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S1 Proof of Proposition 1

It suffices to prove the proposition at each replacement time 7,., r =0, ..., m. To do so,
we proceed by induction on r. For r = 0, the property is true by definition of SRSWOR.
Assume that the property holds at rank (r — 1) for some 0 < r < m. Fix the stratum
Uy, and consider a subset D C Uy, of size ny (7). In order to establish the property at
rank 7, we must show that

nh(’TT

P (sp(r,) = D) = ( N )> _1. (S1.1)

By the total probability formula and the induction assumption,

P (sp(r,) =D) = > P (sp(r) = D|sp(r—1) = D') P (sp(7r—1) = D')
D'cU,
#(D")=nn(mr_1)

Ny, )‘1 ,

- > P (sp(1.) = D|sp(1—1) = D'). (S1.2

(nh(nl) Do, (s(7) [o0(7+-2) ). 512
#(D")=np(rr—1)

We seek the subsets D’ C Uy, of size ny (7-—1) such that P (Sh(Tr) = D‘Sh(n,l) = D’) >

0. Let D’ be such a subset and let k = #(D N D’). For the sample s,(7.—1) = D’ to
transform into sp(7.) = D, the (np(7r-1) — k) units in D’ \ D must be removed from
sp(7r—1) and the (ny(7.) — k) units in D \ D" must be added to s;(7.—1). This entails
that k = (1 — ap)np(m-—1). Reciprocally, any subset D’ C U}, of size np(7.—1) verifying
the condition #(D N D’) = (1 — ap)np(7-—1) can be transformed in D with the above
operations. This condition is thus necessary and sufficient and the number dp(7;.) of
subsets D' C U}, of size ny(7.—1) satisfying it is
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where the first factor accounts for the possible choices of the (1 — ap)np(7-—1) common
elements between D and D’ and the second factor accounts for the possible choices of
the (np(7) — (1 — ap)np(7-—1)) remaining elements of D’ in Uj, \ D).

For each of the previous subsets, the properties of SRSWOR imply that

Plon) = Dlsntrny =) = [(, Ml ) () )T g

np(7) — (L — an)np(tr—1) ) \anna(rr—1

Plugging (S1.3)-(S1.4) in (S1.2), one deduces (S1.1), which completes the induction. O

S2 Proof of Lemma 1

Let Dg,...,D,, C D. Fixr € {1,...,m}. We will establish that

P (Sh(TT) NnD= DT|Sh(TT,1) ND=D,_q,.. .,Sh(To) NnD= DO)

— P (sn(r,) N D = D,|sp(7,1) N D =D, _1). (52.1)

For 1 < i < r, we express {sp(7;) N D = D,} more conveniently as {sp(7;) € 4;},
where A; = {a; € P(Uy) : #a; = np(1:),a; O D;}. (P(Un) is the set of all subsets
of Up). We denote by a the generic element (a,_1,...,a9) € Ar—1 X --- X Ag. Let
A={ae A1 x---xAy: P(a) > 0}. The Markov property of {sn(70),--.,sn(Tm)}
yields

P (Sh(TT) S AT|Sh(TT,1) S AT,17.. .,Sh(T()) S A())

— ZaGAP (Sh(Tr) S Ar’tﬁh(Tr—l) = ClT,1> P(Sh<7-r71) = Qp_1,-- .,Sh(T()) = a0>
ZaeA P (Sh('rrfl) = QAp_1y---, Sh(’ro) = ao) :

(52.2)
Invoking again the Markov property, we obtain that
P (Sh(Trfl) = Qp_1,..., Sh(TO) = ao)
=P (Sh(Tr—l) = ar_llsh(TT_Q) = ar—2) X e (823)

x P (sp(71) = a1|sn(10) = ag) x P (sn(70) = ao)
for all a € A.

