Robust-BD Estimation and Inference for Varying-Dimensional General Linear Models

Chunming Zhang Xiao Guo Chen Cheng Zhengjun Zhang

University of Wisconsin-Madison

Supplementary Material

S1 Notation and Assumptions

For a matrix M, its eigenvalues, minimum eigenvalue, maximum eigenvalue and trace are labeled by $\lambda_j(M)$, $\lambda_{\min}(M)$, $\lambda_{\max}(M)$ and $\operatorname{tr}(M)$ respectively. Let $\|M\| = \sup_{\|\boldsymbol{x}_n\|=1} \|M\boldsymbol{x}_n\| = \{\lambda_{\max}(M^TM)\}^{1/2}$ be the matrix L_2 norm; let $\|M\|_F = \{\operatorname{tr}(M^TM)\}^{1/2}$ be the Frobenius norm. See Golub and Van Loan (1996) for details. Throughout the proof, C is used as a generic finite constant.

We first impose some regularity conditions, which are not the weakest possible but facilitate the technical derivations.

Condition A:

A0. $\sup_{n\geq 1} \|\widetilde{\boldsymbol{\beta}}_0\|_1 < \infty$.

A1. $||X_n||_{\infty} = \max_{1 \le j \le p_n} |X_j|$ is bounded almost surely.

A2. $E(\widetilde{\boldsymbol{X}}_n\widetilde{\boldsymbol{X}}_n^T)$ exists and is nonsingular.

A4. There is a large enough open subset of \mathbb{R}^{p_n+1} which contains the true parameter point $\widetilde{\beta}_0$, such that $F^{-1}(\widetilde{X}_n^T\widetilde{\beta})$ is bounded almost surely for all $\widetilde{\beta}$ in the subset.

A5. $w(\cdot) \geq 0$ is a bounded function. Assume that $\psi(r)$ is a bounded, odd function, and twice differentiable, such that $\psi'(r)$, $\psi'(r)r$, $\psi''(r)$, $\psi''(r)r$ and $\psi''(r)r^2$ are bounded; $V(\cdot) > 0$, $V^{(2)}(\cdot)$ is continuous. The matrix \mathbf{H}_n is positive definite, with eigenvalues uniformly bounded away from 0.

A6. $q^{(4)}(\cdot)$ is continuous, and $q^{(2)}(\cdot) < 0$. $G_1^{(3)}(\cdot)$ is continuous.

A7. $F(\cdot)$ is monotone and a bijection, $F^{(3)}(\cdot)$ is continuous, and $F^{(1)}(\cdot) \neq 0$.

Condition B:

B5. The matrices Ω_n and \mathbf{H}_n are positive definite, with eigenvalues uniformly bounded away from 0. Also, $\|\mathbf{H}_n^{-1}\Omega_n\|$ is bounded away from ∞ .

Condition C:

C4. There is a large enough open subset of \mathbb{R}^{p_n+1} which contains the true parameter point $\widetilde{\beta}_0$, such that $A_n\widetilde{\beta}_0 = g_0$, and $F^{-1}(\widetilde{\boldsymbol{X}}_n^T\widetilde{\boldsymbol{\beta}})$ is bounded almost surely for all $\widetilde{\boldsymbol{\beta}}$ in the subset.

Condition D:

D5. The eigenvalues of \mathbf{H}_n are uniformly bounded away from 0. Also, $\|\mathbf{H}_n^{-1/2}\Omega_n^{1/2}\|$ is bounded away from ∞ .

S2 Proofs of Main Results

Proof of Theorem 1

We follow the idea of the proof in Fan and Peng (2004). Let $r_n = \sqrt{p_n/n}$ and $\tilde{\mathbf{u}}_n = (u_0, u_1, \dots, u_{p_n})^T \in \mathbb{R}^{p_n+1}$. It suffices to show that for any given $\epsilon > 0$, there exists a sufficiently large constant C_{ϵ} such that, for large n we have

$$P\left\{\inf_{\|\widetilde{\mathbf{u}}_n\|=C_{\epsilon}} \ell_n(\widetilde{\boldsymbol{\beta}}_0 + r_n \widetilde{\mathbf{u}}_n) > \ell_n(\widetilde{\boldsymbol{\beta}}_0)\right\} \ge 1 - \epsilon.$$
 (S2.1)

