A note on a nonparametric regression test through P-spline

Huaihou Chen ${ }^{1}$, Yuanjia Wang ${ }^{2}$, Runze Li 3, and Katherine Shear ${ }^{2}$
${ }^{1}$ New York University, ${ }^{2}$ Columbia University, and ${ }^{3}$ Pennsylvania State University

Supplementary Material

First we state our assumptions (see also Zhou et al. (1998) and Claeskens et al. (2009)).
$\underline{\text { Assumption 1. Let } \delta_{j}=\tau_{j+1}-\tau_{j} \text { and } \delta=\max _{0 \leq j \leq K} \delta_{j} \text {, where } \tau_{1}, \cdots, \tau_{K} \text { are the } K ~}$ knots. There exists a constant $M>0$, such that $\delta /\left(\min _{0 \leq j \leq K} \delta_{j}\right) \leq M$ and $\delta \sim K^{-1}$. This assumption is a weak restriction on the knot distribution, and assures that $M^{-1}<K \delta<$ M, which is required for stable numerical computations.

Assumption 2. For design points $u_{i} \in[a, b], i=1, \cdots, n$, there exists a distribution function Q with corresponding positive continuous design density ρ such that, with Q_{n} the empirical distribution of $u_{1}, \cdots, u_{n}, \sup _{u \in[a, b]}\left|Q_{n}(u)-Q(u)\right|=o\left(K^{-1}\right)$.

S1 Proof of Theorem 1

We state a Lemma proved in Eubank and Spiegelman (1990).
Lemma 1 (Eubank and Spiegelman 1990). Let \boldsymbol{M}_{n} denote a sequence of $n \times n$ symmetric positive semidefinite matrices with eigenvalues $\tau_{1 n} \leq \cdots \leq \tau_{n n}$. Assume that $\boldsymbol{y}_{n} \sim \boldsymbol{N}_{n}\left(\boldsymbol{\mu}_{n}, \sigma^{2} \boldsymbol{I}_{n}\right)$. Then

$$
\frac{\boldsymbol{y}_{n}^{\mathrm{T}} \boldsymbol{M}_{n} \boldsymbol{y}_{n}-\sigma^{2} \operatorname{trace}\left(\boldsymbol{M}_{n}\right)-\boldsymbol{\mu}_{n}^{\mathrm{T}} \boldsymbol{M}_{n} \boldsymbol{\mu}_{n}}{\sigma^{2}\left\{2 \operatorname{trace}\left(\boldsymbol{M}_{n}^{2}\right)\right\}^{1 / 2}} \rightarrow N(0,1), \quad \text { as } \quad n \rightarrow \infty \quad \text { if }
$$

(A). $\max _{i} \tau_{n i}^{2} / \sum_{i=1}^{n} \tau_{n i}^{2} \rightarrow 0$ and
(B). $\boldsymbol{\mu}_{n}^{\mathrm{T}} \boldsymbol{M}_{n}^{2} \boldsymbol{\mu}_{n} / \operatorname{trace}\left(\boldsymbol{M}_{n}^{2}\right) \rightarrow 0$.

Next we state Lemma A3 in Claeskens et al. (2009) which is adapted from Speckman (1985).

Lemma 2 (Claeskens et al. 2009) Under Assumption A2 and for the eigenvalues obtained in S,

$$
\begin{equation*}
s_{1}=\cdots=s_{q}=0, \quad s_{j}=n^{-1}(j-q)^{2 q} \widehat{c}_{1} \text { for } j=q+1, \cdots, K+p+1 \tag{S1.1}
\end{equation*}
$$

where $\tilde{c}_{1}=c_{1}(1+o(1))$ with c_{1} as a constant depending only on q and the design density and o(1) converges to 0 as $n \rightarrow \infty$ uniformly for $j_{1 n} \leq j \leq j_{2 n}$ for any sequences $j_{1 n} \rightarrow \infty$ and $j_{2 n}=o\left(n^{\frac{2}{2 q+1}}\right)$.

