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Lajos Horváth
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Figure 1: Predictor functions Xk (dashed), error functions εk (dotted) and response
functions Yk (solid) from the functional linear model generated by (4.2)–(4.4). The
bandwidth parameter of the regression operator Ψ is b = 0.2 in the left panel and
b = 0.5 in the right panel.

S2 Approximation for partial sums of random vectors

In this section, we provide strong approximations for sums of weakly dependent random
variables which are used in the paper to establish Lemma 5.4, but which may also be of
independent interest.

Theorem S2.1 Let (Yi : i ∈ Z) be an Rd-valued random sequence, such that

Yi = f(εi, εi−1, . . .),
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Figure 2: Predictor functions Xk giving NOx concentration (left) and response functions
Yk giving PM10 concentrations (right), both measured at Völkermarkterstraße.

where (εi : i ∈ Z) is an i.i.d. sequence with values in some arbitrary metric space. We
assume that E[Y0] = 0 and E[|Y0|θ] < ∞ for some θ > 2. (Here and in the sequel |u|
denotes the Euclidean norm of the vector u.) Let (ε∗i : i ∈ Z) be an independent copy of
(εi : i ∈ Z) and define

Y0m = f(ε0, ε−1, . . . , ε−m, ε
∗
−m−1, ε

∗
−m−2, . . .).

If, for some A > 2, (
E
[
|Y0 −Y0m|θ

])1/θ

≤ C0m
−A, (S2.1)

then
Γ =

∑
h∈Z

E[Y0Y
′
h]

converges (coordinatewise) absolutely and (Yi : i ∈ Z) can be redefined on a new prob-
ability space together with a sequence of i.i.d. normal random vectors (N i : i ∈ Z) with
Ni ∼ N(0,Γ), such that ∣∣∣∣ k∑

i=1

Yi −
k∑
i=1

N i

∣∣∣∣ = O
(
k1/2−µ

)
a.s. (S2.2)

The constant µ > 0 depends on A, d and θ.

The proof of Theorem S2.1 requires some auxiliary lemmas.

Lemma S2.1 Let (Yi : i ∈ Z) satisfy the assumption of Theorem 2..1 Set Sk =
∑k
i=1 Yi.

Then E[max1≤k≤n |Sk|θ] ≤ Cθnθ/2. The constant Cθ does not depend on n.

Proof. Let Y0(v), 1 ≤ v ≤ d, be a coordinate of Y0. Then (S2.1) obviously implies that
δθ(m) = (E[|Y0(v) −Y0m(v)|θ])1/θ = O(m−A). Since

∑∞
m=1 δθ(m) < ∞ we infer from

Corollary 1 in Berkes et al. (2011) that

E

[
max

1≤k≤n
|Sk(v)|θ

]
≤ Cθnθ/2.
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Utilizing the inequality

max
1≤k≤n

|Sk|θ ≤ d
d∑
v=1

max
1≤k≤n

|Sk(v)|θ,

the assertion follows. �

For the next lemma we introduce new variables:

Y
(m)
k = f(εk, εk−1, . . . , εk−m, ε

(k)
k−m−1, ε

(k)
k−m−2, . . .),

where for each k ∈ Z the sequences (ε
(k)
i : i ∈ Z) are mutually independent copies of

(εi : i ∈ Z). It follows that the Y
(m)
k have the same marginal distribution as the Yk and

that the (Y
(m)
k : k ∈ Z) are m-dependent.

Lemma S2.2 We work under the conditions of Theorem S2.1. Define

Γ(m)
n =

1

n
Var
(
Y

(m)
1 + · · ·+ Y(m)

n

)
.

Then ∣∣Γ− Γ(m)
n

∣∣
∞ ≤ C1

(
n−1 +m−A+1

)
,

where C1 depends only on E[|Y0|2], C0 and A. Here |M |∞ = max1≤i,j≤dmij for some
matrix M with entries mij.

Proof. We have, for all 1 ≤ v1, v2 ≤ d,∣∣E[Y0(v1)Yi(v2)]
∣∣ =

∣∣E[Y0(v1)
(
Yi(v2)−Y

(i)
i (v2)

)]∣∣
≤
(
E
[
|Y0(v1)|2

])1/2 (
E
[
|Yi(v2)−Y

(i)
i (v2)|2

])1/2

≤
(
E[|Y0|2]

)1/2 (
E
[∣∣Yi −Y

(i)
i

∣∣θ])1/θ

≤ C0

(
E[|Y0|2]

)1/2
i−A.

