Variable Selection for Sparse High-Dimensional Nonlinear Regression Models by Combining Nonnegative Garrote and Sure Independence Screening

Shuang $\mathrm{Wu}^{1 \dagger *}$, Hongqi Xue ${ }^{1 \dagger}$, Yichao Wu^{2} and Hulin Wu^{1}
${ }^{1}$ Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY; ${ }^{2}$ Department of Statistics, North Carolina State University, Raleigh, NC

Supplementary Material

S1 Proofs

Proof of Theorem 1. Define two $n \times p$ matrices $\boldsymbol{W}=\left(w_{i j}\right)$ and $\widehat{\boldsymbol{W}}=\left(\hat{w}_{i j}\right)$ with $w_{i j}=\beta_{0 j} f_{j}\left(x_{i j}, \boldsymbol{\alpha}_{0 j}\right)$ and $\hat{w}_{i j}=\hat{\beta}_{j} f_{j}\left(x_{i j}, \hat{\boldsymbol{\alpha}}_{j}\right)$, where $\hat{\beta}_{j}$ and $\hat{\boldsymbol{\alpha}}_{j}$ are initial estimates defined in Section 2, $i=1,2, \cdots, n$ and $j=1,2, \cdots, p$.

The proof of Theorem 1(i) follows straightly from the proof of Theorem 1 of Yuan and Lin (2007) by noting that the key steps are to establish their Equations (21), (22), (28), and (30). In our setting, these correspond to showing that $n^{-1}\left(\widehat{\boldsymbol{W}}^{T} \widehat{\boldsymbol{W}}\right)=n^{-1}\left(\boldsymbol{W}^{T} \boldsymbol{W}\right)+O_{p}\left(\delta_{n}\right)$ and every element of $n^{-1}(\hat{\boldsymbol{W}}-\boldsymbol{W})^{T} \boldsymbol{y}$ is of order $O_{p}\left(\delta_{n}\right)$, where $\boldsymbol{y}=\left(y_{1}, y_{2}, \cdots, y_{n}\right)^{T}$. These follow directly from Conditions (A1)-(A3) and the assumption that $\max _{1 \leq j \leq p}\left(\left|\hat{\beta}_{j}-\beta_{0 j}\right|+\left\|\hat{\boldsymbol{\alpha}}_{j}-\boldsymbol{\alpha}_{0 j}\right\|\right)=O_{p}\left(\delta_{n}\right)$ and thus Theorem 1(i) holds. The proof of Theorem 1(ii) follows directly by combining the results of Theorem 1(i) and the root n consistency of the NLS estimator $\hat{\gamma}$.

In order to prove Theorem 2, we first give a lemma. For any $N \leq \delta$, let

$$
\mathcal{G}_{1}(N)=\sup _{\gamma \in \mathcal{A}(N)}\left|\left(P_{n}-P\right)\left\{\ell(\boldsymbol{\gamma}, \boldsymbol{x}, \boldsymbol{y})-\ell\left(\gamma_{0}, \boldsymbol{x}, \boldsymbol{y}\right)\right\} I_{n}(\boldsymbol{x}, \boldsymbol{y})\right|,
$$

where $\mathcal{A}(N)$ is defined in Condition (A5). The next lemma is about the upper bound of the tail probability of $\mathcal{G}_{1}(N)$ in the neighborhood of $\mathcal{A}(N)$.
Lemma 1. Under Conditions (A1), (A3) and (A7), for any $t>0$,

$$
P\left(\mathcal{G}_{1}(N) \geq 4 k_{n}^{*} N \max \left\{k_{1}, A_{1} k_{2}\right\}(p / n)^{1 / 2}(1+t)\right) \leq \exp \left(-2 t^{2}\right) .
$$

Proof. By Conditions (A3) and (A7), the first-order Taylor expansion, the triangular inequality and the Cauchy-Schwarz inequality, we have that on the set Ω_{n},

