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Supplementary Material

S1 Proofs

Proof of Theorem 1. Define two n × p matrices W = (wij) and Ŵ = (ŵij)

with wij = β0jfj(xij ,α0j) and ŵij = β̂jfj(xij , α̂j), where β̂j and α̂j are initial
estimates defined in Section 2, i = 1, 2, · · · , n and j = 1, 2, · · · , p.

The proof of Theorem 1(i) follows straightly from the proof of Theorem 1 of
Yuan and Lin (2007) by noting that the key steps are to establish their Equations
(21), (22), (28), and (30). In our setting, these correspond to showing that

n−1(Ŵ
T
Ŵ ) = n−1(W TW )+Op(δn) and every element of n−1(Ŵ −W )Ty is of

order Op(δn), where y = (y1, y2, · · · , yn)T . These follow directly from Conditions

(A1)-(A3) and the assumption that max1≤j≤p(|β̂j − β0j |+ ‖α̂j −α0j‖) = Op(δn)
and thus Theorem 1(i) holds. The proof of Theorem 1(ii) follows directly by
combining the results of Theorem 1(i) and the root n consistency of the NLS
estimator γ̂. �

In order to prove Theorem 2, we first give a lemma. For any N ≤ δ, let

G1(N) = sup
γ∈A(N)

|(Pn − P ){`(γ,x,y)− `(γ0,x,y)}In(x,y)|,

where A(N) is defined in Condition (A5). The next lemma is about the upper
bound of the tail probability of G1(N) in the neighborhood of A(N).

Lemma 1. Under Conditions (A1), (A3) and (A7), for any t > 0,

P
(
G1(N) ≥ 4k∗nN max{k1, A1k2}(p/n)1/2(1 + t)

)
≤ exp(−2t2).
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Proof. By Conditions (A3) and (A7), the first-order Taylor expansion, the tri-
angular inequality and the Cauchy-Schwarz inequality, we have that on the set
Ωn,

|`(γ,X, Y )− `(γ0,X, Y )| ≤ k∗n|
p∑
j=1

βjfj(Xj ,αj)−
p∑
j=1

β0jfj(Xj ,α0j)|

≤ k∗n|
p∑
j=1

βjfj(Xj ,αj)−
p∑
j=1

β0jfj(Xj ,αj)|+ k∗n|
p∑
j=1

β0jfj(Xj ,αj)−
p∑
j=1

β0jfj(Xj ,α0j)|

≤ k∗n[

p∑
j=1

(βj − β0j)2]1/2[
p∑
j=1

f2j (Xj ,αj)]
1/2 + k∗n[

p∑
j=1

β20j ]
1/2{

p∑
j=1

[fj(Xj ,αj)− fj(Xj ,α0j)]
2}1/2

≤ k∗n
√
pk1[

p∑
j=1

(βj − β0j)2]1/2 + k∗n
√
pA1k2(

p∑
j=1

‖αj −α0j‖2)1/2

≤ k∗n
√
pmax{k1, A1k2}‖γ − γ0‖, (S1.1)

by using [
∑p

j=1 f
2
j (Xj ,αj)]

1/2 ≤ √p‖fj(Xj ,αj)‖∞ ≤
√
pk1 and [

∑p
j=1 β

2
0j ]

1/2 ≤√
pA1 with A1 defined in Condition (A1) and k∗n = 2(k1 + K∗n). On the set

Ωn, by the definition of A(N), the above random variable is further bounded by
k∗n
√
pmax{k1, A1k2}N .

