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Supplementary Material

S1 Proofs

Proof of Theorem 1. Define two n x p matrices W = (w;;) and W = (W)
with Wi; = Bojfj(xij,aoj) and UA]Z']' = ijj(xijadj)7 where Bj and (Alj are initial
estimates defined in Section 2,7 =1,2,--- ,nand j =1,2,--- ,p.

The proof of Theorem 1(i) follows straightly from the proof of Theorem 1 of
Yuan and Lin (2007) by noting that the key steps are to establish their Equations
(21), (22), (28), and (30). In our setting, these correspond to showing that
n_l(ﬁ\/Tﬁ\/) =n" Y WTW)+0,(5,) and every element of n=* (W — W)Ty is of
order Op(8y,), where y = (y1,92, -+ ,yn). These follow directly from Conditions
(A1)-(A3) and the assumption that maxlgjgp(\ﬁj — Boj| + [|éj — awjl|) = Op(dn)
and thus Theorem 1(i) holds. The proof of Theorem 1(ii) follows directly by
combining the results of Theorem 1(i) and the root n consistency of the NLS
estimator 4. O

In order to prove Theorem 2, we first give a lemma. For any N < ¢, let

Gi(N)= sup [(Pn— P){{(v,z,y) —£(v0,%,Y) Hn(z,y),
~YEA(N

where A(N) is defined in Condition (A5). The next lemma is about the upper
bound of the tail probability of G;(/V) in the neighborhood of A(N).

Lemma 1. Under Conditions (A1), (A3) and (A7), for any t > 0,
P(G1(N) = 4k N max{ky, Aikz}(p/n) /(14 1)) < exp(~212).
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Proof. By Conditions (A3) and (A7), the first-order Taylor expansion, the tri-
angular inequality and the Cauchy-Schwarz inequality, we have that on the set
Qn,

‘E(W,X,Y)—E(‘)’O,X,Y” Sk;|i/ﬁjf](va Zﬁojf] j» O0j |
j=

< kmzpzlﬁjfj(Xjaaj)_zp:BOjfj(Xjaaj”+k:‘250jfj(Xj7 Zﬁo;fg

j= = j=
< k:;[zle— 1/22 2 045) 1/2+k*252 1/2{ij — fi(X;

= j=1 = -
S k*\fkl[zp;( = Boj) ]1/2+k2\/ﬁA1k2(Z;||aj — ag;]|H)Y?

J J=

< kpy/pmax{ky, Arka}H|v — volls

by using [>F_, f2(X;, 0)]Y? < /Il fi(Xj, )0 < /PR1 and [0 B3]H2 <
/PA1 with Ay defined in Condition (Al) and &}, = 2(k; + K};). On the set
Q,,, by the definition of A(N), the above random variable is further bounded by
k,’;\/f)max{k’l, Ale}N.

Let € = (e1, -+ ,en)” be a Rademacher sequence and apply the symmetriza-
tion theorem (Lemma 2 in Fan and Song (2010)) to yield that

EGI(N) < 2B | sup |Pue{l(v,z,9) — ((vp. 2,y (@ y)l [ . (S1.2)
YEA(N)

By the contraction theorem (Lemma 3 in Fan and Song (2010)) and Condition
(A3), we can bound the right-hand side of (S1.2) further by

=

~YEA(N

p
4k, E{ sup Z/ij] Tj, o) Zﬁﬂjf] x;, oj) | In (@, y) }- (S1.3)

j» 0oj)|

1 ay)]? 2

(S1.1)
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By similar arguments to (S1.1), the expectation in (S1.3) is bounded by

p p

E| P, EZ (@, )" 2 Lo(z,y)|| sup [D> (85 — Boy)]"?
_ ~YEA(N) j=1

+ Zﬂoj VE( sup I, (D1 w500) — a0 c0) PV T .9

7=1

< N(EH fo(vaaj)HM)
j=1

< Nmax{ki, Arks}(p/n)"/?.