$$
\begin{align*}
& \left|\ell(\boldsymbol{\gamma}, \boldsymbol{X}, Y)-\ell\left(\boldsymbol{\gamma}_{0}, \boldsymbol{X}, Y\right)\right| \leq k_{n}^{*}\left|\sum_{j=1}^{p} \beta_{j} f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}\right)-\sum_{j=1}^{p} \beta_{0 j} f_{j}\left(X_{j}, \boldsymbol{\alpha}_{0 j}\right)\right| \\
\leq & k_{n}^{*}\left|\sum_{j=1}^{p} \beta_{j} f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}\right)-\sum_{j=1}^{p} \beta_{0 j} f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}\right)\right|+k_{n}^{*}\left|\sum_{j=1}^{p} \beta_{0 j} f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}\right)-\sum_{j=1}^{p} \beta_{0 j} f_{j}\left(X_{j}, \boldsymbol{\alpha}_{0 j}\right)\right| \\
\leq & k_{n}^{*}\left[\sum_{j=1}^{p}\left(\beta_{j}-\beta_{0 j}\right)^{2}\right]^{1 / 2}\left[\sum_{j=1}^{p} f_{j}^{2}\left(X_{j}, \boldsymbol{\alpha}_{j}\right)\right]^{1 / 2}+k_{n}^{*}\left[\sum_{j=1}^{p} \beta_{0 j}^{2}\right]^{1 / 2}\left\{\sum_{j=1}^{p}\left[f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}\right)-f_{j}\left(X_{j}, \boldsymbol{\alpha}_{0 j}\right)\right]^{2}\right\}^{1 / 2} \\
\leq & k_{n}^{*} \sqrt{p} k_{1}\left[\sum_{j=1}^{p}\left(\beta_{j}-\beta_{0 j}\right)^{2}\right]^{1 / 2}+k_{n}^{*} \sqrt{p} A_{1} k_{2}\left(\sum_{j=1}^{p}\left\|\boldsymbol{\alpha}_{j}-\boldsymbol{\alpha}_{0 j}\right\|^{2}\right)^{1 / 2} \\
\leq & k_{n}^{*} \sqrt{p} \max \left\{k_{1}, A_{1} k_{2}\right\}\left\|\boldsymbol{\gamma}-\gamma_{0}\right\|, \tag{S1.1}
\end{align*}
$$

by using $\left[\sum_{j=1}^{p} f_{j}^{2}\left(X_{j}, \boldsymbol{\alpha}_{j}\right)\right]^{1 / 2} \leq \sqrt{p}\left\|f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}\right)\right\|_{\infty} \leq \sqrt{p} k_{1}$ and $\left[\sum_{j=1}^{p} \beta_{0 j}^{2}\right]^{1 / 2} \leq$ $\sqrt{p} A_{1}$ with A_{1} defined in Condition (A1) and $k_{n}^{*}=2\left(k_{1}+K_{n}^{*}\right)$. On the set Ω_{n}, by the definition of $\mathcal{A}(N)$, the above random variable is further bounded by $k_{n}^{*} \sqrt{p} \max \left\{k_{1}, A_{1} k_{2}\right\} N$.

Let $\boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)^{T}$ be a Rademacher sequence and apply the symmetrization theorem (Lemma 2 in Fan and Song (2010)) to yield that

$$
\begin{equation*}
\mathrm{E} \mathcal{G}_{1}(N) \leq 2 \mathrm{E}\left[\sup _{\gamma \in \mathcal{A}(N)}\left|P_{n} \varepsilon\left\{\ell(\boldsymbol{\gamma}, \boldsymbol{x}, \boldsymbol{y})-\ell\left(\gamma_{0}, \boldsymbol{x}, \boldsymbol{y}\right)\right\} I_{n}(\boldsymbol{x}, \boldsymbol{y})\right|\right] . \tag{S1.2}
\end{equation*}
$$

By the contraction theorem (Lemma 3 in Fan and Song (2010)) and Condition (A3), we can bound the right-hand side of (S1.2) further by

$$
\begin{equation*}
4 k_{n}^{*} \mathrm{E}\left\{\sup _{\gamma \in \mathcal{A}(N)}\left|P_{n} \varepsilon\left[\sum_{j=1}^{p} \beta_{j} f_{j}\left(\boldsymbol{x}_{j}, \boldsymbol{\alpha}_{j}\right)-\sum_{j=1}^{p} \beta_{0 j} f_{j}\left(\boldsymbol{x}_{j}, \boldsymbol{\alpha}_{0 j}\right)\right] I_{n}(\boldsymbol{x}, \boldsymbol{y})\right|\right\} . \tag{S1.3}
\end{equation*}
$$

By similar arguments to (S1.1), the expectation in (S1.3) is bounded by

$$
\begin{aligned}
& \mathrm{E}\left\|P_{n} \boldsymbol{\varepsilon}\left[\sum_{j=1}^{p} f_{j}^{2}\left(\boldsymbol{x}_{j}, \boldsymbol{\alpha}_{j}\right)\right]^{1 / 2} I_{n}(\boldsymbol{x}, \boldsymbol{y})\right\| \sup _{\gamma \in \mathcal{A}(N)}\left[\sum_{j=1}^{p}\left(\beta_{j}-\beta_{0 j}\right)^{2}\right]^{1 / 2} \\
+ & {\left[\sum_{j=1}^{p} \beta_{0 j}^{2}\right]^{1 / 2} \mathrm{E}\left(\sup _{\gamma \in \mathcal{A}(N)}\left|P_{n} \boldsymbol{\varepsilon}\left\{\sum_{j=1}^{p}\left[f_{j}\left(\boldsymbol{x}_{j}, \boldsymbol{\alpha}_{j}\right)-f_{j}\left(\boldsymbol{x}_{j}, \boldsymbol{\alpha}_{0 j}\right)\right]^{2}\right\}^{1 / 2} I_{n}(\boldsymbol{x}, \boldsymbol{y})\right|\right) } \\
\leq & N\left(\mathrm{E}\left\|\sum_{j=1}^{p} f_{j}^{2}\left(X_{j}, \boldsymbol{\alpha}_{j}\right)\right\| \frac{I_{n}(\boldsymbol{X}, Y)}{n}\right)^{1 / 2}+\sqrt{p} A_{1}\left(\mathrm{E}\left\|\sum_{j=1}^{p}\left[f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}\right)-f_{j}\left(X_{j}, \boldsymbol{\alpha}_{0 j}\right)\right]^{2}\right\| \frac{I_{n}(\boldsymbol{X}, Y)}{n}\right)^{1 / 2} \\
\leq & N \max \left\{k_{1}, A_{1} k_{2}\right\}(p / n)^{1 / 2} .
\end{aligned}
$$

So we conclude that $\mathrm{E} \mathcal{G}_{1}(N) \leq 4 k_{n}^{*} N \max \left\{k_{1}, A_{1} k_{2}\right\}(p / n)^{1 / 2}$. Hence, from the concentration theorem (Lemma 4 in Fan and Song (2010)), we have that

$$
\begin{aligned}
& \mathrm{P}\left(\mathcal{G}_{1}(N) \geq 4 k_{n}^{*} N \max \left\{k_{1}, A_{1} k_{2}\right\}(p / n)^{1 / 2}(1+t)\right) \\
\leq & \exp \left(-\frac{n\left[4 k_{n}^{*} N \max \left\{k_{1}, A_{1} k_{2}\right\}(p / n)^{1 / 2} t\right]^{2}}{8\left(k_{n}^{*}\right)^{2} q \max \left\{k_{1}^{2}, A_{1}^{2} k_{2}^{2}\right\} N^{2}}\right)=\exp \left(-2 t^{2}\right) .
\end{aligned}
$$

This proves the lemma.
Proof of Theorem 2. Similar to the proof of Theorem 1 in Fan and Song (2010), we define a convex combination $\gamma_{s}=s \hat{\gamma}+(1-s) \boldsymbol{\gamma}_{0}$ with $s=\left(1+\left\|\hat{\gamma}-\gamma_{0}\right\| / N\right)^{-1}$. Clearly we have $0<s<1$ and $\left\|\gamma_{s}-\gamma_{0}\right\|=s\left\|\hat{\gamma}-\gamma_{0}\right\|=(1-s) N \leq N$, so $\gamma_{s} \in \mathcal{A}(N)$. Due to the local convexity (Condition (A5)), we have

$$
\begin{equation*}
P_{n} \ell\left(\gamma_{s}, \boldsymbol{x}, \boldsymbol{y}\right) \leq s P_{n} \ell(\hat{\boldsymbol{\gamma}}, \boldsymbol{x}, \boldsymbol{y})+(1-s) P_{n} \ell\left(\gamma_{0}, \boldsymbol{x}, \boldsymbol{y}\right) \leq P_{n} \ell\left(\gamma_{0}, \boldsymbol{x}, \boldsymbol{y}\right) \tag{S1.4}
\end{equation*}
$$

Since γ_{0} is the minimizer of $\mathrm{E} \ell(\boldsymbol{\gamma}, \boldsymbol{X}, Y)$, we have from (S1.4) that
$0 \leq \mathrm{E}\left[\ell\left(\boldsymbol{\gamma}_{s}, \boldsymbol{X}, Y\right)-\ell\left(\boldsymbol{\gamma}_{0}, \boldsymbol{X}, Y\right)\right] \leq\left(P-P_{n}\right)\left[\ell\left(\boldsymbol{\gamma}_{s}, \boldsymbol{X}, Y\right)-\ell\left(\gamma_{0}, \boldsymbol{X}, Y\right)\right] \leq \mathcal{G}(N)$,
where $\mathcal{G}(N)=\sup _{\gamma \in \mathcal{A}(N)}\left|\left(P_{n}-P\right)\left[\ell(\boldsymbol{\gamma}, \boldsymbol{X}, Y)-\ell\left(\gamma_{0}, \boldsymbol{X}, Y\right)\right]\right|$.
Since γ_{0} is the unique minimizer of $\mathrm{E} \ell(\boldsymbol{\gamma}, \boldsymbol{X}, Y)$ (Condition (A2)), it follows that at γ_{0}, the first-order derivative $\frac{\partial \mathrm{E} \ell(\gamma, \boldsymbol{X}, Y)}{\partial \gamma}$ equals to zero and the secondorder derivative $\frac{\partial^{2} \mathrm{E} \ell(\boldsymbol{\gamma}, \boldsymbol{X}, Y)}{\partial \gamma \partial \gamma^{T}}$ is positive definite. By Condition (A4), $\frac{\partial^{2} \mathrm{E} \ell(\boldsymbol{\gamma}, \boldsymbol{X}, Y)}{\partial \gamma \partial \gamma^{T}}$ in a small neighborhood of γ_{0} is bounded away from 0 and $+\infty$. Without loss of generality, we take this small neighborhood as $\mathcal{A}(N)$. Therefore, there exists a constant V_{1} such that for any $\gamma \in \mathcal{A}(N)$,