This shows that the series for Γ is absolutely convergent. Using the strict stationarity
of (Yi : i ∈ Z) we obtain

Γn(v1, v2) =
1

n
Cov

(
Sn(v1),Sn(v2)

)
=
∑
|i|<n

(
1− |i|

n

)
Cov(Y0(v1),Yi(v2)).
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Thus, since A > 2,∣∣Γ(v1, v2)− Γn(v1, v2)
∣∣ ≤ ∣∣∣∣ ∑

|i|≥n

Cov(Y0(v1),Yi(v2))

∣∣∣∣+

∣∣∣∣ ∑
|i|<n

|i|
n

Cov(Y0(v1),Yi(v2))

∣∣∣∣
≤ C0

(
E[|Y0|2]

)1/2( ∑
|i|≥n

|i|−A +
1

n

∑
|i|<n

|i|−A+1

)

≤ C1n
−1,

where the constant C1 depends on C0, A and E[|Y0|2] but not on v1 and v2. Note

that the sequence (Y
(m)
k : k ∈ Z) is also strictly stationary and therefore some routine

calculations imply that, for n ≤ m,∣∣Γn(v1, v2)− Γ(m)
n (v1, v2)

∣∣
≤
∑
|i|<n

(
1− |i|

n

)∣∣Cov(Y0(v1),Yi(v2))− Cov(Y
(m)
0 (v1),Y

(m)
i (v2))

∣∣
≤
∑
|i|<n

2
(

1− |i|
n

) (
E[|Y0|2]

)1/2 (
E
[∣∣Y0 −Y

(m)
0

∣∣2])1/2

≤ 4C0

(
E[|Y0|2]

)1/2
nm−A.

If n > m we have, for i > m, Cov(Y
(m)
0 (v1),Y

(m)
i (v2)) = 0 and |Cov(Y0(v1),Yi(v2))| ≤

C0(E[|Y0|2])1/2i−A. �

The following Lemma is a special case of Theorem 1 in Berkes and Philipp (1978).
It is the crucial ingredient for the construction of the approximating random vectors N i

in (S2.2).

Lemma S2.3 Let (X` : ` ≥ 1) be a sequence of independent Rd-valued random vectors
with characteristic functions f`(u), u ∈ Rd, and let (G` : ` ≥ 1) be a sequence of proba-
bility distributions on Rd with characteristic functions g`(u), u ∈ Rd. Suppose that, for
some nonnegative numbers λ`, δ` and W` ≥ 108d,

|f`(u)− g`(u)| ≤ λ`

for all u with |u| ≤W` and

G`

(
u : |u| > W`/4

)
≤ δ`.

Then without changing its distribution we can redefine the sequence (X` : ` ≥ 1) on a
richer probability space together with a sequence (Y` : ` ≥ 1) of independent random

variables such that Y`
D
= G` and

P
(
|X` −Y`| ≥ α`

)
≤ α` for ` ∈ N,
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where α1 = 1 and

α` = 16dW−1
` logW` + 4λ

1/2
` W d

` + δ` for ` ≥ 2.

The next Lemma is due to von Bahr (1967).

Lemma S2.4 Let (Zi : i ∈ Z) be a sequence of i.i.d. random vectors with E[Z1] = 0
and E[|Z1|θ] < ∞, θ > 2, and Σ = E[Z1Z

′
1]. Further let fn(u) be the characteristic

function of n−1/2(Z1 + · · ·+ Zn). Then∣∣∣fn(u)− exp
(
− 1

2
u′Σu

)∣∣∣ ≤ C3n
−(θ−2)/2|u|θ exp(−C4|u|2)

for all u ∈ Rd with |u| ≤ C5n
1/2. The constants C3, C4 and C5 only depend on d and

the moments of Z1.

