Supplementary of “General Sliced Latin Hypercube
Designs”

Proof of Theorem 1

Proof. For (i), the result follows immediately from Lemma 4, Lemma 2 in Qian (2012)
and Theorem 1 in McKay et al. (1979).

For (ii), varpsru (1) = varspm—rnp(7;) follows immediately from Lemma 4. The
later part of (3.18) follows from the proof of Theorem 1 in Qian (2012).

For (iii), we first show varpsrp (1) < varspp—rnp(7).

varpsru (M) = varpsru ( Z Z Acser fleser)
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where the third equality follows from Lemma 4. We now proceed to show covpsr i (fics; ey s flessey ) <

0 for ca1,c00 = 1,...,89,¢01 # C22,¢1 = 1,...,51. Using the notation in Section 3, we
have

COVDSLH (ﬂcmcl ’ ,[LCQQCl) = COV(’ITLil Z f021cl gi)lcl ! Z fczzcl gg)zcl ) (2)

= Cov(fclel( czlcl) f02261 (dggcl))

For any dimension k of dgzcl and dgzcl, k = 1,...,d, the joint probability density
function between dgle was derived in (15). The probability density function is similar to
(5) in Qian(2009) except the parameter values. Thus, similar to the proof of Theorem 1 in
Qian (2009), we can prove alc2161 and dgfgl are negatively quadrant dependent (Lehmann,
1966). That is, for 0 < u,v <1,

Pr(d(l%) < w,d¥) <o) <Pr(d(F) <w)Pr(dF) <o) (3)
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This result and Theorem 1 in Lehmann (1966) together yields that

COV(meCl (dgzcl) fCQQCl (dgicl)) S O (4)

Since As are non-negative, plugging (4) into (2) proves varpsrm () < varsru—rnp(7),
the first inequality in (3.19).
To show the second inequality in (3.19), note that
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From (ii) of Theorem 1 in Qian (2012), we have, for any co = 1,..., s2,
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(5), (6), and (7) easily lead to the second inequality in (3.19).
The last inequality in (3.19) follows immediately from the fact that varpu(fic,e,) <
VaI‘HD(ﬂQCl), 02:1,...752,61:1,...,81. D

Proof of Theorem 2

Proof. From Lemma 4, each slice of a DSLHD is statistically equivalent to an ordinary
LHD. From Lemma 2 in Qian (2012), a slice of an SLHD is statistically equivalent to
an ordinary LHD. Part (i) then follows immediately from Theorem 1 in Stein (1987) or
Theorem 1 in Loh (1996).

From the equivalence of D, to an SLHD in Lemma 4 and the definition of SLH-IND,
(ii) follows immediately from (ii) of Theorem 2 in Qian (2012).

For (iii), Lemma 4 gives that, forc; = 1,...,s1,c0 = 1,...,82,J1,J2e = 1,...,m,j1 #
J2s

COV[fcz(n( 02c1) frzm( 0201 = 8182 Z/ f02c1 $k d$k +O( ) (8)

The proof of Lemma 1 in Qian (2009) gives that, forca = 1,...,82, ¢c11,¢12 = 1,...,81,¢11 #
C12, .jla.jQ = 17"'7m

oV [feers (@heyy )s fesers (Bey,)] = o(m™h). (9)

Similarly, by plugging (15) into the proof of Lemma 1 in Qian (2009), we have, for
C21,Co0 = 1,...,89,C21 # Co2, C11,C20 = 1,...,81, J1,j2 = 1,....m,

OVl fenrern (@hyc0,)s Sesens (d22,c,,)] = o(m ™). (10)

We can then easily show (3.22) by combining (8), (9) and (10). O

Proof of Lemma 3

Proof. First note that the dimensions of H are exchangeable. To prove (i), it suffices
to consider hj11 because of the exchangeability. By symmetry, Pr(hi;; = u) takes the
same value for all u € Z,,. So we have Pr(hi11 = u) = 1/n. Thus, (3.13) holds.

To prove (ii), it suffices to consider hy1; and hg1; because of the exchangeability of H.
Since the set h(:,1,1) is an LHD of m levels, we have for u, v with [u/s2s1] = [v/s2s1],
Pr(hi11 = u, ho11 = v) = 0. Because there are n(n — s2s1) pairs of (u,v) that satisfy the
condition [u/s281] # [v/s281], by symmetry, Pr(hi11 = u, ho11 = v) = [n(n — sgs1)] 7!
for any such (w,v). Thus (3.14) holds.



To prove (iii), it suffices to consider hq11 and hi12 because of the exchangeability of H.
Let B; and Bz be defined as in (3.10) and (3.11) respectively. Clearly B; and Bs have
m(m — 1)(s251)? and msy(s; — 1)s2 pairs, respectively. For any (u,v) € B{() BS, where
B§ and B§ are the compliments of By and Ba, respectively, we have Pr(hi11 = u, h112 =
v) = 0. This is obvious from the construction of DSLHD in Section 2 because h(:,1,:)
has to be an LHD of ms; levels. Therefore we only need to consider (u,v) in By and
Bs. For (u,v) in By, without loss of generality, consider Pr(hi1x = 1,h112 = s281 + 1).
Recall the four-step procedure for constructing general sliced Latin hypercube design in
Section 2. Denote the ith row permutation in Step 2 as 7%;. Let v =SPV(s1; m) be the
generated one-layer permutation vector in Step 3 for i = 1. We have

Pr(hiiy = 1, hig = sas1 +1) = Pr(ng(1) = 1,75 (1) = L[] = Lvm + 1] = s; + 1)
= Pr(rp(l) = )Pr(r (1) = )Pr(v[l] = Lvim + 1] = 51 + 1)
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where the second equality holds because of the independence between row permutations
and the independence between row permutations in Step 2 and the generation of SPV
in Step 3. The third equality follows from Pr(rk (1) = 1) = Pr(zit (1) = 1) = 1/s0,
which is straightforward because H in Step 1 has s3 columns, and Pr(v[l] = 1,v[m+1] =
s1+1=1/(ms1)?, which can be derived from (iii) of Lemma 1 in Qian (2012). Similarly
we can obtain the same probability for the other pairs in B;. Since the cardinality of
By is m(m — 1)(s281)?, we have the probability that a pair (u,v) comes from Bj is
m(m — 1)(s2581)%/n? = 1 — 1/m. Hence the probability that a pair (u,v) comes from
By is 1/m. Since the cardinality of By is msi(s; — 1)s2, Pr(hi;1 = u,hi12 = v) =
1/m(ms1(s1 — 1)s3) = 1/n(n — msy) for any pair of (u,v) in By. This concludes the
proof.

The technique used to prove (iv) is quite similar to (iii). Let B;, By and Bs be defined
in (3.10), (3.11), and (3.12) respectively. Define the permutations and SPV as those
in (iii). Without loss of generality, consider the joint distribution of hq11 and hiog.
By a similar argument, we can show that for any (u,v) from B; or Bs, Pr(hi;n =
u,h121 = v) = 1/n%. Since the cardinalities of B; and By are m(m — 1)(s2s1)? and
msi(sy — 1)s3, respectively, the probability that a pair (u,v) comes from either By or
By is [m(m — 1)(s2s1)? + msi(s1 — 1)s3]/n? = 1 — sa/n. Therefore the probability
that a pair (u,v) comes from Bj is s3/n. Since the cardinality of Bs is sa(sq — 1)s1m,
Pr(hi11 = u,h11 = v) = sa/n(sa2(s2 — 1)sym) = 1/[n(n — ms;)] for any (u,v) in Bs.
This concludes the proof. O

Proof of Lemma 4

Proof. Forr =1,...,89 and ¢ =1,..., s1, express the (i, k)th entry d; of D, as

b;kS2s W;ikS2 — €k — U;
d, = ST WikS2 T Gk T Wik G =1 g, (11)
n

where {b1g,...,bmk} constitute a uniform permutation on Z,, — 1; each w;j, is a discrete

random variable with the probability mass function Pr(w; = f) = 51_1, =1,...,s1;



each e;i, is a discrete random variable with the probability mass function Pr(e;, = a) =
52_1,(1 = 0,...,82 — 1; where u;; are independent UJ0,1) random variables; and b,
w;r and wu;p are mutually independent. Let l;; = w;rS2 — e;5. From the probability
mass functions and the mutual independence, it is easy to see that the probability mass
function of I is Pr(lix = 1) = (s281)7 1,1 = 1,2,...,5951. Letting vix = lix — ik, dix
in (11) becomes b;r/m + v;i/n. Since {b1g, bak,....bmk} i a uniform permutation on
Z ., — 1 and b and vy, are mutually independent, it remains to verify that “it is a
U(0, L] random variable, which is shown as follows. For z € (0,1/m], let zo = [nz] and
note that

Pr(®t <z) = — Y Pr(t= <y
8281 “— n
1A a— u; To — Uj ety a — u;
= — Pr(=—*% < )4+ Pr(22— % <) 4 Pr(Z— "
5231[; ( - <z) ( - <) a:%;rl ( -

Note that Pr(*=-% < x) =1fora=1,...,29 — 1; Pr(®™="k < x) = 1 — (z9 — nx);
and Pr(*=rt <) =0 for a = 20 + 1,..., s251, which simplifies (12) to maz. Thus &
is a U(0, =] random variable.

We have shown the statistical equivalence of D,.. to an ordinary LHD. Hence to
prove the statistical equivalence of D, to an SLHD, we only need to consider the joint
distribution of two points from two different slices in D,.. Without loss of generality,
consider the joint distribution between D,1(1,:) and D,2(1,:), and use X; and X3 to
denote them respectively. For 0 < 21,22 < 1 and any positive integer ¢, define d,(z1, 22)

as follows:
]_ =
byfer, ) = 4 1411 = az) (13)
0, otherwise;

From Lemma 3(iii), it can be shown that the joint density function for X; and X9
is

2d d
n
p(21,22) = m H{@O — €10ms, (21, 25) — e2dm (27, iflzc)}v (14)
k=1
where eg = (s1 — 1)81_1, e1 =1 and ey = —51_1, x’f and x’§ are the kth argument of x;

and x5 respectively. Similarly, from Lemma 1(iii) in Qian (2012), it can be shown that
the joint density function between any two points from two different slices in an SLHD
is the same as (14). We thus prove the statistical equivalence of D, and an SLHD. 0O

Proof of Lemma 5

Proof. Following the notation in (2.1), consider, without loss of generality, the covariance
between D7 and Dsg;. Since the DSLHD is on (0,1], D13 and Dy; are two scalars. For
ease of notation, we use X; and X5 to denote D1; and Ds; respectively. From Lemma
3(iv), the joint density function of X; and Xs is

1 S92

P(21,22) = 14 G, (21, 72) = = 0u (21, 22), (15)



where 5, (21, 22) and 6, (x1, x2) are similarly defined as in (13). The derivation of this
joint density function is as follows. Let Bj, By, B3 be defined as in (3.10), (3.11), and
(3 12), respectively. From Lemma 3 (iv), Pr((u,v) € By) =1 — =+, Pr((u,v) € Bs) =
o and PT(( ) S Bg) = R — mlsl' Let 5m51($17l’2)7 (;m(LZZl,fEQ) and 5n(f£17352) be
snnllarly deﬁned as in (13). The event (u,v) € By is equivalent to d,,(z1,x2) = 0, where
rp = “=M xy = =2 and uy, up are two U0, 1) random variables. Let p; (21, x2) denote
the joint density function of X; and X when d,,(z1,22) = 0. Note that p;(z1,x2)
is a constant since u; and ug are U[0,1) random variables. Let Ay = {(z1,22) €

(0, 1]2|57n(1'175172) = 0} We have

n(n — so8 1
// pl xl,xg d.’Eld.’EQ ( 2 l)pl({El,.’EQ) =1—-——. (16)
A, m

Hence p; (21, 22) = 1. Similarly let Ay = {(z1,22) € (0,1)2|6ns, (21, 22) = 1,0, (21, 22) =
0}, and Az = {(z1,22) € (0,1)%|0m(21,72) = 1,0ms, (v1,72) = 0}. Ay and Az are
equivalent to By and Bj respectively with the relationship x; = “=* and xy = “*2,
where vy and wus are U[0,1) random variables. Let py(z1,22) denote the joint density
function for (x1,x9) € Ag, p3(x1,x2) denote the joint density function for (zq,z9) € As.
We have

so — 1 1
// p2(21, v2)dz1drs = ( 2 )pz(xl,xz) =—, (17)
As msi
and n ) ) )
S951 — S
// ps(z1, x2)dz1dEe = 2 1 2 ————p3(r1,00) = — — —. (18)
As m msq

Hence py(z1,22) = 227 and p3(z1,22) = 1. From (16)-(18), (15) holds.

52
For the covariance between X; and X5, we have

COV(XhXQ) = EX1X2 — EXlEXQ

1 1 1
= / / $1$25m31($1,$2)d$1d$2
0 JO

82—1

1,1
/ / xlxg(sn($17$2)dl‘1d$2. (19)

So — 1 0 0

Here the first equation is just the definition of covariance. For the second equation, plug
(15) into the calculation of EX; X5 and observe the fact that fol fol z1Todx1dTs is equal

to EX;1 X5 since both X; and X, are uniformly distributed, the equation then follows

immediately. Now note that

o/n i/n 2212 1
//5613725 (21, 22)dx1day = Z/( $1dw1/( xgde:Z(W) =5

i—1)/n i—1)/n i1

Similarly,

1 1

1
Soss (11, 9)dary dy = _ .
/0 21020ms, (21, T2)dT1drs 3ms;  12(msp)?

Thus, we have
1 1

12(sy — 1)(ms; )3 *s2

COV(X17X2) = — 1) < 0. (20)
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The conclusion is obvious from (20).