$$
\begin{equation*}
\mathrm{E}\left[\ell(\boldsymbol{\gamma}, \boldsymbol{X}, Y)-\ell\left(\boldsymbol{\gamma}_{0}, \boldsymbol{X}, Y\right)\right] \geq V_{1}\left\|\boldsymbol{\gamma}-\boldsymbol{\gamma}_{0}\right\|^{2} . \tag{S1.6}
\end{equation*}
$$

Combining (S1.5) and (S1.6), it follows that

$$
\begin{equation*}
\left\|\gamma_{s}-\gamma_{0}\right\| \leq\left[\mathcal{G}(N) / V_{1}\right]^{1 / 2} . \tag{S1.7}
\end{equation*}
$$

Next we use (S1.7) to conclude the result. Note that for any $u, \mathrm{P}\left(\left\|\gamma_{s}-\gamma_{0}\right\| \geq\right.$ $u) \leq \mathrm{P}\left(\mathcal{G}(N) \geq V_{1} u^{2}\right)$. Setting $u=N / 2$, we have

$$
\begin{equation*}
\mathrm{P}\left(\left\|\gamma_{s}-\gamma_{0}\right\| \geq N / 2\right) \leq \mathrm{P}\left(\mathcal{G}(N) \geq V_{1} N^{2} / 4\right) . \tag{S1.8}
\end{equation*}
$$

Using the definition of γ_{s} with $s=1 / 2$, the left-hand side of (S1.8) is the same as $\mathrm{P}\left(\left\|\hat{\gamma}-\gamma_{0}\right\| \geq N\right)$. Now, by taking $N=\min \left\{4 a_{n}(1+t) / V_{1}, \delta\right\}$ with $a_{n}=$ $4 k_{n}^{*} \max \left\{k_{1}, A_{1} k_{2}\right\} \sqrt{p / n}$, we have

$$
\begin{align*}
\mathrm{P}\left(\left\|\hat{\gamma}-\gamma_{0}\right\| \geq N\right) & \leq \mathrm{P}\left(\mathcal{G}(N) \geq V_{1} N^{2} / 4\right)=\mathrm{P}\left(\mathcal{G}(N) \geq N a_{n}(1+t)\right) \\
& \leq \mathrm{P}\left(\mathcal{G}(N) \geq N a_{n}(1+t), \Omega_{n, *}\right)+\mathrm{P}\left(\Omega_{n, *}^{c}\right) \tag{S1.9}
\end{align*}
$$

where $\Omega_{n, *}=\left\{\left\|X_{i}\right\| \leq K_{n},\left|Y_{i}\right| \leq K_{n}^{*}\right\}$.
On the set $\Omega_{n, *}$, since $\sup _{\gamma \in \mathcal{A}(N)} P_{n}\left|\ell(\gamma, X, Y)-\ell\left(\gamma_{0}, X, Y\right)\right|\left(1-I_{n}(X, Y)\right)=$ 0 , by the triangular inequality, we have $\mathcal{G}(N) \leq \mathcal{G}_{1}(N)+\sup _{\gamma \in \mathcal{A}(N)} \mid E[\ell(\gamma, X, Y)-$ $\left.\ell\left(\gamma_{0}, X, Y\right)\right]\left(1-I_{n}(X, Y)\right) \mid$. It follows from Condition (A7) that (S1.9) is bounded by $\mathrm{P}\left(\mathcal{G}_{1}(N) \geq N a_{n}(1+t)+o(q / n)\right)+n \mathrm{P}\left((X, Y) \in \Omega_{n}^{c}\right)$. The conclusion follows from Lemma 1 .

Lemma 2. For $j=1, \cdots, p_{n}$, the marginal regression parameters $\beta_{j}^{M}=0$ if and only if $\operatorname{cov}\left[Y, f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right)\right]=0$.