This implies that with probability at least $1 - \epsilon$, there exists a local minimizer $\widehat{\widetilde{\beta}}$ of $\ell_n(\widetilde{\beta})$ in the ball $\{\widetilde{\beta}_0 + r_n\widetilde{\mathbf{u}}_n : \|\widetilde{\mathbf{u}}_n\| \leq C_{\epsilon}\}$ such that $\|\widehat{\widetilde{\beta}} - \widetilde{\beta}_0\| = O_P(r_n)$. To show (S2.1), consider

$$\ell_{n}(\widetilde{\boldsymbol{\beta}}_{0} + r_{n}\widetilde{\mathbf{u}}_{n}) - \ell_{n}(\widetilde{\boldsymbol{\beta}}_{0}) = \frac{1}{n} \sum_{i=1}^{n} \{ \rho_{q}(Y_{i}, F^{-1}(\widetilde{\boldsymbol{X}}_{ni}^{T}(\widetilde{\boldsymbol{\beta}}_{0} + r_{n}\widetilde{\mathbf{u}}_{n}))) w(\boldsymbol{X}_{ni})$$

$$-\rho_{q}(Y_{i}, F^{-1}(\widetilde{\boldsymbol{X}}_{ni}^{T}\widetilde{\boldsymbol{\beta}}_{0})) w(\boldsymbol{X}_{ni}) \}$$

$$\equiv I_{1}, \qquad (S2.2)$$

where $\|\widetilde{\mathbf{u}}_n\| = C_{\epsilon}$.

By Taylor's expansion,

$$I_1 = I_{1,1} + I_{1,2} + I_{1,3},$$
 (S2.3)

where

$$I_{1,1} = r_n/n \sum_{i=1}^n \mathbf{p}_1(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_0) w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\mathbf{u}}_n,$$

$$I_{1,2} = r_n^2/(2n) \sum_{i=1}^n \mathbf{p}_2(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) (\widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\mathbf{u}}_n)^2,$$

$$I_{1,3} = r_n^3/(6n) \sum_{i=1}^n \mathbf{p}_3(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_n^*) w(\boldsymbol{X}_{ni}) (\widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\mathbf{u}}_n)^3$$

for $\widetilde{\boldsymbol{\beta}}_n^*$ located between $\widetilde{\boldsymbol{\beta}}_{n;0}$ and $\widetilde{\boldsymbol{\beta}}_{n;0} + r_n \widetilde{\mathbf{u}}_n$. Hence

$$|I_{1,1}| \le r_n \left\| \frac{1}{n} \sum_{i=1}^n \mathbf{p}_1(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \right\| \|\widetilde{\mathbf{u}}_n\| = O_P(r_n \sqrt{p_n/n}) \|\widetilde{\mathbf{u}}_n\|.$$
 (S2.4)

For $I_{1,2}$ in (S2.3),

$$I_{1,2} = \frac{r_n^2}{2n} \sum_{i=1}^n E\{\mathbf{p}_2(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) (\widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\mathbf{u}}_n)^2\}$$

$$+ \frac{r_n^2}{2n} \sum_{i=1}^n [\mathbf{p}_2(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) (\widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\mathbf{u}}_n)^2 - E\{\mathbf{p}_2(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) (\widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\mathbf{u}}_n)^2\}]$$

$$\equiv I_{1,2,1} + I_{1,2,2},$$

where $I_{1,2,1} = 2^{-1} r_n^2 \widetilde{\mathbf{u}}_n^T \mathbf{H}_n \widetilde{\mathbf{u}}_n$. Meanwhile, we have

$$|I_{1,2,2}| \leq r_n^2 \left\| \frac{1}{n} \sum_{i=1}^n \left[\mathbf{p}_2(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \widetilde{\boldsymbol{X}}_{ni}^T - E\{\mathbf{p}_2(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \widetilde{\boldsymbol{X}}_{ni}^T \} \right] \right\|_F \|\widetilde{\mathbf{u}}_n\|^2$$

$$= r_n^2 O_P(p_n/\sqrt{n}) \|\widetilde{\mathbf{u}}_n\|^2.$$

Thus,

$$I_{1,2} = \frac{r_n^2}{2} \widetilde{\mathbf{u}}_n^T \mathbf{H}_n \widetilde{\mathbf{u}}_n + O_P(r_n^2 p_n / \sqrt{n}) \|\widetilde{\mathbf{u}}_n\|^2.$$
 (S2.5)

For $I_{1,3}$ in (S2.3), we observe that

$$|I_{1,3}| \le r_n^3 \frac{1}{n} \sum_{i=1}^n |\mathbf{p}_3(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_n^*)| w(\boldsymbol{X}_{ni}) |\widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\mathbf{u}}_n|^3 = O_P(r_n^3 p_n^{3/2}) \|\widetilde{\mathbf{u}}_n\|^3,$$

which follows from Conditions A0, A1, A4 and A5.

