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First we state our assumptions (see also Zhou et al. (1998) and Claeskens et al.
(2009)).

Assumption 1. Let §; = 7j41 — 75 and § = oI<niXK6j’ where 7,--- ,7x are the K

— <5<

knots. There exists a constant M > 0, such that 5/(0£m<n1{ §;) <M and § ~ K~'. This
<<

assumption is a weak restriction on the knot distribution, and assures that M~ < K§ <
M, which is required for stable numerical computations.

Assumption 2. For design points u; € [a,b], ¢ = 1, - ,n, there exists a distribution
function @ with corresponding positive continuous design density p such that, with @,
the empirical distribution of wy,- -+ ,u,, sup |Qn(u) — Q(u)] = o(K~1).

u€[a,b)

Assumption 3. The number of knots K = o(n).

S1 Proof of Theorem 1

We state a Lemma proved in Eubank and Spiegelman (1990).

Lemma 1 (Eubank and Spiegelman 1990). Let M, denote a sequence of n X n sym-
metric positive semidefinite matrices with eigenvalues T1, < -+ < Tppn. Assume that
Y, ~ Nn(w,,0?I,). Then

Yo My, — otrace(My) — py Mnps,
o2{2trace(M?)}1/2

— N(0,1), as n—oo if

i=1 "ni

(A). max72,/> " 72, =0 and
K3
(B). prM? ., [trace(M?) — 0.

Next we state Lemma A3 in Claeskens et al. (2009) which is adapted from Speckman
(1985).
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Lemma 2 (Claeskens et al. 2009) Under Assumption A2 and for the eigenvalues ob-
tained in S,

sp=-=8,=0, s;=n"1(j—q)%C forj=q+1,-- , K+p+1, (S1.1)

where & = ¢1(1+0(1)) with ¢ as a constant depending only on q and the design density
and o(1) converges to 0 as n — oo uniformly for ji, < j < jon for any sequences

. . 2
Jin — 00 and jo, = o(nZaFT).

Proof of Theorem 1. Theorem 1 follows as a direct application of Lemma 1. We
verify condition (A) in Lemma 1. Using Lemma 2, we have

K+p+1 1
trace(Hp) = trace[{A(Igspi1 +AS) AT = ; (1+ Asj)4
K+p+1 1
= q + ~ .
j;m {1+ An71e(j — q)a}
)\61 _ 1 Kaq 1
= q+(7) 2‘1/0 mdu_FTTH

where 7, = O(1) is the residual term from the Euler-Maclaurin formula. If K, = o(1),
then

trace(H?) = —l—(&Yzi /Kq édu—l—r
n) = 4 n o (1+u2a)4 "

AC1 1 -
- q+(71) 2lquqc""Tn
= q+cK+7,,

where ¢ is a bounded constant 7,, = O(1). The second equality follows from integral
intermediate value theorem. If K, = O(1), then

Kq 1 d oo 8qd
———du <1 - =2
/0 (1+u2q)4 u < Jr/l U U ,

therefore

trace(H ) = (A> s +0(1). (S1.2)

n

To verify condition (A) in Lemma 1, note that when K, = o(1) or K, = O(1),
max{1/(1+ As;)*}
J

= O(K™ ") —o.
trace(H?) ( )

Since under the null hypothesis p,, = 0, condition (B) is automatically satisfied. There-
fore T,, is asymptotically normal under the Hy. O
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S2 Proof of Theorem 2

The following notation will be used. Set

SED SIS 3D 3D A I SEID SHED S S 3

ij GiFE] ijk i,i#j §iFk k ikl iiFEfg#L . FkkFEL kiFEL LjFEk
The following Lemma is from Chen (1994), which is an application of the results in De
Jong (1987).

Lemma 3 (Chen 1994) Let y,, = (y1,-++ ,yn)? be a random vector and set p, =

(fi,--, fa)T. Define € = (e1, -+ ,e,)T = vy, — mu,,, and suppose €1,--- , e, are in-
dependent, identically distributed random variables with E(e1) = 0, var(e;) = o2 and
0 < E(e}) < oo. Let M be a symmetric n X n matriz of constants and my; be its

(L, j)th element with m,; (k) denotmg the (1,7)th element of MY, for k =2,3,--- . Define

o%(n) = i(mg) — mij), Zml], Qg = Z m? mlk and oz = Z T Mk MM -

Then, = o

yI'M,y, — o*trace(M,) — pl M,
2trace(M?2)

A, = — N(0,1), as n—oo if (S2.1)

A. Zm%/tmce(Mi) — 0 asn — oo,
J

B. uI M2, [trace(M?) — 0 as n — oo, and
C. aj = o(o*(n)) for j =1,2,3 as n — oo.

Define Hy , = %(NTN + AD,). The following lemma is adapted from the Lemma Al
in Claesken et al. (2009).

N

Lemma 4 There ezists a constant co > 0 independent of K and n such that \{H}ln}”|
coK for Ky = o(1) and |{H;{}n}”| <K (14 K27t for Ky = O(1).