Proof. As defined in (7), γ_{j}^{M} is the minimizer of $\mathrm{E} \ell\left(\gamma_{j}, X_{j}, Y\right)$, it follows that the first-order derivative $\frac{\partial \mathrm{E} \ell\left(\gamma_{j}, X_{j}, Y\right)}{\partial \gamma_{j}}$ at γ_{j}^{M} equals to zero. By $\mathrm{E} f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right)=0$ for $j=1, \cdots, p_{n}$, the score equation of the marginal regression at β_{j}^{M} takes the following form:

$$
\begin{aligned}
& \frac{\partial \mathrm{E}\left[Y-\beta_{j}^{M} f_{j}\left(X_{j}, \alpha_{j}^{M}\right)\right]^{2}}{\partial \beta_{j}^{M}}=-2 \mathrm{E}\left[Y-\beta_{j}^{M} f_{j}\left(X_{j}, \alpha_{j}^{M}\right)\right] f_{j}\left(X_{j}, \alpha_{j}^{M}\right) \\
= & -2 \mathrm{E}\left[Y f_{j}\left(X_{j}, \alpha_{j}^{M}\right)\right]+2 \beta_{j}^{M} \mathrm{E} f_{j}^{2}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right) \\
= & -2 \sum_{k \in \mathcal{M}_{*}} \beta_{0 k} \mathrm{E}\left[f_{k}\left(X_{k}, \alpha_{0 k}\right) f_{j}\left(X_{j}, \alpha_{j}^{M}\right)\right]+2 \beta_{j}^{M} \mathrm{E} f_{j}^{2}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right) .
\end{aligned}
$$

Moreover, we have
$\operatorname{cov}\left[Y, f_{j}\left(X_{j}, \alpha_{j}^{M}\right)\right]=\operatorname{cov}\left\{\left[\sum_{k \in \mathcal{M}_{*}} \beta_{0 k} f_{k}\left(X_{k}, \alpha_{0 k}\right)\right], f_{j}\left(X_{j}, \alpha_{j}^{M}\right)\right\}=\sum_{k \in \mathcal{M}_{*}} \beta_{0 k} E\left[f_{k}\left(X_{k}, \alpha_{0 k}\right) f_{j}\left(X_{j}, \alpha_{j}^{M}\right)\right]$.

Then

$$
0=\frac{\partial \mathrm{E}\left[Y-\beta_{j}^{M} f_{j}\left(X_{j}, \alpha_{j}^{M}\right)\right]^{2}}{\partial \beta_{j}^{M}}=-2 \operatorname{cov}\left[Y, f_{j}\left(X_{j}, \alpha_{j}^{M}\right)\right]+2 \beta_{j}^{M} \mathrm{E} f_{j}^{2}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right) .
$$

So we have $\beta_{j}^{M}=\operatorname{cov}\left[Y, f_{j}\left(X_{j}, \alpha_{j}^{M}\right)\right] / \mathrm{E} f_{j}^{2}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right)$. Thus this lemma holds.

Corollary 1. If the partial orthogonality condition holds, that is, $\left\{f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right), j \notin\right.$ $\left.\mathcal{M}_{*}\right\}$ is independent of $\left\{f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right), j \in \mathcal{M}_{*}\right\}$, then $\beta_{j}^{M}=0$, for $j \notin \mathcal{M}_{*}$.

Lemma 3. Under Condition (B1), if $\operatorname{cov}\left[Y, f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right)\right] \geq c_{1} n^{-\kappa}$ for $j \in \mathcal{M}_{*}$ with two constants $c_{1}>0$ and $0<\kappa<1 / 2$, then there exists a positive constant c_{2} such that

$$
\min _{j \in \mathcal{M}_{*}}\left|\beta_{j}^{M}\right| \geq c_{2} n^{-\kappa}
$$

Proof. From the proof of Lemma 2, we know that $\beta_{j}^{M}=\operatorname{cov}\left[Y, f_{j}\left(X_{j}, \alpha_{j}^{M}\right)\right] / \mathrm{E} f_{j}^{2}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right)$, then under Condition (B1), Lemma 3 holds by taking $c_{2}=c_{1} / k_{4}$.

Lemma 4. If Condition (B4) holds,

$$
P(|Y| \geq y) \leq s_{2} \exp \left[-m_{2} y^{\frac{a}{a-1}}\right]
$$

with $s_{2}=s_{0}^{\nu_{n}} s_{1}$ and $m_{2}=2^{-\frac{a}{a-1}}\left(m_{0} A_{1} \nu_{n}+m_{1}\right)^{-\frac{1}{a-1}}$.
Proof. Under Condition (B4), since $Y=\sum_{j=1}^{p_{n}} \beta_{j} f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}\right)+\epsilon$, we have

$$
\begin{aligned}
& \mathrm{E} \exp (t Y)=\prod_{j=1}^{p_{n}} \mathrm{E}\left[\exp \left(t \beta_{j} f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}\right)\right)\right] \mathrm{E}[\exp (t \epsilon)] \\
\leq & {\left[s_{0} \exp \left(m_{0} A_{1} t^{a}\right)\right]^{\nu_{n}} s_{1} \exp \left(m_{1} t^{a}\right) \leq s_{0}^{\nu_{n}} s_{1} \exp \left[\left(m_{0} A_{1} \nu_{n}+m_{1}\right) t^{a}\right] . }
\end{aligned}
$$

By the exponential Chebyshev's inequality, we have

$$
\mathrm{P}(Y \geq y) \leq \exp (-t y) \mathrm{E}[\exp (t Y)] \leq s_{0}^{\nu_{n}} s_{1} \exp (-t y) \exp \left[\left(m_{0} A_{1} \nu_{n}+m_{1}\right) t^{a}\right]
$$

Take $t=\left[\frac{y}{2\left(m_{0} A_{1} \nu_{n}+m_{1}\right)}\right]^{\frac{1}{a-1}}$ for $a>1$, the above inequality can be simplified as $\mathrm{P}(Y \geq y) \leq s_{2} \exp \left[-m_{2} y^{\frac{a}{a-1}}\right]$, with $s_{2}=s_{0}^{\nu_{n}} s_{1}$ and $m_{2}=2^{-\frac{a}{a-1}}\left(m_{0} A_{1} \nu_{n}+\right.$ $\left.m_{1}\right)^{-\frac{1}{a-1}}$. By similar arguments, we have

$$
\begin{aligned}
& \mathrm{P}(Y \leq-y)=\mathrm{P}(-Y \geq y) \leq \exp (-t y) \mathrm{E}[\exp (-t Y)] \\
\leq & s_{0}^{\nu_{n}} s_{1} \exp (-t y) \exp \left[\left(m_{0} A_{1} \nu_{n}+m_{1}\right)(-t)^{a}\right] \leq s_{2} \exp \left[-m_{2} y^{\frac{a}{a-1}}\right] .
\end{aligned}
$$

Thus the lemma holds.

Proof of Theorem 3. Note that

$$
\begin{aligned}
& \mathrm{E}\left[\ell\left(\gamma_{j}, X_{j}, Y\right)-\ell\left(\gamma_{j}^{M}, X_{j}, Y\right)\right]\left[1-I_{n}\left(X_{j}, Y\right)\right] \\
\leq & \left.\mid \mathrm{E}\left[\beta_{j}^{2} f_{j}^{2}\left(X_{j}, \alpha_{j}\right)\right] I\left(\mid X_{j}\right) \geq K_{n}\right)\left|+\left|\mathrm{E}\left[\left(\beta_{j}^{M}\right)^{2} f_{j}^{2}\left(X_{j}, \alpha_{j}^{M}\right)\right] I\left(\left|X_{j}\right| \geq K_{n}\right)\right|+B\left(\beta_{j}\right)+B\left(\beta_{j}^{M}\right),\right.
\end{aligned}
$$

where $B\left(\beta_{j}\right)=\left|\mathrm{E}\left[Y \beta_{j} f_{j}\left(X_{j}, \alpha_{j}\right)\right]\left[1-I_{n}\left(X_{j}, Y\right)\right]\right|$. The first two terms are of order $o(1 / n)$ by Condition (B3), and the last two terms can be bounded following from Lemma 4 and the Cauchy-Schwarz inequality. By Theorem 2, for any $t>0$, we have
$\mathrm{P}\left(\sqrt{n}\left\|\hat{\gamma}_{j}^{M}-\gamma_{j}^{M}\right\| \geq 16 k_{n}^{*} \max \left\{k_{1}, A_{1} k_{2}\right\}(1+t) / V_{1}\right) \leq \exp \left(-2 t^{2}\right)+n s_{2} \exp \left[-m_{2}\left(K_{n}^{*}\right)^{\frac{a}{a-1}}\right]$.
For any $c_{3}>0$, by taking $1+t=c_{3} V_{1} n^{1 / 2-\kappa} /\left(16 k_{n}^{*} \max \left\{k_{1}, A_{1} k_{2}\right\}\right)$, it follows that $\mathrm{P}\left(\left\|\hat{\gamma}_{j}^{M}-\gamma_{j}^{M}\right\| \geq c_{3} n^{-\kappa}\right) \leq \exp \left[-c_{4} n^{1-2 \kappa} /\left(k_{n}^{*}\right)^{2}\right]+n s_{2} \exp \left[-m_{2}\left(K_{n}^{*}\right)^{\frac{a}{a-1}}\right]$ holds for some positive constant c_{4}. Then Theorem 3(i) follows from the union bound of probability.