By (S2.4) and $p_n^4/n \to 0$, we can choose some large C_{ϵ} such that $I_{1,1}$ and $I_{1,3}$ are all dominated by the first term of $I_{1,2}$ in (S2.5), which is positive by the eigenvalue assumption on \mathbf{H}_n . This implies (S2.1).

Proof of Theorem 2

Notice the estimating equations $\frac{\partial \ell_n(\widetilde{\boldsymbol{\beta}})}{\partial \widetilde{\boldsymbol{\beta}}}|_{\widetilde{\boldsymbol{\beta}}=\widehat{\widetilde{\boldsymbol{\beta}}}} = \mathbf{0}$, since $\widehat{\widetilde{\boldsymbol{\beta}}}$ is a local minimizer of $\ell_n(\widetilde{\boldsymbol{\beta}})$. Taylor's expansion applied to the left side of the estimation equations yields

$$\mathbf{0} = \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbf{p}_{1}(Y_{i}; \widetilde{\boldsymbol{X}}_{ni}^{T} \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \right\}$$

$$+ \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbf{p}_{2}(Y_{i}; \widetilde{\boldsymbol{X}}_{ni}^{T} \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \widetilde{\boldsymbol{X}}_{ni}^{T} \right\} (\widehat{\boldsymbol{\beta}} - \widetilde{\boldsymbol{\beta}}_{n;0})
+ \frac{1}{2n} \sum_{i=1}^{n} \mathbf{p}_{3}(Y_{i}; \widetilde{\boldsymbol{X}}_{ni}^{T} \widetilde{\boldsymbol{\beta}}_{n}^{*}) w(\boldsymbol{X}_{ni}) \{ \widetilde{\boldsymbol{X}}_{ni}^{T} (\widehat{\boldsymbol{\beta}} - \widetilde{\boldsymbol{\beta}}_{n;0}) \}^{2} \widetilde{\boldsymbol{X}}_{ni}
\equiv \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbf{p}_{1}(Y_{i}; \widetilde{\boldsymbol{X}}_{ni}^{T} \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \right\} + K_{2} (\widehat{\boldsymbol{\beta}} - \widetilde{\boldsymbol{\beta}}_{n;0}) + K_{3}, \quad (S2.6)$$

where $\widetilde{\boldsymbol{\beta}}_n^*$ lies between $\widetilde{\boldsymbol{\beta}}_{n:0}$ and $\widehat{\widetilde{\boldsymbol{\beta}}}$. Below, we will show

$$||K_2 - \mathbf{H}_n|| = O_P(p_n/\sqrt{n}),$$
 (S2.7)
 $||K_3|| = O_P(p_0^{5/2}/n).$ (S2.8)

First, to show (S2.7), note that $K_2 - \mathbf{H}_n = K_2 - E(K_2) \equiv L_1$. Similar arguments for the proof of $I_{1,2,2}$ in Theorem 1 give $||L_1|| = O_P(p_n/\sqrt{n})$.

Second, a similar proof used for $I_{1,3}$ in (S2.3) completes (S2.8).

Third, by (S2.6)–(S2.8) and
$$\|\widehat{\widetilde{\beta}} - \widetilde{\beta}_{n:0}\| = O_P(\sqrt{p_n/n})$$
, we see that

$$\mathbf{H}_{n}(\widehat{\widetilde{\boldsymbol{\beta}}} - \widetilde{\boldsymbol{\beta}}_{n;0}) = -\frac{1}{n} \sum_{i=1}^{n} \mathbf{p}_{1}(Y_{i}; \widetilde{\boldsymbol{X}}_{ni}^{T} \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} + \mathbf{u}_{n},$$
(S2.9)

where $\|\mathbf{u}_n\| = O_P(p_n^{5/2}/n)$. Note that by Condition B5,

$$\begin{split} \|\sqrt{n}A_n\Omega_n^{-1/2}\mathbf{u}_n\| &\leq \sqrt{n}\|A_n\|_F\lambda_{\max}(\Omega_n^{-1/2})\|\mathbf{u}_n\| \\ &= \sqrt{n}\{\operatorname{tr}(A_nA_n^T)\}^{1/2}/\lambda_{\min}^{1/2}(\Omega_n)\|\mathbf{u}_n\| &= O_P(p_n^{5/2}/\sqrt{n}) = o_P(1). \end{split}$$

