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S1 Proof of Proposition 1

It suffices to prove the proposition at each replacement time τr, r = 0, . . . ,m. To do so,
we proceed by induction on r. For r = 0, the property is true by definition of SRSWOR.
Assume that the property holds at rank (r − 1) for some 0 < r < m. Fix the stratum
Uh and consider a subset D ⊂ Uh of size nh(τr). In order to establish the property at
rank r, we must show that

P (sh(τr) = D) =

(
Nh

nh(τr)

)−1
. (S1.1)

By the total probability formula and the induction assumption,

P (sh(τr) = D) =
∑

D′⊂Uh

#(D′)=nh(τr−1)

P
(
sh(τr) = D

∣∣sh(τr−1) = D′
)
P (sh(τr−1) = D′)

=

(
Nh

nh(τr−1)

)−1 ∑
D′⊂Uh

#(D′)=nh(τr−1)

P
(
sh(τr) = D

∣∣sh(τr−1) = D′
)
. (S1.2)

We seek the subsetsD′ ⊂ Uh of size nh(τr−1) such that P
(
sh(τr) = D

∣∣sh(τr−1) = D′
)
>

0. Let D′ be such a subset and let k = #(D ∩ D′). For the sample sh(τr−1) = D′ to
transform into sh(τr) = D, the (nh(τr−1) − k) units in D′ \ D must be removed from
sh(τr−1) and the (nh(τr) − k) units in D \D′ must be added to sh(τr−1). This entails
that k = (1− αh)nh(τr−1). Reciprocally, any subset D′ ⊂ Uh of size nh(τr−1) verifying
the condition #(D ∩ D′) = (1 − αh)nh(τr−1) can be transformed in D with the above
operations. This condition is thus necessary and sufficient and the number dh(τr) of
subsets D′ ⊂ Uh of size nh(τr−1) satisfying it is

dh(τr) =

(
nh(τr)

(1− αh)nh(τr−1)

)(
Nh − nh(τr)

nh(τr−1)− (1− αh)nh(τr−1)

)
, (S1.3)
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where the first factor accounts for the possible choices of the (1− αh)nh(τr−1) common
elements between D and D′ and the second factor accounts for the possible choices of
the (nh(τr)− (1− αh)nh(τr−1)) remaining elements of D′ in Uh \D).

For each of the previous subsets, the properties of SRSWOR imply that

P
(
sh(τr) = D

∣∣sh(τr−1) = D′
)

=

[(
Nh − nh(τr−1)

nh(τr)− (1− αh)nh(τr−1)

)(
nh(τr−1)

αhnh(τr−1)

)]−1
. (S1.4)

Plugging (S1.3)-(S1.4) in (S1.2), one deduces (S1.1), which completes the induction. �

S2 Proof of Lemma 1

Let D0, . . . , Dm ⊂ D. Fix r ∈ {1, . . . ,m}. We will establish that

P
(
sh(τr) ∩D = Dr

∣∣sh(τr−1) ∩D = Dr−1, . . . , sh(τ0) ∩D = D0

)
= P

(
sh(τr) ∩D = Dr

∣∣sh(τr−1) ∩D = Dr−1
)
.

(S2.1)

For 1 ≤ i ≤ r, we express {sh(τi) ∩ D = Di} more conveniently as {sh(τi) ∈ Ai},
where Ai = {ai ∈ P(Uh) : #ai = nh(τi), ai ⊃ Di}. (P(Uh) is the set of all subsets
of Uh). We denote by a the generic element (ar−1, . . . , a0) ∈ Ar−1 × · · · × A0. Let
A = {a ∈ Ar−1 × · · · × A0 : P (a) > 0}. The Markov property of {sh(τ0), . . . , sh(τm)}
yields

P
(
sh(τr) ∈ Ar

∣∣sh(τr−1) ∈ Ar−1, . . . , sh(τ0) ∈ A0

)
=

∑
a∈A P

(
sh(τr) ∈ Ar

∣∣sh(τr−1) = ar−1
)
P (sh(τr−1) = ar−1, . . . , sh(τ0) = a0)∑

a∈A P (sh(τr−1) = ar−1, . . . , sh(τ0) = a0)
.

(S2.2)

Invoking again the Markov property, we obtain that

P (sh(τr−1) = ar−1, . . . , sh(τ0) = a0)

= P
(
sh(τr−1) = ar−1

∣∣sh(τr−2) = ar−2
)
× · · ·

× P
(
sh(τ1) = a1

∣∣sh(τ0) = a0
)
× P (sh(τ0) = a0)

(S2.3)

for all a ∈ A.

Equation (S1.4) and the properties of SRSWOR show that (S2.3) only depends on
αh, nh(τ0), . . . , nh(τr) and Nh. As a consequence, (S2.2) rewrites as

P
(
sh(τr) ∈ Ar

∣∣sh(τr−1) ∈ Ar−1, . . . , sh(τ0) ∈ A0

)
=

1

#A

∑
a∈A

P
(
sh(τr) ∈ Ar

∣∣sh(τr−1) = ar−1
)
.

(S2.4)
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Each collection Ai describes the value of the sample sh(τi) in D, namely Di, and
the unspecified possible values of sh(τi) outside of D. In view of Proposition 1, it
is easily seen that the conditional probability distribution of sh(τr−1) \ D given that
sh(τr−1) ∩D = Dr−1 coincides with the SRSWOR of nh(τr−1) − dr−1 units in Uh \D.
A combinatorial consequence is that

#
{

(ar−2, . . . , a0) ∈ Ar−2 × . . .×A0 : (ar−1, . . . , a0) ∈ A
}

=
#A

#Ar−1
(S2.5)

for all ar−1 ∈ Ar−1. By following the proof of Proposition 1, one could explicitly find
(#A/#Ar−1) in terms of αh, Nh and the nh(τi), di,#(Di ∩Di+1), 0 ≤ i ≤ r − 1.