So we conclude that EG)(N) < 4k%N max{ky, A1ks}(p/n)*/2. Hence, from the
concentration theorem (Lemma 4 in Fan and Song (2010)), we have that

P (gl(N) > 4k* N max{k1, Atks}(p/n)/2(1 + t))

n[4k* N max{ky, A1k} (p/n)"/?t]? 9
< — = —2t7).
: exp( 8 (k)2 max (7, ATAZ} V2 el=20)

This proves the lemma. O

Proof of Theorem 2. Similar to the proof of Theorem 1 in Fan and Song (2010),
we define a convex combination 4 = s+ (1—s)v, with s = (1+[|5—~,||/N) !

Clearly we have 0 < s < 1 and |7, — Yol = s[|¥ — Yl = (1 —s)N < N, so
s € A(N). Due to the local convexity (Condition (A5)), we have

Pol(ys:®,y) < sPul(Y, 2, 9) + (1 = s)Pul(o,@,y) < Pul(vo,2,y).  (S1.4)
Since 7y is the minimizer of E{(v, X,Y’), we have from (S1.4) that

0< E[E(’YmX’Y) _6(707X7Y)} < (P_Pn)[g('YsaX?Y) _6(707X Y)] ( )7

(S1.5)
where g(N) = SUP~c A(N) ’(Pﬂ - P)[£(77 X, Y) - £(707 X7Y)”

Since 7, is the unique minimizer of E/(v, X,Y) (Condition (A2)), it follows
oE4(v,XY)

that at =y, the first-order derivative # equals to zero and the second-
2
order derivative % is positive definite. By Condition (A4), %

in a small neighborhood of 7 is bounded away from 0 and +oo. Without loss
of generality, we take this small neighborhood as A(N). Therefore, there exists
a constant V7 such that for any v € A(N),

E[E(“)/,X,Y) _K(7OaXaY)] > V1H7_70||2' (816)

S3

VA (EHZ 13X 0) = 5 a0

I,(X,Y)

n

)1/2
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Combining (S1.5) and (S1.6), it follows that
lvs = ol < [G(N)/VA]'/2, (SL.7)

Next we use (S1.7) to conclude the result. Note that for any u, P(||v, — ol >
u) < P(G(N) > Viu?). Setting u = N/2, we have

P(llvs = 7ol > N/2) < P(G(N) > ViN?/4). (S1.8)

Using the definition of v, with s = 1/2, the left-hand side of (S1.8) is the same
as P(||&% = voll = N). Now, by taking N = min{4a, (1 + t)/V,0} with a,, =
4k max{k1, A1ka}+/p/n, we have

P(|[4 =70l > N) < P(G(N)>ViN?/4) = P(G(N) > Na,(1 +1))
< P(G(N) = Nan(L+t), Q) +P(Q0 ), (S1.9)

where Q,, . = {||X;]| < Ky, |Yi| < K}

On the set Qy, «, since supye a(n) Pull(7, X, Y) = L(v0, X, Y)|(1-1,(X,Y)) =
0, by the triangular inequality, we have G(N) < Gi(N)+sup,c an) |E[(v, X, Y)—
Uy, X, Y)](1—1,(X,Y))|. It follows from Condition (A7) that (S1.9) is bounded
by P(Gi1(N) > Nany(1+1t) +o(¢/n)) + nP((X,Y) € QF). The conclusion follows
from Lemma 1. O

Lemma 2. Forj=1,--- p,, the marginal regression parameters ﬁjM =0 if and
only if covlY, f;(X;, a;\/[)] =0.