For the proof of Theorem S2.1 we use a blocking argument. We introduce some
further notation. Let (tk : k ∈ N) be an integer-valued sequence with t1 = 1 and tk −
tk−1 = bkac. The constant a will be defined later. Note that

ka � tk � ka+1, (S2.3)

where here and in the sequel ak � bk means lim supk |ak/bk| < ∞. We set Tk =
{tk−1 + 1, . . . , tk} and divide Tk into ”short blocks” Jkl and ”long blocks” Ikl , so that

Tk = Jk1 ∪ Ik1 ∪ Jk2 ∪ Ik2 ∪ . . . ∪ Jkn ∪ Ikn ∪Rk,

where |Jkl | = bkβc and |Ikl | = bkbc with 0 < β < b < a. (As usual |S| denotes the
cardinality of a set S.) Clearly n = n(k) ∼ ka−b and the interval Rk contains the
remaining integers which are not contained in some interval Jkl ∪ Ikl . If i ∈ Tk we set

Y∗i = Y
(m)
i with m = |Jk1 |. This implies that Zkj = |Ik1 |−1/2

∑
i∈Ikj

Y∗i , j = 1, . . . , n,

are independent and identically distributed.

Now we define the constants a, b, β and µ. We let ρ > 0 be a fixed but arbitrary
small number. Then

a− b =
8(d+ 1)(ρ+ 1)

θ − 2
, (S2.4)

µ =
1

1 + ρ

1

1 + a

(1

2
− 1

θ

)
, (S2.5)

β = b− 1. (S2.6)

Finally β is chosen such that

β > max

{
4(d+ 2)(1 + ρ),

a+ 1

A

}
. (S2.7)
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Proof of Theorem S2.1. The proof of Theorem S2.1 is divided into two steps. In the first
step we reduce (S2.2) to an alternative approximation problem. In the second step we
will construct the approximating normal sequence.

Step 1: We claim that it is sufficient to show that∣∣∣∣ k∑
`=1

n∑
j=1

∑
i∈I`j

(Y∗i −N i)

∣∣∣∣ = O
(
t
1/2−µ
k

)
a.s. (S2.8)

Essentially this means that we only need to prove (S2.2) for the perturbed sequence (Y∗i )
along the subsequence (tk). Further we need to show that the “short block” sums are
negligible.

Towards the proof of Step 1, let

Ak =

{
max

tk−1+1≤`≤tk

∣∣∣∣ ∑̀
i=tk−1+1

Yi

∣∣∣∣ > t
1/2−µ
k−1

}
and

Āk =

{
max

tk−1+1≤`≤tk

∣∣∣∣ ∑̀
i=tk−1+1

N i

∣∣∣∣ > t
1/2−µ
k−1

}
.

From Lemma S2.1, the Markov inequality and (S2.3) we infer∑
k≥1

P (Ak) ≤
∑
k≥1

Cθ(tk − tk−1)θ/2t
−(1/2−µ)θ
k−1

�
∑
k≥1

kaθ/2−(a+1)(1/2−µ)θ

=
∑
k≥1

k−
1+(θ/2)ρ

1+ρ <∞.

The last line in the display above follows from (S2.5) and the requirement θ > 2. Hence
by the Borel-Cantelli Lemma P (Ak i.o.) = 0. A similar argument gives P (Āk i.o.) = 0.
We conclude that (S2.2) follows from∣∣∣∣ tk∑

i=1

(Yi −N i)

∣∣∣∣ = O
(
t
1/2−µ
k

)
a.s.

Next we show that the contribution of the “short block” sums is negligible. Let

Bk =

{∣∣∣∣ k∑
`=1

n∑
j=1

∑
i∈J`j

Yi

∣∣∣∣ > t
1/2−µ
k−1

}
and

B̄k =

{∣∣∣∣ k∑
`=1

n∑
j=1

∑
i∈J`j

N i

∣∣∣∣ > t
1/2−µ
k−1

}
.
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Using similar arguments as before and (S2.6) we obtain

∑
k≥1

P (Bk) ≤
∑
k≥1

E

[∣∣∣∣ k∑
`=1

n∑
j=1

∑
i∈J`j

Yi

∣∣∣θ]t−(1/2−µ)θ
k−1

�
∑
k≥1

( k∑
`=1

`a−b+β
)θ/2

k−(1+a)(1/2−µ)θ

�
∑
k≥1

k−
1+(θ/2)ρ

1+ρ <∞.

We infer that P (Bk i.o.) = P (B̄k i.o.) = 0.