Proof of Theorem 1. Theorem 1 follows as a direct application of Lemma 1. We verify condition (A) in Lemma 1. Using Lemma 2, we have

$$
\begin{aligned}
\operatorname{trace}\left(\boldsymbol{H}_{n}^{4}\right) & =\operatorname{trace}\left[\left\{\boldsymbol{A}\left(\boldsymbol{I}_{K+p+1}+\lambda \boldsymbol{S}\right)^{-1} \boldsymbol{A}^{\mathrm{T}}\right\}^{4}\right]=\sum_{j=1}^{K+p+1} \frac{1}{\left(1+\lambda s_{j}\right)^{4}} \\
& =q+\sum_{j=q+1}^{K+p+1} \frac{1}{\left\{1+\lambda n^{-1} \tilde{c}_{1}(j-q)^{2 q}\right\}^{4}} \\
& =q+\left(\frac{\lambda \tilde{c}_{1}}{n}\right)^{-\frac{1}{2 q}} \int_{0}^{K_{q}} \frac{1}{\left(1+u^{2 q}\right)^{4}} d u+r_{n}
\end{aligned}
$$

where $r_{n}=O(1)$ is the residual term from the Euler-Maclaurin formula. If $K_{q}=o(1)$, then

$$
\begin{aligned}
\operatorname{trace}\left(\boldsymbol{H}_{n}^{4}\right) & =q+\left(\frac{\lambda \tilde{c}_{1}}{n}\right)^{-\frac{1}{2 q}} \int_{0}^{K_{q}} \frac{1}{\left(1+u^{2 q}\right)^{4}} d u+r_{n} \\
& =q+\left(\frac{\lambda \tilde{c}_{1}}{n}\right)^{-\frac{1}{2 q}} K_{q} c+\tilde{r}_{n} \\
& =q+c K+\tilde{r}_{n}
\end{aligned}
$$

where c is a bounded constant $\tilde{r}_{n}=O(1)$. The second equality follows from integral intermediate value theorem. If $K_{q}=O(1)$, then

$$
\int_{0}^{K_{q}} \frac{1}{\left(1+u^{2 q}\right)^{4}} d u \leq 1+\int_{1}^{\infty} u^{-8 q} d u=2
$$

therefore

$$
\begin{equation*}
\operatorname{trace}\left(\boldsymbol{H}_{n}^{4}\right)=\left(\frac{\lambda}{n}\right)^{-\frac{1}{2 q}}+O(1) \tag{S1.2}
\end{equation*}
$$

To verify condition (A) in Lemma 1 , note that when $K_{q}=o(1)$ or $K_{q}=O(1)$,

$$
\frac{\max _{j}\left\{1 /\left(1+\lambda s_{j}\right)^{2}\right\}}{\operatorname{trace}\left(\boldsymbol{H}_{n}^{4}\right)}=O\left(K^{-1}\right) \rightarrow 0
$$

Since under the null hypothesis $\boldsymbol{\mu}_{n}=\mathbf{0}$, condition (B) is automatically satisfied. Therefore T_{n} is asymptotically normal under the H_{0}.

S2 Proof of Theorem 2

The following notation will be used. Set
$\sum_{i j}=\sum_{i, i \neq j} \sum_{j}, \quad \sum_{i j k}=\sum_{i, i \neq j} \sum_{j, j \neq k} \sum_{k}, \quad$ and $\quad \sum_{i j k l}=\sum_{i, i \neq j, j \neq l} \sum_{j, j \neq k, k \neq l} \sum_{k, i \neq l} \sum_{l, j \neq k}$.
The following Lemma is from Chen (1994), which is an application of the results in De Jong (1987).