Proof. As defined in (7), 'y;\/[ is the minimizer of E/(v;, X;,Y), it follows that

.. 0Bt~ XY
the first-order derivative %

at 7;” equals to zero. By Ef;(Xj, aé\/[) =0
for j =1, -+, pn, the score equation of the marginal regression at BJM takes the
following form:
OE[Y — M f;(X;, 1))
6ﬂjM

= “2E[Y f;(X;, o)) + 28V Ef3(X;, all)

= -2 Z BokELfk(Xk, aor) f5(X5, o)) + 28 EfF (X5, o).
kEM,

= —2B[Y — 8} f3(X;, o} f5(X;. a5

Moreover, we have

cov[, f5(X;, e = cov{[ > Bokfe(Xn, aor)], f5(X5, )} = Y BowElfr( X, con) f5(X;, af")].

keM. keM.
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Then

OBlY — B f;(Xj, )]
GBJM

So we have ﬁJM = cov[Y, f;(Xj, aj-\/[)]/Eij(Xj, a;w) Thus this lemma holds. [

0= = —2cov[Y, f;(X;, a;V)] + 25}4Efj2(xj, aj.Vf).

Corollary 1. If the partial orthogonality condition holds, that is, { f;(X}, aé\/f ), ¢
M.} is independent of {fj(Xj,aé-w),j € M.}, then B}VI =0, for j ¢ M,.

Lemma 3. Under Condition (B1), if coulY, fj(Xj,aé-V[)] > cn™" for j € M,
with two constants c; > 0 and 0 < k < 1/2, then there exists a positive constant
co such that

. M —K
min > con”
JEM. CRER

Proof. From the proof of Lemma 2, we know that ﬁjM = cov[Y, f;(Xj, oz?/[)]/Eij(Xj, aé\/[),
then under Condition (B1), Lemma 3 holds by taking co = ¢1/k4. O

Lemma 4. If Condition (B4) holds,
P(|Y| > y) < sy exp[—may=1]

__a_ _ 1
with so = sg"s1 and mg = 27 a1 (moA1vp +mq) o 1.

Proof. Under Condition (B4), since Y = 37", B;f;(X;, @;) + ¢, we have

Pn
Eexp(tY) = | [ Elexp(tB;£;(X;, o;))|E[exp(te)]
j=1
< [soexp(moAit®)]""s1 exp(mit?) < sg"s1exp|(moAiv, +mq)t?].

By the exponential Chebyshev’s inequality, we have
P(Y >y) < exp(—ty)Elexp(tY)] < sg"s1exp(—ty) exp[(moAivn + mq)t?].

1
Take t = [2 a=1 for g > 1, the above inequality can be simplified

y
(m0A1Vn+m1)] . .
as P(Y > y) < spexp[—maoye-T1], with sy = sg"s1 and mg = 27 a1 (moAivy, +
ml)_ﬁ. By similar arguments, we have
P(Y < —y) = P(-Y > y) < exp(—ty)E[exp(—tY)]
< sp"s1exp(—ty) exp[(moAivn, +my)(—1)] < so exp[—mgyﬁ].

Thus the lemma holds. O
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Proof of Theorem 3. Note that
Ell(v;, X;,Y) = £0v;", X5, V][ = In(X;, V)
< BB f7(XG, a)IT(1X5) = Kn)| + [BI(8])2 7 (X5, ad DI X5] > Ka)| + B(8;) + B(8}"),
where B(8;) = |[E[Y 8, f;(X;, o)][1—1,(X;,Y)]|. The first two terms are of order
o(1/n) by Condition (B3), and the last two terms can be bounded following from

Lemma 4 and the Cauchy-Schwarz inequality. By Theorem 2, for any ¢ > 0, we
have

P (\/EH;Y?/[ - "Yéwu > 16]?:.2 max{kl,Ale}(l + t)/Vl) < eXp(—2t2)+n32 eXp[—mg(KZ)ﬁ]'

For any c3 > 0, by taking 1 4 ¢t = c3Vin/?7%/(16k} max{k, A1ks}), it follows
that P (H'Ayéw - 'yé\/[H > c;m*”) < exp|—cant 2%/ (kX)?] + nsg exp[—mg(K;;)ﬁ]
holds for some positive constant c4. Then Theorem 3(i) follows from the union
bound of probability.