Thus

$$\begin{split} &\sqrt{n}A_n\Omega_n^{-1/2}\{\mathbf{H}_n(\widehat{\widetilde{\boldsymbol{\beta}}}-\widetilde{\boldsymbol{\beta}}_{n;0})\}\\ &=-\frac{1}{\sqrt{n}}A_n\Omega_n^{-1/2}\sum_{i=1}^n\mathbf{p}_1(Y_i;\widetilde{\boldsymbol{X}}_{ni}^T\widetilde{\boldsymbol{\beta}}_{n;0})w(\boldsymbol{X}_{ni})\widetilde{\boldsymbol{X}}_{ni}+o_P(1). \end{split}$$

To complete proving Theorem 2, we apply the Lindeberg-Feller central limit theorem (van der Vaart, 1998) to $\sum_{i=1}^{n} \mathbf{Z}_{ni}$, where $\mathbf{Z}_{ni} = -n^{-1/2}A_{n}\Omega_{n}^{-1/2}\mathrm{p}_{1}(Y_{i};\widetilde{\boldsymbol{X}}_{ni}^{T}\widetilde{\boldsymbol{\beta}}_{n;0})w(\boldsymbol{X}_{ni})\widetilde{\boldsymbol{X}}_{ni}$. It suffices to check (I) $\sum_{i=1}^{n} \mathrm{cov}(\boldsymbol{Z}_{ni}) \to \mathbb{G}$; (II) $\sum_{i=1}^{n} E(\|\boldsymbol{Z}_{ni}\|^{2+\delta}) = o(1)$ for some $\delta > 0$. Condition (I) follows from the fact that $\mathrm{var}\{\mathrm{p}_{1}(Y;\widetilde{\boldsymbol{X}}_{n}^{T}\widetilde{\boldsymbol{\beta}}_{n;0})w(\boldsymbol{X}_{n})\widetilde{\boldsymbol{X}}_{n}\} = \Omega_{n}$. To verify condition (II), notice that using Conditions B5 and A5,

$$E(\|\mathbf{Z}_{ni}\|^{2+\delta}) \leq n^{-(2+\delta)/2} E\Big\{ \|A_n\|_F^{2+\delta} \Big[\|\Omega_n^{-1/2} \widetilde{\mathbf{X}}_n\| \\ \Big| \{ \psi(r(Y, m(\mathbf{X}_n))) - G_1'(m(\mathbf{X}_n)) \} \frac{\{q''(m(\mathbf{X}_n)) \sqrt{V(m(\mathbf{X}_n))}\}}{F'(m(\mathbf{X}_n))} w(\mathbf{X}_n) \Big| \Big]^{2+\delta} \Big\} \\ \leq C n^{-(2+\delta)/2} E[\{\lambda_{\min}^{-1/2}(\Omega_n) \|\widetilde{\mathbf{X}}_n\|\}^{2+\delta} | \{\psi(r(Y, m(\mathbf{X}_n))) - G_1'(m(\mathbf{X}_n))\} \times \Big]$$

$$\{q''(m(\boldsymbol{X}_n))\sqrt{V(m(\boldsymbol{X}_n))}\}/F'(m(\boldsymbol{X}_n))|^{2+\delta}]$$

$$\leq Cp_n^{(2+\delta)/2}n^{-(2+\delta)/2}E[|\{\psi(r(Y,m(\boldsymbol{X}_n)))-G_1'(m(\boldsymbol{X}_n))\}\times$$

$$\{q''(m(\boldsymbol{X}_n))\sqrt{V(m(\boldsymbol{X}_n))}\}/F'(m(\boldsymbol{X}_n))|^{2+\delta}]$$

$$\leq O((p_n/n)^{(2+\delta)/2}).$$

Thus, we get $\sum_{i=1}^n E(\|\boldsymbol{Z}_{ni}\|^{2+\delta}) \leq O(n(p_n/n)^{(2+\delta)/2}) = O(p_n^{(2+\delta)/2}/n^{\delta/2})$, which is o(1). This verifies Condition (II).

