

K+p+1∑
k=1

K+p+1∑
l=1

NikNjl =
c0K

n
.

Let hij be the (i, j)th element of H2
n, then

|hij | = |
n∑
k=1

HikHkj | ≤ c20
n∑
k=1

(
K

n
)2 = c20

K2

n
.
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Note that

n∑
i=1

h2ii

trace{H4
n}
∼
n(K

2

n )2

K
=
K3

n
→ 0, as n→∞. (S2.2)

This shows that condition (A) in Lemma 3 holds. It is obvious that condition (B) in
Lemma 3 is true, since µn = 0 under the null hypothesis. Thus it remains to prove

condition (C). Following (S2.2) to obtain σ2(n) ∼ K4

n . We have

α1 =
∑̃
i,j

h4ij ≤ c80
K8

n2
= c80(

K4

n
)2 = o(σ4(n)).

α2 =
∑̃
i,j,k

h2ijh
2
ik =

∑̃
i,j

h2ij(h
(2)
ii − h

2
ii − h2jj) ∼

∑̃
i,j

h2ijh
(2)
ii

∑̃
i,j

h2ijh
(2)
ii ≤

∑̃
i,j

h
(2)
ii c

4
0(
K2

n
)2 ∼ K5

n
= o(σ4(n)).

α3 =
∑̃
i,j,k,l

hijhikhljhlk =
∑̃
k,j

(h
(2)
jk − hjjhjk − hkjhkk)2 − α2.

Furthermore, we have

∑̃
k,j

(h
(2)
jk )2 ≤

n∑
j=1

h
(4)
jj = o(σ4(n));

∑̃
k,j

h2jjh
2
jk ∼ (

K4

n
)2 = o(σ4(n));

∑̃
k,j

h
(2)
jk hjjhjk ∼

∑̃
k,j

h
(2)
jk (

K2

n
)2 ∼ K5

n
= o(σ4(n));

∑̃
k,j

h2jkhjjhjk ∼ (
K4

n
)2 = o(σ4(n)).

Therefore, α3 = o(σ4(n)) and condition (C) holds. A direct application of Lemma 3
completes the proof for Kq = o(1) case.

Similarly when Kq = O(1), we have |hij | ∼ K2n−1K−4qq . Note that

n∑
i=1

h2ii

trace{H4
n}
∼
n(K

2

n )2K−8qq

(λn )−1/2q
=

1

n(λn )3/2qK7q−3
q

→ 0, as n→∞. (S2.3)

This shows that condition (A) in Lemma 3. It is obvious that condition (B) in Lemma 3
is true, since µn = 0 under the null hypothesis. To prove condition (C), following (S2.3)
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to get σ2(n) ∼ (λn )−1/2q. We obtain

α1 =
∑̃
i,j

h4ij ∼
1

n2(λn )4/qK16q−8
q

= o(σ4(n)).

α2 =
∑̃
i,j,k

h2ijh
2
ik =

∑̃
i,j

h2ij(h
(2)
ii − h

2
ii − h2jj) ∼

∑̃
i,j

h2ijh
(2)
ii = o(σ4(n)).

α3 =
∑̃
i,j,k,l

hijhikhljhlk =
∑̃
k,j

(h
(2)
jk − hjjhjk − hkjhkk)2 − α2 = o(σ4(n)).

A direct application of Lemma 3 finishes the proof of Theorem 2. �

S3 Proof of Theorem 3 and its remarks

Under the alternative hypothesis, we obtain

T ∗n = (Y − µn)TH2
n(Y − µn) = Tn + µTnH

2
nµn − 2µTnH

2
nY

= Tn − µTnH
2
nµn − 2µTnH

2
nεn,

therefore

Tn = T ∗n + µTnH
2
nµn + 2µTnH

2
nεn.

Note that

Tn − σ2trace(H2
n)

σ2{2trace(H4
n)}1/2

=
T ∗n − σ2trace(H2

n) + µTnH
2
nµn + 2µTnH

2
nεn

σ2{2trace(H4
n)}1/2

=
T ∗n − σ2trace(H2

n)

σ2{2trace(H4
n)}1/2

+
µTnH

2
nµn

σ2{2trace(H4
n)}1/2

+
2µTnH

2
nεn

σ2{2trace(H4
n)}1/2

, sn1 + sn2 + sn3.

From the proof of Theorem 1, we obtain sn1 →d N(0, 1). In addition, it is straightforward
that

var(sn3) = var(µTnH
2
nεn) = E(µTnH

2
nεnε

T
nH

2
nµn) = µTnH

2
nE(εnε

T
n )H2

nµn = σ2µTnH
4
nµn.

Since

σ2µTnH
4
nµn

{σ2µTnH
2
nµn}2

→ 0,

by Chebyshev’s inequality we obtain sn3/sn2 →P 0. Further notice that

λmin(H2
n)µTnµn ≤ µTnH

2
nµn ≤ λmax(H2

n)µTnµn,
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where λmin(M) and λmax(M) denote the smallest and largest eigenvalue of the matrix
M , and

1

n
µTnµn =

1

n
‖µn‖2 =

1

n

n∑
i=1

f2(ui) = E[f2(u1)] + o(1) = ‖f‖2u + o(1).

From λmax(H2
n) = 1 and λmin(H2

n) =
1

(1 +K2q
q )2

, we obtain µTnH
2
nµn = O(n). To

obtain detectable rates under local alternatives, note that for Kq = o(1), we have

µTnH
2
nµn

{2trace(H4
n)}1/2

= O
( n

K1/2

)
,

and for Kq = O(1) or Kq →∞, we obtain

µTnH
2
nµn

{2trace(H4
n)}1/2

= O

(
n

(λn )−
1
4q

)
. (S3.1)

To examine the optimal rate of K and λ, note that

1

n
µT
nH

2
nµn =

1

n
(Ef̂n)TEf̂n.

Theorem 2 in Claeskens et al. (2009) and Theorem 1 in Chen and Wang (2011) gives

convergence rate of E[f̂(ui)]. Therefore when Kq = o(1) we obtain

1

n
µT
nH

2
nµn = O

(
λ2K2q

n2

)
+O

(
1

K2(p+1)

)
+O(‖f‖2u).

In this case, local alternatives are detectable at the rate h(n) = 1/
√
nK−1/2. Therefore

at these detectable local alternatives denoted by f∗, we have ‖f∗‖2 = O(h2(n)) =
1/(nK−1/2). The optimal rate for K and λ is obtained from

h2(n) =
1

K2(p+1)
, and h2(n) ≥ λ2K2q

n2
,

which implies

K = O(n
2

4p+5 ), and λ = O(nν) for ν ≤ 2p− 2q + 3

4p+ 5
.

Similarly, for Kq = O(1) we obtain

1

n
µT
nH

2
nµn = O

(
λ

n

)
+O

(
1

K2(p+1)

)
+O(‖f‖2),

and the local alternatives are detectable at the rate g(n) = {n(λ/n)1/4q}−1/2. Therefore
the optimal rate of K and λ for testing is obtained from

g2(n) =
λ

n
, and g2(n) ≥ 1

K2(p+1)
,
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which implies

λ = O(n
1

4q+1 ), and K = O(nν) for ν ≥ 2q

(4q + 1)(p+ 1)
.
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