Lemma 3 (Chen 1994) Let $\boldsymbol{y}_{n}=\left(y_{1}, \cdots, y_{n}\right)^{T}$ be a random vector and set $\boldsymbol{\mu}_{n}=$ $\left(f_{1}, \cdots, f_{n}\right)^{T}$. Define $\boldsymbol{\epsilon}=\left(\epsilon_{1}, \cdots, \epsilon_{n}\right)^{T}=\boldsymbol{y}_{n}-\boldsymbol{\mu}_{n}$, and suppose $\epsilon_{1}, \cdots, \epsilon_{n}$ are independent, identically distributed random variables with $E\left(\epsilon_{1}\right)=0, \operatorname{var}\left(\epsilon_{1}\right)=\sigma^{2}$ and $0<E\left(\epsilon_{1}^{4}\right)<\infty$. Let \boldsymbol{M}_{n} be a symmetric $n \times n$ matrix of constants and $m_{l j}$ be its (l, j) th element with $m_{l j}^{(k)}$ denoting the (l, j) th element of \boldsymbol{M}_{n}^{k}, for $k=2,3, \cdots$. Define $\sigma^{2}(n)=\sum_{j=1}^{n}\left(m_{j j}^{(2)}-m_{j j}^{2}\right), \alpha_{1}=\sum_{l, j} m_{l j}^{4}, \alpha_{2}=\tilde{\sum_{l, j, k}} m_{i j}^{2} m_{l k}^{2}$ and $\alpha_{3}=\tilde{\sum_{i, j, k, l}} m_{i j} m_{i k} m_{l j} m_{l k}$. Then,

$$
\begin{equation*}
A_{n}=\frac{\boldsymbol{y}_{n}^{T} \boldsymbol{M}_{n} \boldsymbol{y}_{n}-\sigma^{2} \operatorname{trace}\left(\boldsymbol{M}_{n}\right)-\boldsymbol{\mu}_{n}^{T} \boldsymbol{M}_{n} \boldsymbol{\mu}_{n}}{\sigma^{2} \sqrt{2 \operatorname{trace}\left(\boldsymbol{M}_{n}^{2}\right)}} \rightarrow N(0,1), \quad \text { as } \quad n \rightarrow \infty \quad \text { if } \tag{S2.1}
\end{equation*}
$$

A. $\sum_{j} m_{j j}^{2} / \operatorname{trace}\left(\boldsymbol{M}_{n}^{2}\right) \rightarrow 0$ as $n \rightarrow \infty$,
B. $\boldsymbol{\mu}_{n}^{T} \boldsymbol{M}_{n}^{2} \boldsymbol{\mu}_{n} / \operatorname{trace}\left(\boldsymbol{M}_{n}^{2}\right) \rightarrow 0$ as $n \rightarrow \infty$, and
C. $\alpha_{j}=o\left(\sigma^{4}(n)\right)$ for $j=1,2,3$ as $n \rightarrow \infty$.

Define $\boldsymbol{H}_{K, n}=\frac{1}{n}\left(\boldsymbol{N}^{T} \boldsymbol{N}+\lambda \boldsymbol{D}_{q}\right)$. The following lemma is adapted from the Lemma A1 in Claesken et al. (2009).

Lemma 4 There exists a constant $c_{0}>0$ independent of K and n such that $\left|\left\{\boldsymbol{H}_{K, n}^{-1}\right\}_{i, j}\right| \leq$ $c_{0} K$ for $K_{q}=o(1)$ and $\left|\left\{\boldsymbol{H}_{K, n}^{-1}\right\}_{i, j}\right| \leq c_{0} K\left(1+K_{q}^{2 q}\right)^{-1}$ for $K_{q}=O(1)$.