To complete Step 1 we note that∑
i≥1

(Yi −Y∗i ) <∞ a.s. (S2.9)

This implies that it is sufficient to work with the sequence (Y∗i ). Relation (S2.9) follows
from

E

[∣∣∣∣∑
i≥1

(Yi −Y∗i )

∣∣∣∣] ≤∑
i≥1

(
E
[
|Yi −Y∗i |θ

])1/θ

≤
∑
k≥1

|Tk||Jk1 |−A �
∑
k≥1

ka−Aβ <∞.

The convergence of the series follows from (S2.6) and (S2.7).
Step 2: We define X` = 1√

n

∑n
j=1 Z`j . Further we let fX`

(u), fN(0,Γ)(u) and fN(0,Γ`)(u)

be the characteristic functions of X`, N1 and a normal random vector with zero expec-
tation and variance Γ` = Var(Z`1). Notice again that `(a−b) � n � `(a−b). Thus by
(S2.4) and Lemmas S2.2 and S2.4 we get for |u| ≤ C5`

2(1+ρ)∣∣∣fX`
(u)− fN(0,Γ)(u)

∣∣∣
≤
∣∣∣fX`

(u)− fN(0,Γ`)(u)
∣∣∣+
∣∣∣fN(0,Γ`)(u)− fN(0,Γ)(u)

∣∣∣
≤ C3n

−(θ−2)/2|u|θ exp(−C4|u|2) +
∣∣∣u′(Γ` − Γ)u

∣∣∣
� n−(θ−2)/2 + |u|2

∣∣∣Γ` − Γ
∣∣∣
∞

� n−(θ−2)/2 + `4(1+ρ)
(
`−b + (`β)−A+1

)
� `γ ,

where

γ = max{−(θ − 2)(a− b)/2, 4(1 + ρ)− β}.
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The crucial step is now the application of Lemma S2.3. LetW` = max{C5`
2(1+ρ), 108d}

and

λ` = sup
|u|≤W`

∣∣∣fX`
(u)− fN(0,Γ)(u)

∣∣∣.
A routine calculation shows that for some sufficiently large % > 0

δ` := P
(
|N(0,Γ)| > W`/4

)
� exp(−`%).

Thus we have

α` = 16dW−1
` logW` + 4λ

1/2
` W d

` + δ`.

Using the definitions of the constants a, b and β it can be easily shown that α` � log `
`2(1+ρ)

.

Since the X` are by definition independent we conclude with Lemma S2.3 that there
exists a sequence (M ` : ` ∈ N) of i.i.d. normal random variables, with M1 ∼ N(0,Γ),
such that, for some large enough constant C7,

P
(
|X` −M `| ≥ C7`

−(2+ρ)
)
≤ C7`

−(2+ρ).

The latter inequality implies that

P

(∣∣∣∣ k∑
`=1

n∑
j=1

∑
i∈I`j

Y∗i −
k∑
`=1

(n|I`1 |)1/2M `

∣∣∣∣ ≥ C7

k∑
`=1

(n|I`1 |)1/2`−(2+ρ)

)
≤ C7k

−(1+ρ).

(S2.10)
Further enlarging the probability space we can write

(n|I`1 |)1/2M ` =

n∑
j=1

∑
i∈I`j

N i. (S2.11)

Some algebra shows that

k∑
`=1

(n|I`1 |)1/2`−(2+ρ) � t
1/2−µ
k−1 . (S2.12)

The Borel-Cantelli Lemma and (S2.10)–(S2.12) imply (S2.8). �

S3 Some technical lemmas

To establish Lemma 6.2, several additional results concerned with a decomposition of
Ξ̂′n,N Ên,N are needed. These are provided in this section. Using the definitions of Ξ̂n,N

and Ên,N we have that

Ξ̂′n,N Ên,N = vec(Ĝ), (S3.1)
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where the matrix Ĝ = (Ĝi,j : i = 1, . . . , p, j = 1, . . . , q) is given by the entries Ĝi,j =∑N
k=n+1 ξ̂k,iη̂k,j . For the individual terms in the latter sum we obtain from (2.4) the

expression

ξ̂k,iη̂k,j = ξ̂k,i
(
〈εk, ŵj〉+ 〈ρk,1, ŵj〉+ 〈ρk,2, ŵj〉+ 〈φk,1, ŵj〉+ 〈φk,2, ŵj〉

)
(S3.2)

writing φk,1 = φ
(m)
k,1 and φk,2 = φ

(m)
k,2 to simplify notation. In the following series of

lemmas, we establish the large-sample behavior of the partial sums of the terms on the
right-hand side of (S3.2). Let F̂n,N = 1

N−n
∑N
k=n+1Xk ⊗ εk. This is a random operator

estimating the zero cross-covariances between εk and Xk. Recall that x⊗y(v) = 〈x, v〉y.