Let ε = (ε1, · · · , εn)T be a Rademacher sequence and apply the symmetriza-
tion theorem (Lemma 2 in Fan and Song (2010)) to yield that

EG1(N) ≤ 2E

[
sup

γ∈A(N)
|Pnε{`(γ,x,y)− `(γ0,x,y)}In(x,y)|

]
. (S1.2)

By the contraction theorem (Lemma 3 in Fan and Song (2010)) and Condition
(A3), we can bound the right-hand side of (S1.2) further by

4k∗nE{ sup
γ∈A(N)

|Pn ε[
p∑
j=1

βjfj(xj ,αj)−
p∑
j=1

β0jfj(xj ,α0j)]In(x,y)|}. (S1.3)
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By similar arguments to (S1.1), the expectation in (S1.3) is bounded by

E‖Pn ε[
p∑
j=1

f2j (xj ,αj)]
1/2In(x,y)‖ sup

γ∈A(N)
[

p∑
j=1

(βj − β0j)2]1/2

+ [

p∑
j=1

β20j ]
1/2E

(
sup

γ∈A(N)
|Pn ε{

p∑
j=1

[fj(xj ,αj)− fj(xj ,α0j)]
2}1/2In(x,y)|

)
≤ N

(
E‖

p∑
j=1

f2j (Xj ,αj)‖
In(X, Y )

n

)1/2
+
√
pA1

(
E‖

p∑
j=1

[fj(Xj ,αj)− fj(Xj ,α0j)]
2‖In(X, Y )

n

)1/2
≤ N max{k1, A1k2}(p/n)1/2.

So we conclude that EG1(N) ≤ 4k∗nN max{k1, A1k2}(p/n)1/2. Hence, from the
concentration theorem (Lemma 4 in Fan and Song (2010)), we have that

P
(
G1(N) ≥ 4k∗nN max{k1, A1k2}(p/n)1/2(1 + t)

)
≤ exp

(
−n[4k∗nN max{k1, A1k2}(p/n)1/2t]2

8(k∗n)2qmax{k21, A2
1k

2
2}N2

)
= exp(−2t2).

This proves the lemma.

Proof of Theorem 2. Similar to the proof of Theorem 1 in Fan and Song (2010),
we define a convex combination γs = sγ̂+(1−s)γ0 with s = (1+‖γ̂−γ0‖/N)−1.
Clearly we have 0 < s < 1 and ‖γs − γ0‖ = s‖γ̂ − γ0‖ = (1 − s)N ≤ N , so
γs ∈ A(N). Due to the local convexity (Condition (A5)), we have

Pn`(γs,x,y) ≤ sPn`(γ̂,x,y) + (1− s)Pn`(γ0,x,y) ≤ Pn`(γ0,x,y). (S1.4)

Since γ0 is the minimizer of E`(γ,X, Y ), we have from (S1.4) that

0 ≤ E[`(γs,X, Y )− `(γ0,X, Y )] ≤ (P −Pn)[`(γs,X, Y )− `(γ0,X, Y )] ≤ G(N),
(S1.5)

where G(N) = supγ∈A(N) |(Pn − P )[`(γ,X, Y )− `(γ0,X, Y )]|.

Since γ0 is the unique minimizer of E`(γ,X, Y ) (Condition (A2)), it follows

that at γ0, the first-order derivative ∂E`(γ,X,Y )
∂γ equals to zero and the second-

order derivative ∂2E`(γ,X,Y )
∂γ∂γT is positive definite. By Condition (A4), ∂2E`(γ,X,Y )

∂γ∂γT

in a small neighborhood of γ0 is bounded away from 0 and +∞. Without loss
of generality, we take this small neighborhood as A(N). Therefore, there exists
a constant V1 such that for any γ ∈ A(N),

E[`(γ,X, Y )− `(γ0,X, Y )] ≥ V1‖γ − γ0‖2. (S1.6)
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Combining (S1.5) and (S1.6), it follows that

‖γs − γ0‖ ≤ [G(N)/V1]
1/2. (S1.7)

Next we use (S1.7) to conclude the result. Note that for any u, P(‖γs − γ0‖ ≥
u) ≤ P(G(N) ≥ V1u2). Setting u = N/2, we have

P(‖γs − γ0‖ ≥ N/2) ≤ P(G(N) ≥ V1N2/4). (S1.8)