Combining (S2.4) and (S2.5), we finally obtain

P
(
sh(τr) ∈ Ar

∣∣sh(τr−1) ∈ Ar−1, . . . , sh(τ0) ∈ A0

)
=

1

#Ar−1

∑
ar−1∈Ar−1

P
(
sh(τr) ∈ Ar

∣∣sh(τr−1) = ar−1
)

= P
(
sh(τr) ∈ Ar

∣∣sh(τr−1) ∈ Ar−1
)
. �

S3 Proof of Proposition 2

We decompose the studied sum as
∑4
`=1A`(t, t

′), where

A`(t, t
′) =

∑
i,j,k,l∈Uh
Cijkl=`

E (Ii(t)Ij(t)Ik(t′)Il(t
′)) X̃i(t)X̃j(t)X̃k(t′)X̃l(t

′)

and Cijkl = #{i, j, k, l}. Hereafter, we compute E (Ii(t)Ij(t)Ik(t′)Il(t
′)) using the prop-

erties of SRSWOR and we compute sums involving X̃i(t)X̃j(t)X̃k(t′)X̃l(t
′) using the

identity
∑
k∈Uh

X̃k(t) = 0. Let i∗, j∗, j∗, l∗ be four distinct units in Uh.

We begin with the straightforward calculation of A1(t, t′):

A1(t, t′) = E (Ii∗(t)Ii∗(t
′))
∑
k

X̃2
k(t)X̃2

k(t′). (S3.1)

The term A2(t, t′) can be expressed as

A2(t, t′) = E (Ii∗(t)Ik∗(t
′))
∑
i6=k

X̃2
i (t)X̃2

k(t′)

+ 2E (Ii∗(t)Ii∗(t
′)Ik∗(t)Ik∗(t

′))
∑
i 6=l

X̃i(t)X̃i(t
′)X̃l(t)X̃l(t

′)

+ 2E (Ii∗(t)Ii∗(t
′)Ik∗(t

′))
∑
i6=k

X̃2
i (t)X̃i(t

′)X̃k(t′)

+ 2E (Ii∗(t)Ik∗(t)Ik∗(t
′))
∑
i6=k

X̃i(t)X̃k(t)X̃2
k(t′),
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that is,

A2(t, t′) = E (Ii∗(t)Ik∗(t
′))

[
(Nh − 1)2γh(t, t)γh(t′, t′)−

∑
k∈Uh

X̃2
k(t)X̃2

k(t′)

]

+ 2E (Ii∗(t)Ii∗(t
′)Ik∗(t)Ik∗(t

′))

[
(Nh − 1)2γ2h(t, t′)−

∑
k∈Uh

X̃2
k(t)X̃2

k(t′)

]
− 2

[
E (Ii∗(t)Ii∗(t

′)Ik∗(t
′)) + E (Ii∗(t)Ik∗(t)Ik∗(t

′))
] ∑
k∈Uh

X̃2
k(t)X̃2

k(t′).

(S3.2)

Next, we have

A3(t, t′) = E (Ii∗(t)Ij∗(t)Ik∗(t
′))

∑
i6=j 6=k

X̃i(t)X̃j(t)X̃
2
k(t′)

+ E (Ii∗(t)Ik∗(t
′)Il∗(t

′))
∑
i6=k 6=l

X̃2
i (t)X̃k(t′)X̃l(t

′)

+ 4E (Ii∗(t)Ii∗(t
′)Ij∗(t)Ik∗(t

′))
∑
i6=j 6=k

X̃i∗(t)X̃i∗(t)X̃j(t)X̃k(t′)

and a further expansion yields

A3(t, t′) =
[
E (Ii∗(t)Ij∗(t)Ik∗(t

′)) + E (Ii∗(t)Ik∗(t
′)Il∗(t

′))
]

×
[
− (Nh − 1)

2
γh(t, t)γh(t′, t′) + 2

∑
k∈Uh

X̃2
k(t)X̃2

k(t′)

]
+ 4E (Ii∗(t)Ii∗(t

′)Ij∗(t)Ik∗(t
′))

×
[
− (Nh − 1)

2
γ2h(t, t′) + 2

∑
k∈Uh

X̃2
k(t)X̃2

k(t′)

]
.

(S3.3)

To compute A4(t, t′), recall that
∑
i,j,k,l∈Uh

X̃i(t)X̃j(t)X̃k(t′)X̃l(t
′) = 0 and use the

decomposition

∑
i,j,k,l∈Uh

X̃i(t)X̃j(t)X̃k(t′)X̃l(t
′) =

4∑
`=1

∑
i,j,k,l∈Uh
Cijkl=`

X̃i(t)X̃j(t)X̃k(t′)X̃l(t
′)

together with the expressions of A1(t, t′), A2(t, t′), A3(t, t′) to obtain

A4(t, t′) = E (Ii∗(t)Ij∗(t)Ik∗(t
′)Il∗(t

′))×[
(Nh − 1)

2
γh(t, t)γh(t′, t′) + 2 (Nh − 1)

2
γ2h(t, t′)− 6

∑
k∈Uh

X̃2
k(t)X̃2

k(t′)

]
.

(S3.4)

The proof is completed by gathering (S3.1)–(S3.4) and observing that all terms involving∑
k∈Uh

X̃2
k(t)X̃2

k(t′) are of lower order Nh thanks to (A1). �


