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Supplementary of “General Sliced Latin Hypercube
Designs”

Proof of Theorem 1

Proof. For (i), the result follows immediately from Lemma 4, Lemma 2 in Qian (2012)
and Theorem 1 in McKay et al. (1979).

For (ii), varDSLH(η̂i) = varSLH−IND(η̂i) follows immediately from Lemma 4. The
later part of (3.18) follows from the proof of Theorem 1 in Qian (2012).

For (iii), we first show varDSLH(η̂) ≤ varSLH−IND(η̂).

varDSLH(η̂) = varDSLH(

s2∑
c2=1

s1∑
c1=1

λc2c1 µ̂c2c1) (1)

=

s2∑
c2=1

varDSLH(

s1∑
c1=1

λc2c1 µ̂c2c1) +

s2∑
c21=1

s2∑
c22=1,c22 ̸=c21

covDSLH(

s1∑
c1=1

λc21c1 µ̂c21c1 ,

s1∑
c1=1

λc22c1 µ̂c22c1)

=

s2∑
c2=1

varSLH−IND(

s1∑
c1=1

λc2c1 µ̂c2c1) +

s2∑
c21=1

s2∑
c22=1,c22 ̸=c21

covDSLH(

s1∑
c1=1

λc21c1 µ̂c21c1 ,

s1∑
c1=1

λc22c1 µ̂c22c1),

where the third equality follows from Lemma 4. We now proceed to show covDSLH(µ̂c21c1 , µ̂c22c1) ≤
0 for c21, c22 = 1, . . . , s2, c21 ̸= c22, c1 = 1, . . . , s1. Using the notation in Section 3, we
have

covDSLH(µ̂c21c1 , µ̂c22c1) = cov(m−1
m∑
c=1

fc21c1(d
(c)
c21c1),m

−1
m∑
c=1

fc22c1(d
(c)
c22c1)) (2)

= cov(fc21c1(d
(1)
c21c1), fc22c1(d

(1)
c22c1)).

For any dimension k of d(1)
c21c1 and d(1)

c21c1 , k = 1, . . . , d, the joint probability density

function between d
(1k)
c21c1 was derived in (15). The probability density function is similar to

(5) in Qian(2009) except the parameter values. Thus, similar to the proof of Theorem 1 in

Qian (2009), we can prove d
(1k)
c21c1 and d

(1k)
c22c1 are negatively quadrant dependent (Lehmann,

1966). That is, for 0 ≤ u, v ≤ 1,

Pr(d(1k)c21c1 ≤ u, d(1k)c22c1 ≤ v) ≤ Pr(d(1k)c21c1 ≤ u)Pr(d(1k)c22c1 ≤ v). (3)

This result and Theorem 1 in Lehmann (1966) together yields that

cov(fc21c1(d
(1)
c21c1), fc22c1(d

(1)
c22c1)) ≤ 0. (4)

Since λs are non-negative, plugging (4) into (2) proves varDSLH(η̂) ≤ varSLH−IND(η̂),
the first inequality in (3.19).

To show the second inequality in (3.19), note that

varSLH−IND(η̂) =

s2∑
c2=1

varSLH−IND(

s1∑
c1=1

λc2c1 µ̂c2c1), (5)
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and

varLH(η̂) =

s2∑
c2=1

varLH(

s1∑
c1=1

λc2c1 µ̂c2c1). (6)

From (ii) of Theorem 1 in Qian (2012), we have, for any c2 = 1, . . . , s2,

varSLH−IND(

s1∑
c1=1

λc2c1 µ̂c2c1) ≤ varLH(

s1∑
c1=1

λc2c1 µ̂c2c1). (7)

(5), (6), and (7) easily lead to the second inequality in (3.19).
The last inequality in (3.19) follows immediately from the fact that varLH(µ̂c2c1) ≤

varIID(µ̂c2c1), c2 = 1, . . . , s2, c1 = 1, . . . , s1.

Proof of Theorem 2

Proof. From Lemma 4, each slice of a DSLHD is statistically equivalent to an ordinary
LHD. From Lemma 2 in Qian (2012), a slice of an SLHD is statistically equivalent to
an ordinary LHD. Part (i) then follows immediately from Theorem 1 in Stein (1987) or
Theorem 1 in Loh (1996).

From the equivalence of Dr to an SLHD in Lemma 4 and the definition of SLH-IND,
(ii) follows immediately from (ii) of Theorem 2 in Qian (2012).

For (iii), Lemma 4 gives that, for c1 = 1, . . . , s1, c2 = 1, . . . , s2, j1, j2 = 1, . . . ,m, j1 ̸=
j2,

cov[fc2c1(d
j1
c2c1), fc2c1(d

j2
c2c1)] = −s1s2

n

d∑
k=1

∫ 1

0

f−k
c2c1(xk)dxk + o(m−1). (8)

The proof of Lemma 1 in Qian (2009) gives that, for c2 = 1, . . . , s2, c11, c12 = 1, . . . , s1, c11 ̸=
c12, j1, j2 = 1, . . . ,m

cov[fc2c11(d
j1
c2c11), fc2c12(d

j2
c2c12)] = o(m−1). (9)

Similarly, by plugging (15) into the proof of Lemma 1 in Qian (2009), we have, for
c21, c22 = 1, . . . , s2, c21 ̸= c22, c11, c22 = 1, . . . , s1, j1, j2 = 1, . . . ,m,

cov[fc21c11(d
j1
c21c11), fc22c12(d

j2
c22c12)] = o(m−1). (10)

We can then easily show (3.22) by combining (8), (9) and (10).

Proof of Lemma 3

Proof. First note that the dimensions of H are exchangeable. To prove (i), it suffices
to consider h111 because of the exchangeability. By symmetry, Pr(h111 = u) takes the
same value for all u ∈ Zn. So we have Pr(h111 = u) = 1/n. Thus, (3.13) holds.
To prove (ii), it suffices to consider h111 and h211 because of the exchangeability of H.
Since the set h(:, 1, 1) is an LHD of m levels, we have for u, v with ⌈u/s2s1⌉ = ⌈v/s2s1⌉,
Pr(h111 = u, h211 = v) = 0. Because there are n(n− s2s1) pairs of (u, v) that satisfy the
condition ⌈u/s2s1⌉ ̸= ⌈v/s2s1⌉, by symmetry, Pr(h111 = u, h211 = v) = [n(n− s2s1)]

−1

for any such (u, v). Thus (3.14) holds.
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To prove (iii), it suffices to consider h111 and h112 because of the exchangeability of H.
Let B1 and B2 be defined as in (3.10) and (3.11) respectively. Clearly B1 and B2 have
m(m− 1)(s2s1)

2 and ms1(s1 − 1)s22 pairs, respectively. For any (u, v) ∈ Bc
1

∩
Bc

2, where
Bc

1 and Bc
2 are the compliments of B1 and B2, respectively, we have Pr(h111 = u, h112 =

v) = 0. This is obvious from the construction of DSLHD in Section 2 because h(:, 1, :)
has to be an LHD of ms1 levels. Therefore we only need to consider (u, v) in B1 and
B2. For (u, v) in B1, without loss of generality, consider Pr(h111 = 1, h112 = s2s1 + 1).
Recall the four-step procedure for constructing general sliced Latin hypercube design in
Section 2. Denote the ith row permutation in Step 2 as πi

H . Let v =SPV(s1; m) be the
generated one-layer permutation vector in Step 3 for i = 1. We have

Pr(h111 = 1, h112 = s2s1 + 1) = Pr(π1
H(1) = 1, πs1+1

H (1) = 1,v[1] = 1,v[m+ 1] = s1 + 1)

= Pr(π1
H(1) = 1)Pr(πs1+1

H (1) = 1)Pr(v[1] = 1,v[m+ 1] = s1 + 1)

=
1

s2

1

s2

1

(ms1)2
=

1

n2
,

where the second equality holds because of the independence between row permutations
and the independence between row permutations in Step 2 and the generation of SPV
in Step 3. The third equality follows from Pr(π1

H(1) = 1) = Pr(πs1+1
H (1) = 1) = 1/s2,

which is straightforward becauseH in Step 1 has s2 columns, and Pr(v[1] = 1,v[m+1] =
s1+1 = 1/(ms1)

2, which can be derived from (iii) of Lemma 1 in Qian (2012). Similarly
we can obtain the same probability for the other pairs in B1. Since the cardinality of
B1 is m(m − 1)(s2s1)

2, we have the probability that a pair (u, v) comes from B1 is
m(m − 1)(s2s1)