Lemma S3.1 If Assumptions 2.1–2.5 hold, then∣∣∣∣∣
m∑
k=1

ξ̂k,i〈εk, ŵj〉 − T (1)
0,m(i, j)

∣∣∣∣∣= OP (1) (S3.3)

and

sup
`>1

1√
`(log `)β

∣∣∣∣∣
m+∑̀

k=m+1

ξ̂k,i〈εk, ŵj〉 − T (1)
m,m+k(i, j)

∣∣∣∣∣= OP

(
1√
m

)
(S3.4)

for all β > 3, where

T
(1)
n,N (i, j) = ĉid̂j

N∑
k=n+1

ξk,iη
∗
k,j .

Proof. We prove only (S3.4) as (S3.3) can be established in a similar fashion. In a first

step, observe that ξ̂k,i〈εk, ŵj〉 = ĉid̂jξk,iη
∗
k,j + (ξ̂k,i − ĉiξk,i)〈εk, ŵj〉 + ĉiξk,i(〈εk, ŵj〉 −

d̂jη
∗
k,j). Summing over the first term on the right-hand side gives rise to ĉid̂jT

(1)
m,m+`(i, j).

For the sum of the second term, we note that

N∑
k=n+1

(ξ̂k,i − ĉiξk,i)〈εk, ŵj〉 =

〈(
N∑

k=n+1

Xk ⊗ εk

)
(v̂i − ĉivi), ŵj

〉
.

Hence it follows that

sup
`>1

1√
`(log `)β

∣∣∣∣∣
m+∑̀

k=m+1

(ξ̂k,i − ĉiξk,i)〈εk, ŵj〉

∣∣∣∣∣
≤ sup

`>1

1√
`(log `)β

‖`F̂m,m+`‖S‖v̂i − ĉivi‖‖ŵj‖

= OP

(
1√
m

)
,
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using the Cauchy-Schwarz inequality, Lemma 5.1 and the same arguments used in Lemma
5.2 to bound ‖F̂m,m+`‖S . Similarly one shows that

sup
`>1

1√
`(log `)β

∣∣∣∣∣
m+∑̀

k=m+1

ĉiξk,i(η̂k,j − d̂jηk,j)

∣∣∣∣∣ = OP

(
1√
m

)
.

This completes the proof of (S3.4). �

Lemma S3.2 If Assumptions 2.1–2.5 hold, then∣∣∣∣∣
m∑
k=1

ξ̂k,i〈ρk,1, ŵj〉 −
(
T

(2)
0,m(i, j) +mR(3)

m (i, j)
) ∣∣∣∣∣= OP (1) (S3.5)

and

m+∑̀
k=m+1

ξ̂k,i〈ρk,1, ŵj〉 = T
(2)
m,m+`(i, j) + `R(3)

m (i, j) + Um,1(`) + Um,2(`), (S3.6)

where T
(2)
n,N (i, j) = ĉid̂j

∑N
k=n+1 ξk,iθk,j, R

(1)
m (i, j) = d̂j` 〈C(v̂i − ĉivi), uj〉,

sup
`>1

|Um,1(`)|√
`(log `)β

= OP

(
1√
m

)
and sup

`>1

|Um,2(`)|
`

= OP

(
1

m

)
.

Proof. Let %
(1)
k,j = 〈ρk,1, wj〉 and %̂

(1)
k,j = 〈ρk,1, ŵj〉. Then,

ξ̂k,i%̂
(1)
k,j = ĉid̂jξk,i%

(1)
k,j+ĉiξk,i(%̂

(1)
k,j−d̂j%

(1)
k,j)+d̂j(ξ̂k,i−ĉiξk,i)%

(1)
k,j+(ξ̂k,i−ĉiξk,i)(%̂(1)

k,j−d̂j%
(1)
k,j).