Proposition 1 (covariance matrix estimation) Assume A0, A1, A2, A4, A5, B5, A6, and A7 in the Appendix. Let $V_n = \mathbf{H}_n^{-1}\Omega_n\mathbf{H}_n^{-1}$ and $\widehat{V}_n = \widehat{\mathbf{H}}_n^{-1}\widehat{\Omega}_n\widehat{\mathbf{H}}_n^{-1}$. If $p_n^4/n \to 0$ as $n \to \infty$, then for any $\sqrt{n/p_n}$ -consistent estimator $\widehat{\widehat{\beta}}$ of $\widetilde{\boldsymbol{\beta}}_{n;0}$, we have $A_n(\widehat{V}_n - V_n)A_n^T \stackrel{P}{\longrightarrow} \mathbf{0}$ for any $\mathbf{k} \times (p_n + 1)$ matrix A_n satisfying $A_nA_n^T \to \mathbb{G}$, where \mathbb{G} is a $\mathbf{k} \times \mathbf{k}$ matrix and \mathbf{k} is any fixed integer.

Proof: Note $||A_n(\widehat{V}_n - V_n)A_n^T|| \le ||\widehat{V}_n - V_n|| ||A_n||_F^2$. Since $||A_n||_F^2 \to \operatorname{tr}(\mathbb{G})$, it suffices to prove that $||\widehat{V}_n - V_n|| = o_P(1)$.

First, we prove $\|\widehat{\mathbf{H}}_n - \mathbf{H}_n\| = o_P(1)$. Note that

$$\widehat{\mathbf{H}}_{n} - \mathbf{H}_{n} = \frac{1}{n} \sum_{i=1}^{n} \{ \mathbf{p}_{2}(Y_{i}; \widetilde{\boldsymbol{X}}_{ni}^{T} \widehat{\boldsymbol{\beta}}) - \mathbf{p}_{2}(Y_{i}; \widetilde{\boldsymbol{X}}_{ni}^{T} \widetilde{\boldsymbol{\beta}}_{n;0}) \} w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \widetilde{\boldsymbol{X}}_{ni}^{T}$$

$$+ \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbf{p}_{2}(Y_{i}; \widetilde{\boldsymbol{X}}_{ni}^{T} \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \widetilde{\boldsymbol{X}}_{ni}^{T} - \mathbf{H}_{n} \right\}$$

$$\equiv I_{1} + I_{2}.$$

From the proof of (S2.7) in Theorem 2, we know that $||I_2|| = O_P(p_n/\sqrt{n}) = o_P(1)$. We only need to consider the term I_1 . Let $\widehat{m}_i = \widehat{m}(\boldsymbol{X}_{ni}), \ m_i = m(\boldsymbol{X}_{ni}), \ \widehat{r}_i = r(Y_i, \widehat{m}_i)$ and $r_i = r(Y_i, m_i)$. Then

$$\begin{split} I_1 &= \frac{1}{n} \sum_{i=1}^n [A_0(Y_i, \widehat{m}_i) + \{\psi(\widehat{r}_i) - G_1'(\widehat{m}_i)\} A_1(\widehat{m}_i) \\ &- A_0(Y_i, m_i) - \{\psi(r_i) - G_1'(m_i)\} A_1(m_i)] w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \widetilde{\boldsymbol{X}}_{ni}^T \\ &= -\frac{1}{n} \sum_{i=1}^n \{G_1'(\widehat{m}_i) A_1(\widehat{m}_i) - G_1'(m_i) A_1(m_i)\} w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \widetilde{\boldsymbol{X}}_{ni}^T \\ &+ \frac{1}{n} \sum_{i=1}^n \{A_0(Y_i, \widehat{m}_i) + \psi(\widehat{r}_i) A_1(\widehat{m}_i) - A_0(Y_i, m_i) - \psi(r_i) A_1(m_i)\} w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \widetilde{\boldsymbol{X}}_{ni}^T \\ &\equiv I_{1,1} + I_{1,2}. \end{split}$$