2/n2 = 1 − 1/m. Hence the probability that a pair (u, v) comes from
B2 is 1/m. Since the cardinality of B2 is ms1(s1 − 1)s22, Pr(h111 = u, h112 = v) =
1/m(ms1(s1 − 1)s22) = 1/n(n − ms2) for any pair of (u, v) in B2. This concludes the
proof.
The technique used to prove (iv) is quite similar to (iii). Let B1, B2 and B3 be defined
in (3.10), (3.11), and (3.12) respectively. Define the permutations and SPV as those
in (iii). Without loss of generality, consider the joint distribution of h111 and h121.
By a similar argument, we can show that for any (u, v) from B1 or B2, Pr(h111 =
u, h121 = v) = 1/n2. Since the cardinalities of B1 and B2 are m(m − 1)(s2s1)

2 and
ms1(s1 − 1)s22, respectively, the probability that a pair (u, v) comes from either B1 or
B2 is [m(m − 1)(s2s1)

2 + ms1(s1 − 1)s22]/n
2 = 1 − s2/n. Therefore the probability

that a pair (u, v) comes from B3 is s2/n. Since the cardinality of B3 is s2(s2 − 1)s1m,
Pr(h111 = u, h121 = v) = s2/n(s2(s2 − 1)s1m) = 1/[n(n − ms1)] for any (u, v) in B3.
This concludes the proof.

Proof of Lemma 4

Proof. For r = 1, . . . , s2 and c = 1, . . . , s1, express the (i, k)th entry dik of Drc as

dik =
biks2s1 + wiks2 − eik − uik

n
, i = 1, . . . ,m, k = 1, . . . , q. (11)

where {b1k, . . . , bmk} constitute a uniform permutation on Zm−1; each wik is a discrete
random variable with the probability mass function Pr(wik = f) = s−1

1 , f = 1, . . . , s1;



4

each eik is a discrete random variable with the probability mass function Pr(eik = a) =
s−1
2 , a = 0, . . . , s2 − 1; where uik are independent U [0, 1) random variables; and bik,
wik and uik are mutually independent. Let lik = wiks2 − eik. From the probability
mass functions and the mutual independence, it is easy to see that the probability mass
function of lik is Pr(lik = l) = (s2s1)

−1, l = 1, 2, . . . , s2s1. Letting vik = lik − uik, dik
in (11) becomes bik/m + vik/n. Since {b1k, b2k,. . .,bmk} is a uniform permutation on
Zm − 1 and bik and vik are mutually independent, it remains to verify that vik

n is a
U(0, 1

m ] random variable, which is shown as follows. For x ∈ (0, 1/m], let x0 = ⌈nx⌉ and
note that

Pr(
vik
n

≤ x) =
1

s2s1

s2s1∑
a=1

Pr(
a− uik

n
≤ x) (12)

=
1

s2s1
[

x0−1∑
a=1

Pr(
a− uik

n
≤ x) + Pr(

x0 − uik

n
≤ x) +

s2s1∑
a=x0+1

Pr(
a− uik

n
≤ x].

Note that Pr(a−uik

n ≤ x) = 1 for a = 1, . . . , x0 − 1; Pr(x0−uik

n ≤ x) = 1 − (x0 − nx);
and Pr(a−uik

n ≤ x) = 0 for a = x0 + 1, . . . , s2s1, which simplifies (12) to mx. Thus vik

n
is a U(0, 1

m ] random variable.

We have shown the statistical equivalence of Drc to an ordinary LHD. Hence to
prove the statistical equivalence of Dr to an SLHD, we only need to consider the joint
distribution of two points from two different slices in Dr. Without loss of generality,
consider the joint distribution between Dr1(1, :) and Dr2(1, :), and use X1 and X2 to
denote them respectively. For 0 ≤ z1, z2 ≤ 1 and any positive integer q, define δq(z1, z2)
as follows:

δq(z1, z2) =

{
1, ⌈qz1⌉ = ⌈qz2⌉,
0, otherwise;

(13)

From Lemma 3(iii), it can be shown that the joint density function for X1 and X2

is

p(x1, x2) =
n2d

nd(n−m)d

d∏
k=1

{e0 − e1δms1(x
k
1 , x

k
2)− e2δm(xk

1 , x
k
2)}, (14)

where e0 = (s1 − 1)s−1
1 , e1 = 1 and e2 = −s−1

1 , xk
1 and xk

2 are the kth argument of x1

and x2 respectively. Similarly, from Lemma 1(iii) in Qian (2012), it can be shown that
the joint density function between any two points from two different slices in an SLHD
is the same as (14). We thus prove the statistical equivalence of Dr and an SLHD.

Proof of Lemma 5

Proof. Following the notation in (2.1), consider, without loss of generality, the covariance
between D11 and D21. Since the DSLHD is on (0, 1], D11 and D21 are two scalars. For
ease of notation, we use X1 and X2 to denote D11 and D21 respectively. From Lemma
3(iv), the joint density function of X1 and X2 is

p(x1, x2) = 1 +
1

s2 − 1
δms1(x1, x2)−

s2
s2 − 1

δn(x1, x2), (15)
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where δms1(x1, x2) and δn(x1, x2) are similarly defined as in (13). The derivation of this
joint density function is as follows. Let B1, B2, B3 be defined as in (3.10), (3.11), and
(3.12), respectively. From Lemma 3 (iv), Pr((u, v) ∈ B1) = 1 − 1

m , Pr((u, v) ∈ B2) =
1

ms1
, and Pr((u, v) ∈ B3) = 1

m − 1
ms1

. Let δms1(x1, x2), δm(x1, x2) and δn(x1, x2) be
similarly defined as in (13). The event (u, v) ∈ B1 is equivalent to δm(x1, x2) = 0, where
x1 = u−u1

n , x2 = v−u2

n and u1, u2 are two U [0, 1) random variables. Let p1(x1, x2) denote
the joint density function of X1 and X2 when δm(x1, x2) = 0. Note that p1(x1, x2)
is a constant since u1 and u2 are U [0, 1) random variables. Let A1 = {(x1, x2) ∈
(0, 1]2|δm(x1, x2) = 0}. We have∫ ∫

A1

p1(x1, x2)dx1dx2 =
n(n− s2s1)

n2
p1(x1, x2) = 1− 1

m
. (16)

Hence p1(x1, x2) = 1. Similarly let A2 = {(x1, x2) ∈ (0, 1]2|δms1(x1, x2) = 1, δn(x1, x2) =
0}, and A3 = {(x1, x2) ∈ (0, 1]2|δm(x1, x2) = 1, δms1(x1, x2) = 0}. A2 and A3 are
equivalent to B2 and B3 respectively with the relationship x1 = u−u1

n and x2 = u−u2

n ,
where u1 and u2 are U [0, 1) random variables. Let p2(x1, x2) denote the joint density
function for (x1, x2) ∈ A2, p3(x1, x2) denote the joint density function for (x1, x2) ∈ A3.
We have ∫ ∫

A2

p2(x1, x2)dx1dx2 =
n(s2 − 1)

n2
p2(x1, x2) =

1

ms1
, (17)

and ∫ ∫
A3

p3(x1, x2)dx1dx2 =
n(s2s1 − s2)

n2
p3(x1, x2) =

1

m
− 1

ms1
. (18)

Hence p2(x1, x2) =
s2

s2−1 and p3(x1, x2) = 1. From (16)-(18), (15) holds.
For the covariance between X1 and X2, we have

cov(X1, X2) = EX1X2 − EX1EX2

=
1

s2 − 1

∫ 1

0

∫ 1

0

x1x2δms1(x1, x2)dx1dx2

− s2
s2 − 1

∫ 1

0

∫ 1

0

x1x2δn(x1, x2)dx1dx2. (19)

Here the first equation is just the definition of covariance. For the second equation, plug

(15) into the calculation of EX1X2 and observe the fact that
∫ 1

0

∫ 1

0
x1x2dx1dx2 is equal

to EX1X2 since both X1 and X2 are uniformly distributed, the equation then follows
immediately. Now note that∫ 1

0

∫ 1

0

x1x2δn(x1, x2)dx1dx2 =
n∑

i=1

∫ i/n

(i−1)/n

x1dx1

∫ i/n

(i−1)/n

x2dx2 =
n∑

i=1

(2i− 1

2n2

)2
=

1

3n
− 1

12n2
.

Similarly, ∫ 1

0

x1x2δms1(x1, x2)dx1dx2 =
1

3ms1
− 1

12(ms1)2
.

Thus, we have

cov(X1, X2) =
1

12(s2 − 1)(ms1)3
(
1

s22
− 1) < 0. (20)
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The conclusion is obvious from (20).