In the following, we will estimate the sums of the terms on the right-hand side. Notice
first that the orthogonality of the (wj : j ∈ N) and (3.4) imply that

%
(1)
k,j = 〈ρk,1, wj〉 =

∞∑
i′=p+1

q∑
j′=1

ψi′,j′ξk,i′〈wj′ , wj〉 =

∞∑
i′=p+1

ψi′,jξk,i′ = 〈Xk, uj〉 = θk,j .

Therefore ĉid̂j
∑m+`
k=m+1 ξk,i%

(1)
k,j = T

(2)
m,m+`(i, j). To study the remaining terms, we intro-

duce

A(1)
m (`) = ĉi

m+∑̀
k=m+1

ξk,i(%̂
(1)
k,j − d̂j%

(1)
k,j),

A(2)
m (`) =

m+∑̀
k=m+1

d̂j(ξ̂k,i − ĉiξk,i)%(1)
k,j ,

A(3)
m (`) =

m+∑̀
k=m+1

(ξ̂k,i − ĉiξk,i)(%̂(1)
k,j − d̂j%

(1)
k,j).
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Since the (vi : i ∈ N) are the orthonormal eigenfunctions of the covariance operator C,
its spectral decomposition yields that 〈C(vi), ui〉 for i ≤ p. Utilizing this, the definition

of %
(1)
k,j and %̂

(1)
k,j , and a subsequent rearranging of terms leads to

A(1)
m (`) = ĉi

m+∑̀
k=m+1

q∑
j′=1

〈Xk, vi〉〈Xk, uj′〉〈wj′ , ŵj − d̂jwj〉

= ĉi

q∑
j′=1

〈
`(Ĉm,m+` − C)(vi), uj′

〉
〈wj′ , ŵj − d̂jwj〉

where Ĉm,m+` = 1
`

∑m+`
k=m+1Xk ⊗ Xk and uj′ is defined in (3.4). Applications of the

Cauchy-Schwarz inequality and Lemmas 5.1 and 5.2 yield

sup
`>1

|A(1)
m (`)|√
`(log `)β

≤ I‖ŵj − d̂jwj‖ sup
`>1

√
`

(log `)β
‖Ĉm,m+` − C‖S = OP

(
1√
m

)
where I =

∑q
j′=1 ‖uj′‖ is finite.

Using that %
(1)
k,j = 〈Xk, uj〉, write for the next term

A(2)
m (`) = d̂j

m+∑̀
k=m+1

〈Xk, v̂i − ĉivi〉〈Xk, uj〉

= d̂j`
〈

(Ĉm,m+` − C)(v̂i − ĉivi), uj
〉

+ d̂j` 〈C(v̂i − ĉivi), uj〉

= A
(2)
m,1(`) + `R(1)

m (i, j),

where arguments similar to the ones applied to A
(1)
m (`) also give that

sup
`>1

|A(2)
m,1(`)|√
`(log `)β

= O

(
1√
m

)
.

Finally, along the same lines we get that

A(3)
m (`) ≤ I‖v̂i − ĉivi‖‖ŵj − d̂jwj‖‖`Ĉm,m+`‖S

with I from above, thus via Lemmas 5.1 and 5.2 implying that

sup
`>1

|A(3)
m (`)|
`

= I‖v̂i − ĉivi‖‖ŵj − d̂jwj‖ sup
`>1
‖Ĉm,m+`‖S = OP

(
1

m

)
.

Recognizing that we can set Um,1(`) = A
(1)
m (`) + A

(2)
m,1(`) and Um,2(`) = A

(3)
m (`), the

proof of (S3.6) is complete. The proof of (S3.5) requires only minor modifications and
is therefore omitted. �
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Lemma S3.3 If Assumptions 2.1–2.5 hold, then∣∣∣∣∣
m∑
k=1

ξ̂k,i〈ρk,2, ŵj〉 −mR(2)
m (i, j)

∣∣∣∣∣ = OP (1) (S3.7)

and
m+∑̀

k=m+1

ξ̂k,i〈ρk,2, ŵj〉 = `R(2)
m (i, j) + Um,3(`) + Um,4(`), (S3.8)

where R
(2)
m (i, j) = ĉiλi

∑∞
j′=q+1 ψi,j′

〈
wj′ , ŵj − d̂jwj

〉
,

sup
`>1

|Um,3(`)|√
`(log `)β

= OP

(
1√
m

)
and sup

`>1

|Um,4(`)|
`

= OP

(
1

m

)
.