Proof of Theorem 2. Let $\boldsymbol{H}_{n}=\boldsymbol{N}\left(\boldsymbol{N}^{T} \boldsymbol{N}+\lambda \boldsymbol{D}_{q}\right)^{-1} \boldsymbol{N}^{T}=\frac{1}{n} \boldsymbol{N} \boldsymbol{H}_{K, n}^{-1} \boldsymbol{N}^{T}$. When $K_{q}=o(1)$, the (i, j) th element of \boldsymbol{H}_{n} can be bounded as following:

$$
\left|H_{i j}\right|=\frac{1}{n}\left|\sum_{k=1}^{K+p+1} \sum_{l=1}^{K+p+1} N_{i k}\left\{\boldsymbol{H}_{K, n}^{-1}\right\}_{k l} N_{j l}\right| \leq \frac{1}{n} c_{0} K \sum_{k=1}^{K+p+1} \sum_{l=1}^{K+p+1} N_{i k} N_{j l}=\frac{c_{0} K}{n} .
$$

Let $h_{i j}$ be the (i, j) th element of \boldsymbol{H}_{n}^{2}, then

$$
\left|h_{i j}\right|=\left|\sum_{k=1}^{n} H_{i k} H_{k j}\right| \leq c_{0}^{2} \sum_{k=1}^{n}\left(\frac{K}{n}\right)^{2}=c_{0}^{2} \frac{K^{2}}{n} .
$$

Note that

$$
\begin{equation*}
\frac{\sum_{i=1}^{n} h_{i i}^{2}}{\operatorname{trace}\left\{\boldsymbol{H}_{n}^{4}\right\}} \sim \frac{n\left(\frac{K^{2}}{n}\right)^{2}}{K}=\frac{K^{3}}{n} \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty . \tag{S2.2}
\end{equation*}
$$

This shows that condition (A) in Lemma 3 holds. It is obvious that condition (B) in Lemma 3 is true, since $\mu_{n}=0$ under the null hypothesis. Thus it remains to prove condition (C). Following (S2.2) to obtain $\sigma^{2}(n) \sim \frac{K^{4}}{n}$. We have

$$
\begin{aligned}
\alpha_{1}= & \tilde{\sum_{i, j}} h_{i j}^{4} \leq c_{0}^{8} \frac{K^{8}}{n^{2}}=c_{0}^{8}\left(\frac{K^{4}}{n}\right)^{2}=o\left(\sigma^{4}(n)\right) . \\
\alpha_{2}= & \sum_{i, j, k} h_{i j}^{2} h_{i k}^{2}=\tilde{\sum_{i, j}} h_{i j}^{2}\left(h_{i i}^{(2)}-h_{i i}^{2}-h_{j j}^{2}\right) \sim \sum_{i, j} h_{i j}^{2} h_{i i}^{(2)} \\
& \sum_{i, j} h_{i j}^{2} h_{i i}^{(2)} \leq \sum_{i, j} h_{i i}^{(2)} c_{0}^{4}\left(\frac{K^{2}}{n}\right)^{2} \sim \frac{K^{5}}{n}=o\left(\sigma^{4}(n)\right) . \\
\alpha_{3}= & \sum_{i, j, k, l} h_{i j} h_{i k} h_{l j} h_{l k}=\sum_{k, j}\left(h_{j k}^{(2)}-h_{j j} h_{j k}-h_{k j} h_{k k}\right)^{2}-\alpha_{2} .
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
& \tilde{\sum_{k, j}}\left(h_{j k}^{(2)}\right)^{2} \leq \sum_{j=1}^{n} h_{j j}^{(4)}=o\left(\sigma^{4}(n)\right) ; \\
& \tilde{\sum_{k, j}} h_{j j}^{2} h_{j k}^{2} \sim\left(\frac{K^{4}}{n}\right)^{2}=o\left(\sigma^{4}(n)\right) ; \\
& \tilde{\sum_{k, j}} h_{j k}^{(2)} h_{j j} h_{j k} \sim \sum_{k, j} h_{j k}^{(2)}\left(\frac{K^{2}}{n}\right)^{2} \sim \frac{K^{5}}{n}=o\left(\sigma^{4}(n)\right) ; \\
& \tilde{\sum_{k, j}} h_{j k}^{2} h_{j j} h_{j k} \sim\left(\frac{K^{4}}{n}\right)^{2}=o\left(\sigma^{4}(n)\right) .
\end{aligned}
$$

Therefore, $\alpha_{3}=o\left(\sigma^{4}(n)\right)$ and condition (C) holds. A direct application of Lemma 3 completes the proof for $K_{q}=o(1)$ case.

