ROTATION SAMPLING FOR FUNCTIONAL DATA

David Degras

DePaul University

Supplementary Material

S1 Proof of Proposition 1

It suffices to prove the proposition at each replacement time $\tau_{r}, r=0, \ldots, m$. To do so, we proceed by induction on r. For $r=0$, the property is true by definition of SRSWOR. Assume that the property holds at rank $(r-1)$ for some $0<r<m$. Fix the stratum U_{h} and consider a subset $D \subset U_{h}$ of size $n_{h}\left(\tau_{r}\right)$. In order to establish the property at rank r, we must show that

$$
\begin{equation*}
P\left(s_{h}\left(\tau_{r}\right)=D\right)=\binom{N_{h}}{n_{h}\left(\tau_{r}\right)}^{-1} \tag{S1.1}
\end{equation*}
$$

By the total probability formula and the induction assumption,

$$
\begin{align*}
P\left(s_{h}\left(\tau_{r}\right)=D\right)= & \sum_{\substack{D^{\prime} \subset U_{h} \\
\#\left(D^{\prime}\right)=n_{h}\left(\tau_{r-1}\right)}} P\left(s_{h}\left(\tau_{r}\right)=D \mid s_{h}\left(\tau_{r-1}\right)=D^{\prime}\right) P\left(s_{h}\left(\tau_{r-1}\right)=D^{\prime}\right) \\
= & \binom{N_{h}}{n_{h}\left(\tau_{r-1}\right)}^{-1} \sum_{\substack{D^{\prime} \subset U_{h} \\
\#\left(D^{\prime}\right)=n_{h}\left(\tau_{r-1}\right)}} P\left(s_{h}\left(\tau_{r}\right)=D \mid s_{h}\left(\tau_{r-1}\right)=D^{\prime}\right) \tag{S1.2}
\end{align*}
$$

We seek the subsets $D^{\prime} \subset U_{h}$ of size $n_{h}\left(\tau_{r-1}\right)$ such that $P\left(s_{h}\left(\tau_{r}\right)=D \mid s_{h}\left(\tau_{r-1}\right)=D^{\prime}\right)>$ 0 . Let D^{\prime} be such a subset and let $k=\#\left(D \cap D^{\prime}\right)$. For the sample $s_{h}\left(\tau_{r-1}\right)=D^{\prime}$ to transform into $s_{h}\left(\tau_{r}\right)=D$, the $\left(n_{h}\left(\tau_{r-1}\right)-k\right)$ units in $D^{\prime} \backslash D$ must be removed from $s_{h}\left(\tau_{r-1}\right)$ and the $\left(n_{h}\left(\tau_{r}\right)-k\right)$ units in $D \backslash D^{\prime}$ must be added to $s_{h}\left(\tau_{r-1}\right)$. This entails that $k=\left(1-\alpha_{h}\right) n_{h}\left(\tau_{r-1}\right)$. Reciprocally, any subset $D^{\prime} \subset U_{h}$ of size $n_{h}\left(\tau_{r-1}\right)$ verifying the condition $\#\left(D \cap D^{\prime}\right)=\left(1-\alpha_{h}\right) n_{h}\left(\tau_{r-1}\right)$ can be transformed in D with the above operations. This condition is thus necessary and sufficient and the number $d_{h}\left(\tau_{r}\right)$ of subsets $D^{\prime} \subset U_{h}$ of size $n_{h}\left(\tau_{r-1}\right)$ satisfying it is

$$
\begin{equation*}
d_{h}\left(\tau_{r}\right)=\binom{n_{h}\left(\tau_{r}\right)}{\left(1-\alpha_{h}\right) n_{h}\left(\tau_{r-1}\right)}\binom{N_{h}-n_{h}\left(\tau_{r}\right)}{n_{h}\left(\tau_{r-1}\right)-\left(1-\alpha_{h}\right) n_{h}\left(\tau_{r-1}\right)} \tag{S1.3}
\end{equation*}
$$

where the first factor accounts for the possible choices of the $\left(1-\alpha_{h}\right) n_{h}\left(\tau_{r-1}\right)$ common elements between D and D^{\prime} and the second factor accounts for the possible choices of the $\left(n_{h}\left(\tau_{r}\right)-\left(1-\alpha_{h}\right) n_{h}\left(\tau_{r-1}\right)\right)$ remaining elements of D^{\prime} in $\left.U_{h} \backslash D\right)$.