Proof. Let %
(2)
k,j = 〈ρk,2, wj〉 and %̂

(2)
k,j = 〈ρk,2, ŵj〉. Then, %

(2)
k,j = 0 which follows from

the orthogonality of the (wj : j ∈ N) as ρk,2 contains only wj′ with j′ > q, while j ≤ q.
Hence,

ξ̂k,i%̂
(2)
k,j = ĉiξk,i(%̂

(2)
k,j − d̂j%

(2)
k,j) + (ξ̂k,i − ĉiξk,i)(%̂(2)

k,j − d̂j%
(2)
k,j).

We proceed by estimating the sums of the terms on the right-hand side. Observe that

A(4)
m (`) = ĉi

m+∑̀
k=m+1

ξk,i(%̂
(2)
k,j − d̂j%

(2)
k,j)

= ĉi

∞∑
i′=1

〈
`(Ĉm,m+` − C)(vi), vi′

〉 ∞∑
j′=q+1

ψi′,j′
〈
wj′ , ŵj − d̂jwj

〉
+ `ĉiλi

∞∑
j′=q+1

ψi,j′
〈
wj′ , ŵj − d̂jwj

〉
= A

(4)
m,1(`) + `R(2)

m (i, j).

For the first term, the Cauchy-Schwarz inequality yields in combination with Lemmas
5.1 and 5.2 the estimate

sup
`>1

|A(4)
m,1(`)|√
`(log `)β

≤ ‖Ψ‖S sup
`>1

1√
`(log `)β

`‖Ĉm,m+` − C‖S‖ŵj − d̂jwj‖,

by recognizing that ‖Ψ‖2S =
∑∞
i′=1

∑∞
j′=1 ψ

2
i′,j′ .

As for A
(3)
m (`) in the proof of Lemma S3.2 one can prove with the Cauchy-Schwarz

inequality and Lemmas 5.1 and 5.2 that

sup
`>1

|A(5)
m (`)|
`

= sup
`>1

1

`

∣∣∣∣∣
m+∑̀

k=m+1

(ξ̂k,i − ĉiξk,i)(%̂(2)
k,j − d̂j%

(2)
k,j)

∣∣∣∣∣ = OP

(
1

m

)
.
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Setting Um,3(`) = A
(4)
m,1(`) and Um,4(`) = A

(5)
m (`), the proof of (S3.8) is complete.

(S3.7) can be established similarly. �

The last two lemmas we state without proofs, as the arguments needed are now
repetitive and very similar to the previous two lemmas.

Lemma S3.4 If Assumptions 2.1–2.5 hold, then∣∣∣∣∣
m∑
k=1

ξ̂k,i〈φk,1, ŵj〉 −mR(3)
m (i, j)

∣∣∣∣∣ = OP (1) (S3.9)

and
m+∑̀

k=m+1

ξ̂k,i〈φk,1, ŵj〉 = `R(3)
m (i, j) + Um,5(`) + Um,6(`) (S3.10)

where R
(3)
m (i, j) = ĉid̂jλi

∑p
i′=1 ψi′,j〈ĉi′ v̂i′ − vi′ , vi〉,

sup
`>1

|Um,5(`)|√
`(log `)β

= OP

(
1√
m

)
and sup

`>1

|Um,6(`)|
`

= OP

(
1

m

)
.

Lemma S3.5 If Assumptions 2.1–2.5 hold, then∣∣∣∣∣
m∑
k=1

ξ̂k,i〈φk,2, ŵj〉 −mR(4)
m (i, j)

∣∣∣∣∣ = OP (1) (S3.11)

and
m+∑̀

k=m+1

ξ̂k,i〈φk,2, ŵj〉 = `R(4)
m (i, j) + Um,7(`) + Um,8(`), (S3.12)

where R
(4)
m (i, j) = ĉid̂jλi

∑q
j′=1 ψi,j′〈d̂j′ŵj′ − d̂j′wj′ , wj〉,

sup
`>1

|Um,7(`)|√
`(log `)β

= OP

(
1√
m

)
and sup

`>1

|Um,8(`)|
`

= OP

(
1

m

)
.