Similarly when $K_{q}=O(1)$, we have $\left|h_{i j}\right| \sim K^{2} n^{-1} K_{q}^{-4 q}$. Note that

$$
\begin{equation*}
\frac{\sum_{i=1}^{n} h_{i i}^{2}}{\operatorname{trace}\left\{\boldsymbol{H}_{n}^{4}\right\}} \sim \frac{n\left(\frac{K^{2}}{n}\right)^{2} K_{q}^{-8 q}}{\left(\frac{\lambda}{n}\right)^{-1 / 2 q}}=\frac{1}{n\left(\frac{\lambda}{n}\right)^{3 / 2 q} K_{q}^{7 q-3}} \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty . \tag{S2.3}
\end{equation*}
$$

This shows that condition (A) in Lemma 3. It is obvious that condition (B) in Lemma 3 is true, since $\mu_{n}=0$ under the null hypothesis. To prove condition (C), following (S2.3)
to get $\sigma^{2}(n) \sim\left(\frac{\lambda}{n}\right)^{-1 / 2 q}$. We obtain

$$
\begin{aligned}
& \alpha_{1}=\sum_{i, j} h_{i j}^{4} \sim \frac{1}{n^{2}\left(\frac{\lambda}{n}\right)^{4 / q} K_{q}^{16 q-8}}=o\left(\sigma^{4}(n)\right) . \\
& \alpha_{2}=\sum_{i, j, k} h_{i j}^{2} h_{i k}^{2}=\sum_{i, j} h_{i j}^{2}\left(h_{i i}^{(2)}-h_{i i}^{2}-h_{j j}^{2}\right) \sim \sum_{i, j} h_{i j}^{2} h_{i i}^{(2)}=o\left(\sigma^{4}(n)\right) . \\
& \alpha_{3}=\sum_{i, j, k, l} h_{i j} h_{i k} h_{l j} h_{l k}=\sum_{k, j}\left(h_{j k}^{(2)}-h_{j j} h_{j k}-h_{k j} h_{k k}\right)^{2}-\alpha_{2}=o\left(\sigma^{4}(n)\right) .
\end{aligned}
$$

A direct application of Lemma 3 finishes the proof of Theorem 2.

S3 Proof of Theorem 3 and its remarks

Under the alternative hypothesis, we obtain

$$
\begin{aligned}
T_{n}^{*} & =\left(\boldsymbol{Y}-\boldsymbol{\mu}_{n}\right)^{T} \boldsymbol{H}_{n}^{2}\left(\boldsymbol{Y}-\boldsymbol{\mu}_{n}\right)=T_{n}+\boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\mu}_{n}-2 \boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{Y} \\
& =T_{n}-\boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\mu}_{n}-2 \boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\epsilon}_{n}
\end{aligned}
$$

therefore

$$
T_{n}=T_{n}^{*}+\boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\mu}_{n}+2 \boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\epsilon}_{n}
$$