Using the definition of γs with s = 1/2, the left-hand side of (S1.8) is the same
as P(‖γ̂ − γ0‖ ≥ N). Now, by taking N = min{4an(1 + t)/V1, δ} with an =
4k∗n max{k1, A1k2}

√
p/n, we have

P
(
‖γ̂ − γ0‖ ≥ N

)
≤ P

(
G(N) ≥ V1N2/4

)
= P

(
G(N) ≥ Nan(1 + t)

)
≤ P

(
G(N) ≥ Nan(1 + t),Ωn,∗

)
+ P

(
Ωc
n,∗
)
, (S1.9)

where Ωn,∗ = {‖Xi‖ ≤ Kn, |Yi| ≤ K∗n}.

On the set Ωn,∗, since supγ∈A(N) Pn|`(γ, X, Y )−`(γ0, X, Y )|(1−In(X,Y )) =
0, by the triangular inequality, we have G(N) ≤ G1(N)+supγ∈A(N) |E[`(γ, X, Y )−
`(γ0, X, Y )](1−In(X,Y ))|. It follows from Condition (A7) that (S1.9) is bounded
by P(G1(N) ≥ Nan(1 + t) + o(q/n)) + nP((X,Y ) ∈ Ωc

n). The conclusion follows
from Lemma 1. �

Lemma 2. For j = 1, · · · , pn, the marginal regression parameters βMj = 0 if and

only if cov[Y, fj(Xj ,α
M
j )] = 0.

Proof. As defined in (7), γMj is the minimizer of E`(γj , Xj , Y ), it follows that

the first-order derivative
∂E`(γj ,Xj ,Y )

∂γj
at γMj equals to zero. By Efj(Xj ,α

M
j ) = 0

for j = 1, · · · , pn, the score equation of the marginal regression at βMj takes the
following form:

∂E[Y − βMj fj(Xj , α
M
j )]2

∂βMj
= −2E[Y − βMj fj(Xj , α

M
j )]fj(Xj , α

M
j )

= −2E[Y fj(Xj , α
M
j )] + 2βMj Ef2j (Xj ,α

M
j )

= −2
∑
k∈M∗

β0kE[fk(Xk, α0k)fj(Xj , α
M
j )] + 2βMj Ef2j (Xj ,α

M
j ).

Moreover, we have

cov[Y, fj(Xj , α
M
j )] = cov{[

∑
k∈M∗

β0kfk(Xk, α0k)], fj(Xj , α
M
j )} =

∑
k∈M∗

β0kE[fk(Xk, α0k)fj(Xj , α
M
j )].
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Then

0 =
∂E[Y − βMj fj(Xj , α

M
j )]2

∂βMj
= −2cov[Y, fj(Xj , α

M
j )] + 2βMj Ef2j (Xj ,α

M
j ).

So we have βMj = cov[Y, fj(Xj , α
M
j )]/Ef2j (Xj ,α

M
j ). Thus this lemma holds.

Corollary 1. If the partial orthogonality condition holds, that is, {fj(Xj ,α
M
j ), j /∈

M∗} is independent of {fj(Xj ,α
M
j ), j ∈M∗}, then βMj = 0, for j /∈M∗.

Lemma 3. Under Condition (B1), if cov[Y, fj(Xj ,α
M
j )] ≥ c1n

−κ for j ∈ M∗
with two constants c1 > 0 and 0 < κ < 1/2, then there exists a positive constant
c2 such that

min
j∈M∗

|βMj | ≥ c2n−κ.

Proof. From the proof of Lemma 2, we know that βMj = cov[Y, fj(Xj , α
M
j )]/Ef2j (Xj ,α

M
j ),

then under Condition (B1), Lemma 3 holds by taking c2 = c1/k4.