For each of the previous subsets, the properties of SRSWOR imply that
$P\left(s_{h}\left(\tau_{r}\right)=D \mid s_{h}\left(\tau_{r-1}\right)=D^{\prime}\right)=\left[\binom{N_{h}-n_{h}\left(\tau_{r-1}\right)}{n_{h}\left(\tau_{r}\right)-\left(1-\alpha_{h}\right) n_{h}\left(\tau_{r-1}\right)}\binom{n_{h}\left(\tau_{r-1}\right)}{\alpha_{h} n_{h}\left(\tau_{r-1}\right)}\right]^{-1}$.
Plugging (S1.3)-(S1.4) in (S1.2), one deduces (S1.1), which completes the induction.

S2 Proof of Lemma 1

Let $D_{0}, \ldots, D_{m} \subset D$. Fix $r \in\{1, \ldots, m\}$. We will establish that

$$
\begin{align*}
& P\left(s_{h}\left(\tau_{r}\right) \cap D=D_{r} \mid s_{h}\left(\tau_{r-1}\right) \cap D=D_{r-1}, \ldots, s_{h}\left(\tau_{0}\right) \cap D=D_{0}\right) \\
& \quad=P\left(s_{h}\left(\tau_{r}\right) \cap D=D_{r} \mid s_{h}\left(\tau_{r-1}\right) \cap D=D_{r-1}\right) \tag{S2.1}
\end{align*}
$$

For $1 \leq i \leq r$, we express $\left\{s_{h}\left(\tau_{i}\right) \cap D=D_{i}\right\}$ more conveniently as $\left\{s_{h}\left(\tau_{i}\right) \in A_{i}\right\}$, where $A_{i}=\left\{a_{i} \in \mathcal{P}\left(U_{h}\right): \# a_{i}=n_{h}\left(\tau_{i}\right), a_{i} \supset D_{i}\right\} . \quad\left(\mathcal{P}\left(U_{h}\right)\right.$ is the set of all subsets of U_{h}). We denote by a the generic element $\left(a_{r-1}, \ldots, a_{0}\right) \in A_{r-1} \times \cdots \times A_{0}$. Let $A=\left\{\mathbf{a} \in A_{r-1} \times \cdots \times A_{0}: P(\mathbf{a})>0\right\}$. The Markov property of $\left\{s_{h}\left(\tau_{0}\right), \ldots, s_{h}\left(\tau_{m}\right)\right\}$ yields

$$
\begin{align*}
& P\left(s_{h}\left(\tau_{r}\right) \in A_{r} \mid s_{h}\left(\tau_{r-1}\right) \in A_{r-1}, \ldots, s_{h}\left(\tau_{0}\right) \in A_{0}\right) \\
& =\frac{\sum_{\mathbf{a} \in A} P\left(s_{h}\left(\tau_{r}\right) \in A_{r} \mid s_{h}\left(\tau_{r-1}\right)=a_{r-1}\right) P\left(s_{h}\left(\tau_{r-1}\right)=a_{r-1}, \ldots, s_{h}\left(\tau_{0}\right)=a_{0}\right)}{\sum_{\mathbf{a} \in A} P\left(s_{h}\left(\tau_{r-1}\right)=a_{r-1}, \ldots, s_{h}\left(\tau_{0}\right)=a_{0}\right)} . \tag{S2.2}
\end{align*}
$$

Invoking again the Markov property, we obtain that

$$
\begin{align*}
& P\left(s_{h}\left(\tau_{r-1}\right)=a_{r-1}, \ldots, s_{h}\left(\tau_{0}\right)=a_{0}\right) \\
& \quad=P\left(s_{h}\left(\tau_{r-1}\right)=a_{r-1} \mid s_{h}\left(\tau_{r-2}\right)=a_{r-2}\right) \times \cdots \tag{S2.3}\\
& \quad \times P\left(s_{h}\left(\tau_{1}\right)=a_{1} \mid s_{h}\left(\tau_{0}\right)=a_{0}\right) \times P\left(s_{h}\left(\tau_{0}\right)=a_{0}\right)
\end{align*}
$$