To prove Theorem 3(ii), note that on the event $A_{n} \equiv\left\{\max _{j \in \mathcal{M}_{*}} \| \hat{\beta}_{j}^{M}-\right.$ $\left.\beta_{j}^{M} \| \leq c_{2} n^{-\kappa} / 2\right\}$, by Lemma 3 and the triangular inequality, we have $\left|\hat{\beta}_{j}^{M}\right| \geq$ $c_{2} n^{-\kappa} / 2$, for all $j \in \mathcal{M}_{*}$. Hence, by the choice of ζ_{n}, we have $\mathcal{M}_{*} \subset \hat{\mathcal{N}}_{\zeta_{n}}$. The result now follows from a simple union bound:

$$
\mathrm{P}\left(A_{n}^{c}\right) \leq \nu_{n}\left\{\exp \left[-c_{4} n^{1-2 \kappa} /\left(k_{n}^{*}\right)^{2}\right]+n s_{2} \exp \left[-m_{2}\left(K_{n}^{*}\right)^{\frac{a}{a-1}}\right]\right\} .
$$

This completes the proof.
Proof of Theorem 4. From the proof of Lemma 2, we have that

$$
\beta_{j}^{M}=\sum_{k \in \mathcal{M}_{*}} \beta_{0 k} \mathrm{E}\left[f_{k}\left(X_{k}, \boldsymbol{\alpha}_{0 k}\right) f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right)\right] / \mathrm{E} f_{j}^{2}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right) .
$$

From Condition (B1), it follows that

$$
\left\|\boldsymbol{\beta}^{M}\right\|^{2}=\left\|\boldsymbol{\beta}_{0}^{T} \operatorname{cov}\left[\boldsymbol{f}\left(X, \boldsymbol{\alpha}_{0}\right), \boldsymbol{f}\left(X, \boldsymbol{\alpha}^{M}\right)\right] \boldsymbol{\beta}_{0}\right\|^{2} /\left[\mathrm{E} f_{j}^{2}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right)\right]^{2} \leq k_{5}^{-2} \lambda \max \left(\Sigma_{\boldsymbol{\alpha}}\right)\left\|\Sigma_{\boldsymbol{\alpha}}^{1 / 2} \boldsymbol{\beta}_{0}\right\|^{2} .
$$

From Condition (B7), we have that $\left\|\boldsymbol{\beta}^{M}\right\|^{2} \leq C^{*} \lambda_{\max }\left(\Sigma_{\boldsymbol{\alpha}}\right)$ for some positive constant C^{*}. Then the number of $\left\{j:\left|\beta_{j}^{M}\right|>\rho n^{-\kappa}\right\}$ cannot exceed $O\left\{n^{2 \kappa} \lambda_{\max }\left(\Sigma_{\boldsymbol{\alpha}}\right)\right\}$ for any $\rho>0$. Thus, on the set $B_{n}=\left\{\max _{1 \leq j \leq p_{n}}\left|\hat{\beta}_{j}^{M}-\beta_{j}^{M}\right| \leq\right.$ $\left.\rho n^{-\kappa}\right\}$, the number of $\left\{j:\left|\beta_{j}^{M}\right|>2 \rho n^{-\kappa}\right\}$ cannot exceed the number of $\left\{j:\left|\beta_{j}^{M}\right|>\rho n^{-\kappa}\right\}$, which is bounded by $O\left\{n^{2 \kappa} \lambda_{\max }\left(\Sigma_{\alpha}\right)\right\}$. By taking $\rho=c_{5} / 2$, we have

$$
\mathrm{P}\left(\left|\hat{\mathcal{N}}_{\zeta_{n}}\right| \leq O\left\{n^{2 \kappa} \lambda_{\max }\left(\Sigma_{\boldsymbol{\alpha}}\right)\right\}\right) \geq \mathrm{P}\left(B_{n}\right)
$$

The conclusion follows from Theorem 3(i).

Lemma 5. For $j=1, \cdots, p_{n}$, the marginal residual increment $R_{j}^{*}=0$ if and only if $\operatorname{cov}\left[Y, f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right)\right]=0$.

Proof. From the definition of γ_{0}^{M} and the proof of Lemma 2, we have

$$
\begin{aligned}
\mathrm{R}_{j}^{*} & =2 \beta_{j}^{M} \mathrm{E}\left[Y f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right)\right]-\left(\beta_{j}^{M}\right)^{2} \mathrm{E} f_{j}^{2}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right) \\
& =\left(\beta_{j}^{M}\right)^{2} \mathrm{E} f_{j}^{2}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right)=\operatorname{cov}\left[Y, f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}\right)\right] .
\end{aligned}
$$

Thus the lemma holds.
Lemma 6. If $\operatorname{cov}\left[Y, f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}^{M}\right)\right] \geq c_{6} n^{-\kappa}$ for $j \in \mathcal{M}_{*}$ with two constants $c_{6}>0$ and $0<\kappa<1 / 2$, then

$$
\min _{j \in \mathcal{M}_{*}}\left|R_{j}^{*}\right| \geq c_{6} n^{-\kappa} .
$$