Equation (S1.4) and the properties of SRSWOR show that (S2.3) only depends on
an, np(70)s - .-, np(7r) and Njp. As a consequence, (52.2) rewrites as

P (sp(ry) € AT’sh(Tr,l) €A _1,...,sn(10) € Ao)

_ # 3" P (sn(r) € Adlsn(rro1) = ar-1) -

acA

(52.4)
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Each collection A; describes the value of the sample sp,(7;) in D, namely D;, and
the unspecified possible values of s,(7;) outside of D. In view of Proposition 1, i
is easily seen that the conditional probability distribution of s;(7.—1) \ D given that
sp(7r—1) N D = D,_1 coincides with the SRSWOR of ny(7,—1) — d,—1 units in Uy, \ D.
A combinatorial consequence is that

#{(GT,Q,. . .,ao) €A, _9X...X AO : (ar,l, .. .,ao) € A} = #ﬁ‘A_l (825)

for all a,_; € A,_1. By following the proof of Proposition 1, one could explicitly find
(#A/#A,_1) in terms of ap, Nj and the np(73),di, #(D; N D), 0 < <r—1.

Combining (52.4) and (S2.5), we finally obtain
P (Sh(TT) S Ar|5h(7_r—1) S Ar—l, ey Sh(To) S Ao)

= #Al » Z P (Sh(Tr) S Ar‘sh(rr_l) = ar—l)

ar_1€A-_1

=P (Sh(Tr) €A, Sh(’Trfl) S Arfl) .

S3 Proof of Proposition 2

We decompose the studied sum as 22}21 Ay(t,t"), where

At )= > EB(LOL0 L)L) Xi(t) X; () Xk(t) X ()
1,7,k l€UR
Cijri=~

and Cij = #{i, j, k,1}. Hereafter, we compute E (1;(¢)1;(t)Ix(t')i(t")) using the prop-
erties of SRSWOR and we compute sums involving Xi(t)X;(t) Xk (t') X (t') using the
identity >, cp;, Xi(t) = 0. Let 7%, 5%, j*,1* be four distinct units in Up,.

We begin with the straightforward calculation of A; (¢,¢'):

Ay (t,t) =E (I ()T (') D XR(0)XR(H). (S3.1)
k

The term As(t,t') can be expressed as

Ag(t,t') = E (I () I (') > X7 (1) XR(t
i#k
+ 2B (1= () - () T (8) T () ) Xa() X (8) X (8) X ()
17l
+ 2R (I (81, ) X7 ()X () Xi(t)
i#£k

+ 2F (I () T () Ir (1)) D X () X (1) XZ (1),

i#k

S3
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that is,

Ag(t,t') = E (i« (t) [ (1)) [(Nh — 1%y, (t, )y (', 1) Z XE) X3t ]

keUp,
1 2F (L= () I () T () T () l(Nh 12 - > XR)XR(H) ] (53.2)
keUy,
=2 [E (L= () Li= (¢ ) I~ (t')) + E (Li= (8) I IR0
keUy,

Next, we have

Ag(t,1") = E (I (01 (1) Ti- (1) D Xa(0) X (0 XF (1)

i#j#k
+E (£ () ) > X)Xk ()
i#k#£l
FAE (L ()T () L= () I (1) > Xw (8) X () X (8) X (¢)
i#j#k

and a further expansion yields
A3(t,') = [E (Li- () L+ () L= (V') + E (L () I () 1+ (1)) ]

< | = (V= D2l () +2 X,%Wﬁ(t’)]
' , , hetn (3.3)
+AE (L (8) L= () L= () I ()

<[ - @1 2 T R0R0)|
- keUy,

To compute A4(t,t'), recall that 3=, .}, cp, Xi(1)X; (1) X5 (") Xy (t') = 0 and use the
decomposition

Z Xi(t)Xj(t)Xk(t/)Xl(t/):Z Z Xi(t) X (1) X (¢) X (t)

0.5,k LEUR (=11i,j,k,
together with the expressions of A;(t,t'), Aa(t,t'), A3(t, ') to obtain

S3.4
(Nn = D* ()t t) + 2(Np — D97 (6,8) =6 Y X7 (1) . (534)
keUy,

The proof is completed by gathering (S3.1)-(S3.4) and observing that all terms involving
> okev, Xi(t)XZ(t') are of lower order Nj, thanks to (A1). O