Note that

$$
\begin{aligned}
\frac{T_{n}-\sigma^{2} \operatorname{trace}\left(\boldsymbol{H}_{n}^{2}\right)}{\sigma^{2}\left\{2 \operatorname{trace}\left(\boldsymbol{H}_{n}^{4}\right)\right\}^{1 / 2}} & =\frac{T_{n}^{*}-\sigma^{2} \operatorname{trace}\left(\boldsymbol{H}_{n}^{2}\right)+\boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\mu}_{n}+2 \boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\epsilon}_{n}}{\sigma^{2}\left\{2 \operatorname{trace}\left(\boldsymbol{H}_{n}^{4}\right)\right\}^{1 / 2}} \\
& =\frac{T_{n}^{*}-\sigma^{2} \operatorname{trace}\left(\boldsymbol{H}_{n}^{2}\right)}{\sigma^{2}\left\{2 \operatorname{trace}\left(\boldsymbol{H}_{n}^{4}\right)\right\}^{1 / 2}}+\frac{\boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\mu}_{n}}{\sigma^{2}\left\{2 \operatorname{trace}\left(\boldsymbol{H}_{n}^{4}\right)\right\}^{1 / 2}}+\frac{2 \boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\epsilon}_{n}}{\sigma^{2}\left\{2 \operatorname{trace}\left(\boldsymbol{H}_{n}^{4}\right)\right\}^{1 / 2}} \\
& \triangleq s_{n 1}+s_{n 2}+s_{n 3} .
\end{aligned}
$$

From the proof of Theorem 1, we obtain $s_{n 1} \rightarrow^{d} N(0,1)$. In addition, it is straightforward that
$\operatorname{var}\left(s_{n 3}\right)=\operatorname{var}\left(\boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\epsilon}_{n}\right)=E\left(\boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\epsilon}_{n} \boldsymbol{\epsilon}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\mu}_{n}\right)=\boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} E\left(\boldsymbol{\epsilon}_{n} \boldsymbol{\epsilon}_{n}^{T}\right) \boldsymbol{H}_{n}^{2} \boldsymbol{\mu}_{n}=\sigma^{2} \boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{4} \boldsymbol{\mu}_{n}$.
Since

$$
\frac{\sigma^{2} \boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{4} \boldsymbol{\mu}_{n}}{\left\{\sigma^{2} \boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\mu}_{n}\right\}^{2}} \rightarrow 0
$$

by Chebyshev's inequality we obtain $s_{n 3} / s_{n 2} \rightarrow^{P} 0$. Further notice that

$$
\lambda_{\min }\left(\boldsymbol{H}_{n}^{2}\right) \boldsymbol{\mu}_{n}^{T} \boldsymbol{\mu}_{n} \leq \boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\mu}_{n} \leq \lambda_{\max }\left(\boldsymbol{H}_{n}^{2}\right) \boldsymbol{\mu}_{n}^{T} \boldsymbol{\mu}_{n}
$$

where $\lambda_{\min }(\boldsymbol{M})$ and $\lambda_{\max }(\boldsymbol{M})$ denote the smallest and largest eigenvalue of the matrix \boldsymbol{M}, and

$$
\frac{1}{n} \boldsymbol{\mu}_{n}^{T} \boldsymbol{\mu}_{n}=\frac{1}{n}\left\|\boldsymbol{\mu}_{n}\right\|^{2}=\frac{1}{n} \sum_{i=1}^{n} f^{2}\left(u_{i}\right)=E\left[f^{2}\left(u_{1}\right)\right]+o(1)=\|f\|_{u}^{2}+o(1)
$$

From $\lambda_{\max }\left(\boldsymbol{H}_{n}^{2}\right)=1$ and $\lambda_{\min }\left(\boldsymbol{H}_{n}^{2}\right)=\frac{1}{\left(1+K_{q}^{2 q}\right)^{2}}$, we obtain $\boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\mu}_{n}=O(n)$. To obtain detectable rates under local alternatives, note that for $K_{q}=o(1)$, we have

$$
\frac{\boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\mu}_{n}}{\left\{2 \operatorname{trace}\left(\boldsymbol{H}_{n}^{4}\right)\right\}^{1 / 2}}=O\left(\frac{n}{K^{1 / 2}}\right)
$$

and for $K_{q}=O(1)$ or $K_{q} \rightarrow \infty$, we obtain

$$
\begin{equation*}
\frac{\boldsymbol{\mu}_{n}^{T} \boldsymbol{H}_{n}^{2} \boldsymbol{\mu}_{n}}{\left\{2 \operatorname{trace}\left(\boldsymbol{H}_{n}^{4}\right)\right\}^{1 / 2}}=O\left(\frac{n}{\left(\frac{\lambda}{n}\right)^{-\frac{1}{4 q}}}\right) \tag{S3.1}
\end{equation*}
$$