for all $\mathbf{a} \in A$.
Equation (S1.4) and the properties of SRSWOR show that (S2.3) only depends on $\alpha_{h}, n_{h}\left(\tau_{0}\right), \ldots, n_{h}\left(\tau_{r}\right)$ and N_{h}. As a consequence, (S2.2) rewrites as

$$
\begin{align*}
P\left(s_{h}\left(\tau_{r}\right) \in\right. & \left.A_{r} \mid s_{h}\left(\tau_{r-1}\right) \in A_{r-1}, \ldots, s_{h}\left(\tau_{0}\right) \in A_{0}\right) \\
& =\frac{1}{\# A} \sum_{\mathbf{a} \in A} P\left(s_{h}\left(\tau_{r}\right) \in A_{r} \mid s_{h}\left(\tau_{r-1}\right)=a_{r-1}\right) \tag{S2.4}
\end{align*}
$$

Each collection A_{i} describes the value of the sample $s_{h}\left(\tau_{i}\right)$ in D, namely D_{i}, and the unspecified possible values of $s_{h}\left(\tau_{i}\right)$ outside of D. In view of Proposition 1 , it is easily seen that the conditional probability distribution of $s_{h}\left(\tau_{r-1}\right) \backslash D$ given that $s_{h}\left(\tau_{r-1}\right) \cap D=D_{r-1}$ coincides with the SRSWOR of $n_{h}\left(\tau_{r-1}\right)-d_{r-1}$ units in $U_{h} \backslash D$. A combinatorial consequence is that

$$
\begin{equation*}
\#\left\{\left(a_{r-2}, \ldots, a_{0}\right) \in A_{r-2} \times \ldots \times A_{0}:\left(a_{r-1}, \ldots, a_{0}\right) \in A\right\}=\frac{\# A}{\# A_{r-1}} \tag{S2.5}
\end{equation*}
$$

for all $a_{r-1} \in A_{r-1}$. By following the proof of Proposition 1, one could explicitly find $\left(\# A / \# A_{r-1}\right)$ in terms of α_{h}, N_{h} and the $n_{h}\left(\tau_{i}\right), d_{i}, \#\left(D_{i} \cap D_{i+1}\right), 0 \leq i \leq r-1$.

Combining (S2.4) and (S2.5), we finally obtain

$$
\begin{aligned}
& P\left(s_{h}\left(\tau_{r}\right) \in A_{r} \mid s_{h}\left(\tau_{r-1}\right) \in A_{r-1}, \ldots, s_{h}\left(\tau_{0}\right) \in A_{0}\right) \\
& \quad=\frac{1}{\# A_{r-1}} \sum_{a_{r-1} \in A_{r-1}} P\left(s_{h}\left(\tau_{r}\right) \in A_{r} \mid s_{h}\left(\tau_{r-1}\right)=a_{r-1}\right) \\
& \quad=P\left(s_{h}\left(\tau_{r}\right) \in A_{r} \mid s_{h}\left(\tau_{r-1}\right) \in A_{r-1}\right) .
\end{aligned}
$$

S3 Proof of Proposition 2

We decompose the studied sum as $\sum_{\ell=1}^{4} A_{\ell}\left(t, t^{\prime}\right)$, where

$$
A_{\ell}\left(t, t^{\prime}\right)=\sum_{\substack{i, j, k, l \in U_{h} \\ \mathcal{C}_{i j k l}=\ell}} \mathbb{E}\left(I_{i}(t) I_{j}(t) I_{k}\left(t^{\prime}\right) I_{l}\left(t^{\prime}\right)\right) \tilde{X}_{i}(t) \tilde{X}_{j}(t) \tilde{X}_{k}\left(t^{\prime}\right) \tilde{X}_{l}\left(t^{\prime}\right)
$$

and $\mathcal{C}_{i j k l}=\#\{i, j, k, l\}$. Hereafter, we compute $\mathbb{E}\left(I_{i}(t) I_{j}(t) I_{k}\left(t^{\prime}\right) I_{l}\left(t^{\prime}\right)\right)$ using the properties of SRSWOR and we compute sums involving $\tilde{X}_{i}(t) \tilde{X}_{j}(t) \tilde{X}_{k}\left(t^{\prime}\right) \tilde{X}_{l}\left(t^{\prime}\right)$ using the identity $\sum_{k \in U_{h}} \tilde{X}_{k}(t)=0$. Let $i^{*}, j^{*}, j^{*}, l^{*}$ be four distinct units in U_{h}.