Lemma 4. If Condition (B4) holds,

P(|Y | ≥ y) ≤ s2 exp[−m2y
a

a−1 ]

with s2 = sνn0 s1 and m2 = 2−
a

a−1 (m0A1νn +m1)
− 1

a−1 .

Proof. Under Condition (B4), since Y =
∑pn

j=1 βjfj(Xj ,αj) + ε, we have

E exp(tY ) =

pn∏
j=1

E[exp(tβjfj(Xj ,αj))]E[exp(tε)]

≤ [s0 exp(m0A1t
a)]νns1 exp(m1t

a) ≤ sνn0 s1 exp[(m0A1νn +m1)t
a].

By the exponential Chebyshev’s inequality, we have

P(Y ≥ y) ≤ exp(−ty)E[exp(tY )] ≤ sνn0 s1 exp(−ty) exp[(m0A1νn +m1)t
a].

Take t = [ y
2(m0A1νn+m1)

]
1

a−1 for a > 1, the above inequality can be simplified

as P(Y ≥ y) ≤ s2 exp[−m2y
a

a−1 ], with s2 = sνn0 s1 and m2 = 2−
a

a−1 (m0A1νn +

m1)
− 1

a−1 . By similar arguments, we have

P(Y ≤ −y) = P(−Y ≥ y) ≤ exp(−ty)E[exp(−tY )]

≤ sνn0 s1 exp(−ty) exp[(m0A1νn +m1)(−t)a] ≤ s2 exp[−m2y
a

a−1 ].

Thus the lemma holds.
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Proof of Theorem 3. Note that

E[`(γj , Xj , Y )− `(γMj , Xj , Y )][1− In(Xj , Y )]

≤ |E[β2j f
2
j (Xj , αj)]I(|Xj) ≥ Kn)|+ |E[(βMj )2f2j (Xj , α

M
j )]I(|Xj | ≥ Kn)|+B(βj) +B(βMj ),

where B(βj) = |E[Y βjfj(Xj , αj)][1−In(Xj , Y )]|. The first two terms are of order
o(1/n) by Condition (B3), and the last two terms can be bounded following from
Lemma 4 and the Cauchy-Schwarz inequality. By Theorem 2, for any t > 0, we
have

P
(√

n‖γ̂Mj − γMj ‖ ≥ 16k∗n max{k1, A1k2}(1 + t)/V1

)
≤ exp(−2t2)+ns2 exp[−m2(K

∗
n)

a
a−1 ].

For any c3 > 0, by taking 1 + t = c3V1n
1/2−κ/(16k∗n max{k1, A1k2}), it follows

that P
(
‖γ̂Mj − γMj ‖ ≥ c3n−κ

)
≤ exp[−c4n1−2κ/(k∗n)2] + ns2 exp[−m2(K

∗
n)

a
a−1 ]

holds for some positive constant c4. Then Theorem 3(i) follows from the union
bound of probability.

To prove Theorem 3(ii), note that on the event An ≡ {maxj∈M∗ ‖β̂Mj −
βMj ‖ ≤ c2n

−κ/2}, by Lemma 3 and the triangular inequality, we have |β̂Mj | ≥
c2n
−κ/2, for all j ∈ M∗. Hence, by the choice of ζn, we have M∗ ⊂ N̂ζn . The

result now follows from a simple union bound:

P(Acn) ≤ νn{exp[−c4n1−2κ/(k∗n)2] + ns2 exp[−m2(K
∗
n)

a
a−1 ]}.

This completes the proof. �

Proof of Theorem 4. From the proof of Lemma 2, we have that

βMj =
∑
k∈M∗

β0kE[fk(Xk,α0k)fj(Xj ,α
M
j )]/Ef2j (Xj ,α

M
j ).

From Condition (B1), it follows that

‖βM‖2 = ‖βT0 cov[f(X,α0),f(X,αM )]β0‖2
/

[Ef2j (Xj ,α
M
j )]2 ≤ k−25 λmax(Σα)‖Σ1/2

α β0‖2.