Let $g(\cdot) = G'_1(\cdot)A_1(\cdot)$. By the assumptions, $g(\cdot)$ is differentiable. Thus

$$\frac{1}{n} \sum_{i=1}^{n} |g(\widehat{m}_{i}) - g(m_{i})| = \frac{1}{n} \sum_{i=1}^{n} |(g \circ F^{-1})'(\widetilde{\boldsymbol{X}}_{ni}^{T} \widetilde{\boldsymbol{\beta}}_{n}^{*}) \boldsymbol{X}_{ni}^{T} (\widehat{\boldsymbol{\beta}} - \widetilde{\boldsymbol{\beta}}_{n;0})|
= O_{P}(1) O_{P}(\sqrt{p_{n}}) O_{P}(\sqrt{p_{n}/n}) = O_{P}(p_{n}/\sqrt{n}),$$

where $\widetilde{\boldsymbol{\beta}}_n^*$ is between $\widehat{\widetilde{\boldsymbol{\beta}}}$ and $\widetilde{\boldsymbol{\beta}}_{n;0}.$ Thus

$$\left\|\frac{1}{n}\sum_{i=1}^{n}|g(\widehat{m}(\boldsymbol{X}_{ni}))-g(m(\boldsymbol{X}_{ni}))|w(\boldsymbol{X}_{ni})\widetilde{\boldsymbol{X}}_{ni}\widetilde{\boldsymbol{X}}_{ni}^{T}\right\|_{F}=O_{P}(p_{n}/\sqrt{n})O_{P}(p_{n})=O_{P}(p_{n}^{2}/\sqrt{n}).$$

Similar arguments give $||I_{1,1}|| = O_P(p_n^2/\sqrt{n})$ and $||I_{1,2}|| = O_P(p_n^2/\sqrt{n})$. Thus $||I_1|| = O_P(p_n^2/\sqrt{n}) = o_P(1)$.

Second, we show $\|\widehat{\Omega}_n - \Omega_n\| = o_P(1)$. It is easy to see that

$$\widehat{\Omega}_{n} - \Omega_{n} = \frac{1}{n} \sum_{i=1}^{n} \{ \mathbf{p}_{1}^{2}(Y_{i}; \widetilde{\boldsymbol{X}}_{ni}^{T} \widehat{\boldsymbol{\beta}}) - \mathbf{p}_{1}^{2}(Y_{i}; \widetilde{\boldsymbol{X}}_{ni}^{T} \widetilde{\boldsymbol{\beta}}_{n;0}) \} w^{2}(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \widetilde{\boldsymbol{X}}_{ni}^{T}$$

$$+ \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbf{p}_{1}^{2}(Y_{i}; \widetilde{\boldsymbol{X}}_{ni}^{T} \widetilde{\boldsymbol{\beta}}_{n;0}) w^{2}(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \widetilde{\boldsymbol{X}}_{ni}^{T} - \Omega_{n} \right\}$$

$$= \Delta_{1,1} + \Delta_{1,2},$$

where $\|\Delta_{1,1}\| = O_P(p_n^2/\sqrt{n})$ and $\|\Delta_{1,2}\| = O_P(p_n/\sqrt{n})$. We observe that $\|\widehat{\Omega}_n - \Omega_n\| = O_P(p_n^2/\sqrt{n}) = o_P(1)$.

Third, we show $\|\widehat{V}_n - V_n\| = o_P(1)$. Note $\widehat{V}_n - V_n = L_1 + L_2 + L_3$, where $L_1 = \widehat{\mathbf{H}}_n^{-1}(\widehat{\Omega}_n - \Omega_n)\widehat{\mathbf{H}}_n^{-1}$, $L_2 = \widehat{\mathbf{H}}_n^{-1}(\mathbf{H}_n - \widehat{\mathbf{H}}_n)\mathbf{H}_n^{-1}\Omega_n\widehat{\mathbf{H}}_n^{-1}$ and $L_3 = \mathbf{H}_n^{-1}\Omega_n\widehat{\mathbf{H}}_n^{-1}(\mathbf{H}_n - \widehat{\mathbf{H}}_n)\mathbf{H}_n^{-1}$. By Assumption B5, it is straightforward to verify that $\|\mathbf{H}_n^{-1}\| \leq O(1)$, $\|\widehat{\mathbf{H}}_n^{-1}\| \leq O_P(1)$ and $\|\mathbf{H}_n^{-1}\Omega_n\| \leq O(1)$. Since $\|L_1\| \leq \|\widehat{\mathbf{H}}_n^{-1}\|\|\widehat{\Omega}_n - \Omega_n\|\|\widehat{\mathbf{H}}_n^{-1}\|$, we conclude $\|L_1\| = o_P(1)$, and similarly $\|L_2\| = o_P(1)$ and $\|L_3\| = o_P(1)$. Hence $\widehat{V}_n - V_n = o_P(1)$.