We begin with the straightforward calculation of $A_{1}\left(t, t^{\prime}\right)$:

$$
\begin{equation*}
A_{1}\left(t, t^{\prime}\right)=\mathbb{E}\left(I_{i^{*}}(t) I_{i^{*}}\left(t^{\prime}\right)\right) \sum_{k} \tilde{X}_{k}^{2}(t) \tilde{X}_{k}^{2}\left(t^{\prime}\right) \tag{S3.1}
\end{equation*}
$$

The term $A_{2}\left(t, t^{\prime}\right)$ can be expressed as

$$
\begin{aligned}
A_{2}\left(t, t^{\prime}\right)= & \mathbb{E}\left(I_{i^{*}}(t) I_{k^{*}}\left(t^{\prime}\right)\right) \sum_{i \neq k} \tilde{X}_{i}^{2}(t) \tilde{X}_{k}^{2}\left(t^{\prime}\right) \\
& +2 \mathbb{E}\left(I_{i^{*}}(t) I_{i^{*}}\left(t^{\prime}\right) I_{k^{*}}(t) I_{k^{*}}\left(t^{\prime}\right)\right) \sum_{i \neq l} \tilde{X}_{i}(t) \tilde{X}_{i}\left(t^{\prime}\right) \tilde{X}_{l}(t) \tilde{X}_{l}\left(t^{\prime}\right) \\
& +2 \mathbb{E}\left(I_{i^{*}}(t) I_{i^{*}}\left(t^{\prime}\right) I_{k^{*}}\left(t^{\prime}\right)\right) \sum_{i \neq k} \tilde{X}_{i}^{2}(t) \tilde{X}_{i}\left(t^{\prime}\right) \tilde{X}_{k}\left(t^{\prime}\right) \\
& +2 \mathbb{E}\left(I_{i^{*}}(t) I_{k^{*}}(t) I_{k^{*}}\left(t^{\prime}\right)\right) \sum_{i \neq k} \tilde{X}_{i}(t) \tilde{X}_{k}(t) \tilde{X}_{k}^{2}\left(t^{\prime}\right)
\end{aligned}
$$

that is,

$$
\begin{align*}
A_{2}\left(t, t^{\prime}\right) & =\mathbb{E}\left(I_{i^{*}}(t) I_{k^{*}}\left(t^{\prime}\right)\right)\left[\left(N_{h}-1\right)^{2} \gamma_{h}(t, t) \gamma_{h}\left(t^{\prime}, t^{\prime}\right)-\sum_{k \in U_{h}} \tilde{X}_{k}^{2}(t) \tilde{X}_{k}^{2}\left(t^{\prime}\right)\right] \\
& +2 \mathbb{E}\left(I_{i^{*}}(t) I_{i^{*}}\left(t^{\prime}\right) I_{k^{*}}(t) I_{k^{*}}\left(t^{\prime}\right)\right)\left[\left(N_{h}-1\right)^{2} \gamma_{h}^{2}\left(t, t^{\prime}\right)-\sum_{k \in U_{h}} \tilde{X}_{k}^{2}(t) \tilde{X}_{k}^{2}\left(t^{\prime}\right)\right] \tag{S3.2}\\
& -2\left[\mathbb{E}\left(I_{i^{*}}(t) I_{i^{*}}\left(t^{\prime}\right) I_{k^{*}}\left(t^{\prime}\right)\right)+\mathbb{E}\left(I_{i^{*}}(t) I_{k^{*}}(t) I_{k^{*}}\left(t^{\prime}\right)\right)\right] \sum_{k \in U_{h}} \tilde{X}_{k}^{2}(t) \tilde{X}_{k}^{2}\left(t^{\prime}\right) .
\end{align*}
$$