To examine the optimal rate of K and λ, note that

$$
\frac{1}{n} \boldsymbol{\mu}_{n}^{\mathrm{T}} \boldsymbol{H}_{n}^{2} \boldsymbol{\mu}_{n}=\frac{1}{n}\left(E \widehat{\boldsymbol{f}_{n}}\right)^{\mathrm{T}} E \widehat{\boldsymbol{f}_{n}}
$$

Theorem 2 in Claeskens et al. (2009) and Theorem 1 in Chen and Wang (2011) gives convergence rate of $E\left[\widehat{f}\left(u_{i}\right)\right]$. Therefore when $K_{q}=o(1)$ we obtain

$$
\frac{1}{n} \boldsymbol{\mu}_{n}^{\mathrm{T}} \boldsymbol{H}_{n}^{2} \boldsymbol{\mu}_{n}=O\left(\frac{\lambda^{2} K^{2 q}}{n^{2}}\right)+O\left(\frac{1}{K^{2(p+1)}}\right)+O\left(\|f\|_{u}^{2}\right)
$$

In this case, local alternatives are detectable at the rate $h(n)=1 / \sqrt{n K^{-1 / 2}}$. Therefore at these detectable local alternatives denoted by f^{*}, we have $\left\|f^{*}\right\|^{2}=O\left(h^{2}(n)\right)=$ $1 /\left(n K^{-1 / 2}\right)$. The optimal rate for K and λ is obtained from

$$
h^{2}(n)=\frac{1}{K^{2(p+1)}}, \quad \text { and } \quad h^{2}(n) \geq \frac{\lambda^{2} K^{2 q}}{n^{2}}
$$

which implies

$$
K=O\left(n^{\frac{2}{4 p+5}}\right), \text { and } \lambda=O\left(n^{\nu}\right) \quad \text { for } \quad \nu \leq \frac{2 p-2 q+3}{4 p+5}
$$

Similarly, for $K_{q}=O(1)$ we obtain

$$
\frac{1}{n} \boldsymbol{\mu}_{n}^{\mathrm{T}} \boldsymbol{H}_{n}^{2} \boldsymbol{\mu}_{n}=O\left(\frac{\lambda}{n}\right)+O\left(\frac{1}{K^{2(p+1)}}\right)+O\left(\|f\|^{2}\right)
$$

and the local alternatives are detectable at the rate $g(n)=\left\{n(\lambda / n)^{1 / 4 q}\right\}^{-1 / 2}$. Therefore the optimal rate of K and λ for testing is obtained from

$$
g^{2}(n)=\frac{\lambda}{n}, \text { and } g^{2}(n) \geq \frac{1}{K^{2(p+1)}}
$$

which implies

$$
\lambda=O\left(n^{\frac{1}{4 q+1}}\right), \text { and } K=O\left(n^{\nu}\right) \text { for } \nu \geq \frac{2 q}{(4 q+1)(p+1)} .
$$

Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY 10016, U.S.A.

E-mail: huaihou.chen@nyumc.org
Department of Biostatistics, Columbia University, New York, NY 10032, U.S.A.
E-mail: yw2016@columbia.edu
Department of Statistics and The Methodology Center, The Pennsylvania State University, University Park, Pennsylvania, 16802 USA.

E-mail: rzli@psu.edu
School of Social Work, Columbia University, New York, NY 10027, U.S.A.
E-mail: ks2394@columbia.edu