Proof of Theorem 2. Let H, = N(N'N + AD,)"'N" = INH.' N". When
K, = o(1), the (4, j)th element of H,, can be bounded as following:

K+p+1 K+p+1 K+p+1 K+p+1

_ c K
oY 2 NudHic bl < kY 2 N ===
k=1 =1 k=1  I=1
Let hy; be the (i,)th element of HZ, then
hijl = 1Y HixHij| < 5 (;)2 = 037'

k=1 k=1
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Note that

n 9 )
I

L = _— 0, as n—oo. (52.2)
trace{H } K n

This shows that condition (A) in Lemma 3 holds. It is obvious that condition (B) in

Lemma 3 is true, since p, = 0 under the null hypothesis. Thus it remains to prove
4

condition (C). Following (S2.2) to obtain o(n) ~ £-. We have

K4
a; = Zh <cO —08(7)2—0(04(11)).
ay = thjhfk_ZhZ (A2 —n2 —n2)) thjhﬁ?
ijk

n

K? K?

2 2

Z@W<Z%%ﬁ¥~—:mm»
2]

az = Z hijhikhljhlk = Z(hg? - hjjhjk — hkjhkk)2 — (9.
i,7,k,l k,j

Furthermore, we have

Z h(2) < Z h(4) ))’

k,j

4
Z@@~é¥wWMx

h h::h ~ h(2) 2 K5 _ 4 .
Zwﬂﬂ Z o(o* (n));

4
> hihyih ~ ([{7)2 = o(o™(n)).

k,j

Therefore, a3 = o(c*(n)) and condition (C') holds. A direct application of Lemma 3
completes the proof for K, = o(1) case.

Similarly when K, = O(1), we have |h;;| ~ K*n~'K_47. Note that

12
1; K n(KTZ)th;gq — ! —0, as n— o0 (S2.3)
trace{ H}} (2)-1/2a n(2)3/20 13 ’ : :

This shows that condition (A) in Lemma 3. It is obvious that condition (B) in Lemma 3
is true, since p,, = 0 under the null hypothesis. To prove condition (C'), following (52.3)
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to get o2(n) ~ (%)_1/2’1. We obtain

1
A= Zh 4/qK16q s = o(o*(n)).
Qg = Z h zk - Zh (2) h2 - h2 Zhu 512) (n))

0,5,k

a3 = Z hijhikhljhlk = Z(h;i) — hjjhjk — hkjhk;k)2 — Qg = 0(04(n)).
i,5,k,1 k,j

A direct application of Lemma 3 finishes the proof of Theorem 2. [

S3 Proof of Theorem 3 and its remarks

Under the alternative hypothesis, we obtain

I, = (Y ) TH2(Y — p,) =T, + T H2p, — 20T H2Y
T H2“n_2u’nH26na
therefore
Tn = T* + iu’n Hn)u’n + QHTHQ
Note that
T, — o?trace(H?) Ty - o?trace(H?) + ul H? u, + 2u” H? €,
o2{2trace(H ) }1/2 o2{2trace( H:)}1/2

Ty — o’trace(H},) ph Hop, 2ul He,

o2{2trace(H)}1/2  g2{2trace(H*)}V/2  o2{2trace(H*)}1/2

Snl + Sn2 T Sn3-

[

From the proof of Theorem 1, we obtain s,,; — N(0, 1). In addition, it is straightforward
that

var(sn3) = var(p) Hien) = E(ph Hieney Hop,) = pl Ho E(eney ) Hpp, = o pl Hop,

Since

plHp,,
{02 I H p,}?

by Chebyshev’s inequality we obtain s,3/s,2 —% 0. Further notice that

— 0,

Amin(H ))u'nu’n < u'nHQ iu’n S )‘max(Hi)HZNm
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where Apin (M) and Apax (M) denote the smallest and largest eigenvalue of the matrix
M, and

i, =l = % 3 () = Bl )]+ 01) = |71 + (1)
i=1

1
From Apmax Hi =1 and Amin HZ = ——————, we obtain ZHZ n = O(n). To
(H,) (H,) 17 K2y o Ho (n)
obtain detectable rates under local alternatives, note that for K, = o(1), we have
pnHop, ( n )
{2trace(H)}1/2 K12/
and for Ky, = O(1) or K, — oo, we obtain
TH2
l"’n ng'n — O Ll . (831)
{2trace(H,)}'/? ()77

To examine the optimal rate of K and A, note that
1 TEH2, - 1 ETOTET
n n

Theorem 2 in Claeskens et al. (2009) and Theorem 1 in Chen and Wang (2011) gives
convergence rate of E|[f(u;)]. Therefore when K, = o(1) we obtain

1 ooy A2 K2 1 ,
nu’an/'l’n:O( > + O ) + O(| f1%)-

In this case, local alternatives are detectable at the rate h(n) = 1/vnK—1/2. Therefore
at these detectable local alternatives denoted by f*, we have ||f*||?> = O(h?(n)) =
1/(nK~'2). The optimal rate for K and X is obtained from

1 A2K2a
2 _ 2
h (n) = m, and h (n) Z n2 s
which implies
2p — 2 3
K = O(n), and A= O(n*) for f@j%L<

Similarly, for K, = O(1) we obtain
1 oo A 1 ,
Sl =0 (2) 40 () + 001,

and the local alternatives are detectable at the rate g(n) = {n(\/n)*/47}~1/2, Therefore
the optimal rate of K and A for testing is obtained from

A 1
2 _ 2
g (n) - n7 and g (’I’L) 2 KQ(p+1)7
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which implies

2q

)\:OnT{H,andK:On”fory>—.
) 2 G e+
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