From Condition (B7), we have that ‖βM‖2 ≤ C∗λmax(Σα) for some posi-
tive constant C∗. Then the number of {j : |βMj | > ρn−κ} cannot exceed

O{n2κλmax(Σα)} for any ρ > 0. Thus, on the set Bn = {max1≤j≤pn |β̂Mj −βMj | ≤
ρn−κ}, the number of {j : |βMj | > 2ρn−κ} cannot exceed the number of

{j : |βMj | > ρn−κ}, which is bounded by O{n2κλmax(Σα)}. By taking ρ = c5/2,
we have

P
(
|N̂ζn | ≤ O{n2κλmax(Σα)}

)
≥ P(Bn).

The conclusion follows from Theorem 3(i). �
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Lemma 5. For j = 1, · · · , pn, the marginal residual increment R∗j = 0 if and

only if cov[Y, fj(Xj ,α
M
j )] = 0.

Proof. From the definition of γM0 and the proof of Lemma 2, we have

R∗j = 2βMj E[Y fj(Xj ,α
M
j )]− (βMj )2Ef2j (Xj ,α

M
j )

= (βMj )2Ef2j (Xj ,α
M
j ) = cov[Y, fj(Xj ,αj)].

Thus the lemma holds.

Lemma 6. If cov[Y, fj(Xj ,α
M
j )] ≥ c6n−κ for j ∈M∗ with two constants c6 > 0

and 0 < κ < 1/2, then
min
j∈M∗

|R∗j | ≥ c6n−κ.

Proof of Theorem 5. By Taylor’s expansion, we have

2Rj,n = (γ̂M0 − γ̂Mj )T
∂2Pn`(γ,xj ,y)

∂γ∂γT
|γ=γ∗(γ̂M0 − γ̂Mj )

= (β̂Mj )2
∂2Pn`(γ,xj ,y)

∂β2 |γ=γ∗ =
2

n
(β̂Mj )2

n∑
i=1

f2j (xij ,αj,∗),(S1.10)

where γ∗ = (βj,∗,α
T
j,∗)

T lies between γ̂M0 and γ̂Mj . And we have

2

n

n∑
i=1

f2j (xij ,αj,∗) ≥ min
αj∈Hj ,fj(Xj ,αj)≤K

2

n

n∑
i=1

f2j (xij ,αj)I{fj(Xj ,αj) ≤ K}

for any given K. By the Hoeffding inequality, it follows that

P{|(Pn − P )f2j (Xj ,αj)I{|fj(Xj ,αj)| ≤ K}| > ρ} ≤ exp{−2nρ2/(4K4)}

for any ρ > 0. By taking ρ = n−κ/2, we have

P{|(Pn − P )f2j (Xj ,αj)I{|fj(Xj ,αj)| ≤ K}| > n−κ/2} ≤ exp{−2n1−κ/(4K4)}.

Since Ef2j (Xj ,αj) ≥ k5, consequently, with probability tending to 1 exponen-

tially fast, we have 2
n

∑n
i=1 f

2
j (xij ,αj,∗) ≥ k5/2. The desired result thus follows

from Theorem 3. �

Proof of Theorem 6. By (S1.10) and Condition (B1), with probability tending
to 1 exponentially fast, we have that

2Rj,n ≤ max
αj∈Hj

2

n
(β̂

M

j )2
n∑
i=1

f2j (xij ,αj) ≤ 4Ef2j (Xj ,αj) ≤ 4k4(β̂
M

j )2,



Variable Selection for Sparse High-Dimensional Nonlinear Regressions S8

uniformly in j. Then if Rj,n > c7n
−2κ, then |β̂Mj | ≥ D∗n−κ, with exception on

a set with negligible probability, where D∗ = [c7/(2k4)]
1/2. This implies that

|M̂ξn | ≤ |N̂ζn | with ξn = D∗n−κ. The conclusion then follows from Theorem 4.
�
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