Proof of Theorem 5. By Taylor's expansion, we have

$$
\begin{align*}
2 \mathrm{R}_{j, n} & =\left.\left(\hat{\boldsymbol{\gamma}}_{0}^{M}-\hat{\boldsymbol{\gamma}}_{j}^{M}\right)^{T} \frac{\partial^{2} P_{n} \ell\left(\boldsymbol{\gamma}, \boldsymbol{x}_{j}, \boldsymbol{y}\right)}{\partial \boldsymbol{\gamma} \partial \boldsymbol{\gamma}^{T}}\right|_{\boldsymbol{\gamma}=\boldsymbol{\gamma}_{*}}\left(\hat{\boldsymbol{\gamma}}_{0}^{M}-\hat{\boldsymbol{\gamma}}_{j}^{M}\right) \\
& =\left.\left(\hat{\beta}_{j}^{M}\right)^{2} \frac{\partial^{2} P_{n} \ell\left(\boldsymbol{\gamma}, \boldsymbol{x}_{j}, \boldsymbol{y}\right)}{\partial \boldsymbol{\beta}^{2}}\right|_{\boldsymbol{\gamma}=\boldsymbol{\gamma}_{*}}=\frac{2}{n}\left(\hat{\beta}_{j}^{M}\right)^{2} \sum_{i=1}^{n} f_{j}^{2}\left(x_{i j}, \boldsymbol{\alpha}_{j, *}\right),(\tag{S1.10}
\end{align*}
$$

where $\boldsymbol{\gamma}_{*}=\left(\beta_{j, *}, \boldsymbol{\alpha}_{j, *}^{T}\right)^{T}$ lies between $\hat{\boldsymbol{\gamma}}_{0}^{M}$ and $\hat{\boldsymbol{\gamma}}_{j}^{M}$. And we have

$$
\frac{2}{n} \sum_{i=1}^{n} f_{j}^{2}\left(x_{i j}, \boldsymbol{\alpha}_{j, *}\right) \geq \min _{\boldsymbol{\alpha}_{j} \in \mathcal{H}_{j}, f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}\right) \leq K} \frac{2}{n} \sum_{i=1}^{n} f_{j}^{2}\left(x_{i j}, \boldsymbol{\alpha}_{j}\right) I\left\{f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}\right) \leq K\right\}
$$

for any given K. By the Hoeffding inequality, it follows that

$$
P\left\{\left|\left(P_{n}-P\right) f_{j}^{2}\left(X_{j}, \boldsymbol{\alpha}_{j}\right) I\left\{\left|f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}\right)\right| \leq K\right\}\right|>\rho\right\} \leq \exp \left\{-2 n \rho^{2} /\left(4 K^{4}\right)\right\}
$$

for any $\rho>0$. By taking $\rho=n^{-\kappa / 2}$, we have

$$
P\left\{\left|\left(P_{n}-P\right) f_{j}^{2}\left(X_{j}, \boldsymbol{\alpha}_{j}\right) I\left\{\left|f_{j}\left(X_{j}, \boldsymbol{\alpha}_{j}\right)\right| \leq K\right\}\right|>n^{-\kappa / 2}\right\} \leq \exp \left\{-2 n^{1-\kappa} /\left(4 K^{4}\right)\right\} .
$$

Since $\mathrm{E} f_{j}^{2}\left(X_{j}, \boldsymbol{\alpha}_{j}\right) \geq k_{5}$, consequently, with probability tending to 1 exponentially fast, we have $\frac{2}{n} \sum_{i=1}^{n} f_{j}^{2}\left(x_{i j}, \boldsymbol{\alpha}_{j, *}\right) \geq k_{5} / 2$. The desired result thus follows from Theorem 3.

Proof of Theorem 6. By (S1.10) and Condition (B1), with probability tending to 1 exponentially fast, we have that

$$
2 \mathrm{R}_{j, n} \leq \max _{\boldsymbol{\alpha}_{j} \in \mathcal{H}_{j}} \frac{2}{n}\left(\hat{\boldsymbol{\beta}}_{j}^{M}\right)^{2} \sum_{i=1}^{n} f_{j}^{2}\left(x_{i j}, \boldsymbol{\alpha}_{j}\right) \leq 4 \mathrm{E} f_{j}^{2}\left(X_{j}, \boldsymbol{\alpha}_{j}\right) \leq 4 k_{4}\left(\hat{\boldsymbol{\beta}}_{j}^{M}\right)^{2}
$$

uniformly in j. Then if $\mathrm{R}_{j, n}>c_{7} n^{-2 \kappa}$, then $\left|\hat{\beta}_{j}^{M}\right| \geq D^{*} n^{-\kappa}$, with exception on a set with negligible probability, where $D^{*}=\left[c_{7} /\left(2 k_{4}\right)\right]^{1 / 2}$. This implies that $\left|\hat{\mathcal{M}}_{\xi_{n}}\right| \leq\left|\hat{\mathcal{N}}_{\zeta_{n}}\right|$ with $\xi_{n}=D^{*} n^{-\kappa}$. The conclusion then follows from Theorem 4.

References

Fan, J. and R. Song (2010). Sure independence screening in generalized linear models with np-dimensionality. The Annals of Statistics 38, 3567-3604.