To prove Theorem 3(ii), note that on the event A, = {maxjen, ||BJM -
,BJM | < can™%/2}, by Lemma 3 and the triangular inequality, we have |6JM | >

con~ /2, for all j € M,. Hence, by the choice of (,, we have M, C Ncn. The
result now follows from a simple union bound:

P(A5) < vo{expl—can' ™"/ (k;)?] + nsa exp[—ma(K;) 71}

n

This completes the proof. O

Proof of Theorem 4. From the proof of Lemma 2, we have that

B =" BorElfe(Xk, o) f5(X;, o /EF (X, ofT).
keM.

From Condition (B1), it follows that
182 = 18] cov[F (X. ). X, )] 12 /B2 a2 < k5 A (Sa) | S 26

From Condition (B7), we have that |[3M|]?> < C*Amax(Za) for some posi-

tive constant C*. Then the number of {j : \B]M] > pn~"} cannot exceed
O{n* Amax(Zq)} for any p > 0. Thus, on the set B,, = {maxi<j<p, \B]M—BJM] <
pn~ "}, the number of {j : |ﬁJM\ > 2pn~ "%} cannot exceed the number of
{j: |,BJM\ > pn ="}, which is bounded by O{n** \max(Z«)}. By taking p = c5/2,
we have

P(ING,| < O{n** Amax(Za)}) > P(By).

The conclusion follows from Theorem 3(i). O
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Lemma 5. For j = 1,--- ,pn, the marginal residual increment R}'f = 0 if and
only if coulY, f;(X;, aé\/")] = 0.

Proof. From the definition of ’784 and the proof of Lemma 2, we have

Ry = 28)BIY 00, = (8RS (X, o))

= (B]M)QEfJQ(va ay) = cov[Y, fi(X;, aj)]'
Thus the lemma holds. O

Lemma 6. If cov]Y, f;(X;, o M\ > cen™" for j € M, with two constants cg > 0
and 0 < k < 1/2, then

min |R;| > cgn™".
JEM.

Proof of Theorem 5. By Taylor’s expansion, we have

T82Pn€(77 Ly, y)
Oyo~T

2P Pol(vy, 25, y)

2Rjn = (’784—'3’;"4) ly=v. (Y0 —;

)

LM AM)

n

= (Bj]\/[) 03 =y, = (/Bj ) ijz(xij,aj,*),(SLlO)
=1
where v, = (8, )T lies between 43 and ‘yJ And we have
2 = 9
2 2 (1 i) > o)l V< K
n;f] (@i, @) 2 aJeHg,fljgg,a]KKan zij, ) I{ (X5, @) 1

for any given K. By the Hoeffding inequality, it follows that

P{|(Pn = P)f} (X, 0 I{|£;(Xj, )| < K}[ > p} < exp{—2np?/(4K")}

—K/2

for any p > 0. By taking p=n , we have

P{|(Pa = P)f3 (X, e {1 (X, ;)] < K}| >0~} < exp{—2n'7"/(4K")}.

Since E fQ(Xj,aj) > ks, consequently, with probability tending to 1 exponen-
tially fast, we have 23" f2 (xij, 0j4) > ks/2. The desired result thus follows
from Theorem 3. U

Proof of Theorem 6. By (S1.10) and Condition (B1), with probability tending
to 1 exponentially fast, we have that

2 E

2R;n < max ~(f; ij (wij, ) < 4BF3(X;, ) < 4ka(B] ),
7 J =1
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uniformly in j. Then if R;, > c7n™2%, then \B]M\ > D*n~"  with exception on
a set with negligible probability, where D* = [c7/(2k4)]"/2. This implies that
Mg, | < |Ng,| with &, = D*n~". The conclusion then follows from Theorem 4.
[l
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