Next, we have

$$
\begin{aligned}
A_{3}\left(t, t^{\prime}\right)= & \mathbb{E}\left(I_{i^{*}}(t) I_{j^{*}}(t) I_{k^{*}}\left(t^{\prime}\right)\right) \sum_{i \neq j \neq k} \tilde{X}_{i}(t) \tilde{X}_{j}(t) \tilde{X}_{k}^{2}\left(t^{\prime}\right) \\
& +\mathbb{E}\left(I_{i^{*}}(t) I_{k^{*}}\left(t^{\prime}\right) I_{l^{*}}\left(t^{\prime}\right)\right) \sum_{i \neq k \neq l} \tilde{X}_{i}^{2}(t) \tilde{X}_{k}\left(t^{\prime}\right) \tilde{X}_{l}\left(t^{\prime}\right) \\
& +4 \mathbb{E}\left(I_{i^{*}}(t) I_{i^{*}}\left(t^{\prime}\right) I_{j^{*}}(t) I_{k^{*}}\left(t^{\prime}\right)\right) \sum_{i \neq j \neq k} \tilde{X}_{i^{*}}(t) \tilde{X}_{i^{*}}(t) \tilde{X}_{j}(t) \tilde{X}_{k}\left(t^{\prime}\right)
\end{aligned}
$$

and a further expansion yields

$$
\begin{align*}
A_{3}\left(t, t^{\prime}\right)= & {\left[\mathbb{E}\left(I_{i^{*}}(t) I_{j^{*}}(t) I_{k^{*}}\left(t^{\prime}\right)\right)+\mathbb{E}\left(I_{i^{*}}(t) I_{k^{*}}\left(t^{\prime}\right) I_{l^{*}}\left(t^{\prime}\right)\right)\right] } \\
& \times\left[-\left(N_{h}-1\right)^{2} \gamma_{h}(t, t) \gamma_{h}\left(t^{\prime}, t^{\prime}\right)+2 \sum_{k \in U_{h}} \tilde{X}_{k}^{2}(t) \tilde{X}_{k}^{2}\left(t^{\prime}\right)\right] \tag{S3.3}\\
+ & 4 \mathbb{E}\left(I_{i^{*}}(t) I_{i^{*}}\left(t^{\prime}\right) I_{j^{*}}(t) I_{k^{*}}\left(t^{\prime}\right)\right) \\
& \times\left[-\left(N_{h}-1\right)^{2} \gamma_{h}^{2}\left(t, t^{\prime}\right)+2 \sum_{k \in U_{h}} \tilde{X}_{k}^{2}(t) \tilde{X}_{k}^{2}\left(t^{\prime}\right)\right] .
\end{align*}
$$

To compute $A_{4}\left(t, t^{\prime}\right)$, recall that $\sum_{i, j, k, l \in U_{h}} \tilde{X}_{i}(t) \tilde{X}_{j}(t) \tilde{X}_{k}\left(t^{\prime}\right) \tilde{X}_{l}\left(t^{\prime}\right)=0$ and use the decomposition

$$
\sum_{i, j, k, l \in U_{h}} \tilde{X}_{i}(t) \tilde{X}_{j}(t) \tilde{X}_{k}\left(t^{\prime}\right) \tilde{X}_{l}\left(t^{\prime}\right)=\sum_{\ell=1}^{4} \sum_{i, j, k, l \in U_{h}} \tilde{X}_{i j k l}(t) \tilde{X}_{j}(t) \tilde{X}_{k}\left(t^{\prime}\right) \tilde{X}_{l}\left(t^{\prime}\right)
$$

together with the expressions of $A_{1}\left(t, t^{\prime}\right), A_{2}\left(t, t^{\prime}\right), A_{3}\left(t, t^{\prime}\right)$ to obtain

$$
\begin{align*}
& A_{4}\left(t, t^{\prime}\right)=\mathbb{E}\left(I_{i^{*}}(t) I_{j^{*}}(t) I_{k^{*}}\left(t^{\prime}\right) I_{l^{*}}\left(t^{\prime}\right)\right) \times \\
& {\left[\left(N_{h}-1\right)^{2} \gamma_{h}(t, t) \gamma_{h}\left(t^{\prime}, t^{\prime}\right)+2\left(N_{h}-1\right)^{2} \gamma_{h}^{2}\left(t, t^{\prime}\right)-6 \sum_{k \in U_{h}} \tilde{X}_{k}^{2}(t) \tilde{X}_{k}^{2}\left(t^{\prime}\right)\right] .} \tag{S3.4}
\end{align*}
$$

The proof is completed by gathering (S3.1)-(S3.4) and observing that all terms involving $\sum_{k \in U_{h}} \tilde{X}_{k}^{2}(t) \tilde{X}_{k}^{2}\left(t^{\prime}\right)$ are of lower order N_{h} thanks to (A1).