Proof of Theorem 3

For the matrix A_n in (4.3), there exists a $(p_n+1-\mathsf{k})\times(p_n+1)$ matrix B_n satisfying $B_nB_n^T=\mathbf{I}_{p_n+1-\mathsf{k}}$ and $A_nB_n^T=\mathbf{0}$. Therefore, $A_n\widetilde{\boldsymbol{\beta}}_n=\boldsymbol{g}_0$ is equivalent to $\widetilde{\boldsymbol{\beta}}_n=B_n^T\boldsymbol{\gamma}_n+\boldsymbol{c}_0$, where $\boldsymbol{\gamma}_n$ is a $(p_n+1-\mathsf{k})\times 1$ vector and $\boldsymbol{c}_0=A_n^T\mathbb{G}^{-1}\boldsymbol{g}_0$. Thus under H_0 in (4.3), we have $\widetilde{\boldsymbol{\beta}}_{n;0}=B_n^T\boldsymbol{\gamma}_{n;0}+\boldsymbol{c}_0$. Then minimizing $\ell_n(\widetilde{\boldsymbol{\beta}}_n)$ subject to $A_n\widetilde{\boldsymbol{\beta}}_n=\boldsymbol{g}_0$ is equivalent to minimizing $\ell_n(B_n^T\boldsymbol{\gamma}_n+\boldsymbol{c}_0)$ with respect to $\boldsymbol{\gamma}_n$, and we denote by $\widehat{\boldsymbol{\gamma}}_n$ the minimizer. Note that under (4.4), $\widehat{\boldsymbol{\beta}}$ is the unique minimizer of $\ell_n(\widetilde{\boldsymbol{\beta}}_n)$. Hence $\Lambda_n=2n\{\ell_n(B_n^T\widehat{\boldsymbol{\gamma}}_n+\boldsymbol{c}_0)-\ell_n(\widehat{\boldsymbol{\beta}})\}$. Before showing Theorem 3, we need Lemma 1.

Lemma 1 Assume conditions of Theorem 3. Then under H_0 in (4.3), we have that $B_n^T(\widehat{\gamma}_n - \gamma_{n;0}) = -n^{-1}B_n^T(B_n\mathbf{H}_nB_n^T)^{-1}B_n\sum_{i=1}^n \mathbf{p}_1(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_{n;0})w(\boldsymbol{X}_{ni})\widetilde{\boldsymbol{X}}_{ni} + o_P(n^{-1/2}),$ and $2n\{\ell_n(B_n^T\widehat{\boldsymbol{\gamma}}_n + \boldsymbol{c}_0) - \ell_n(\widehat{\boldsymbol{\beta}})\} = n(B_n^T\widehat{\boldsymbol{\gamma}}_n + \boldsymbol{c}_0 - \widehat{\boldsymbol{\beta}})^T\mathbf{H}_n(B_n^T\widehat{\boldsymbol{\gamma}}_n + \boldsymbol{c}_0 - \widehat{\boldsymbol{\beta}}) + o_P(1).$

Proof: To obtain the first part, following the proof of (S2.9) in Theorem 2, we have a similar expression for $\hat{\gamma}_n$,

$$B_n \mathbf{H}_n B_n^T (\widehat{\boldsymbol{\gamma}}_n - \boldsymbol{\gamma}_{n;0}) = -\frac{1}{n} B_n \sum_{i=1}^n \mathbf{p}_1(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} + \mathbf{w}_n,$$

with $\|\mathbf{w}_n\| = o_P(n^{-1/2})$. As a result,

$$B_n^T(\widehat{\boldsymbol{\gamma}}_n - \boldsymbol{\gamma}_{n;0}) = -\frac{1}{n} B_n^T(B_n \mathbf{H}_n B_n^T)^{-1} B_n \sum_{i=1}^n \mathbf{p}_1(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} + B_n^T(B_n \mathbf{H}_n B_n^T)^{-1} \mathbf{w}_n.$$

We notice that

$$||B_n^T(B_n\mathbf{H}_nB_n^T)^{-1}\mathbf{w}_n|| \le ||(B_n\mathbf{H}_nB_n^T)^{-1}||||\mathbf{w}_n|| \le ||\mathbf{w}_n||/\lambda_{\min}(\mathbf{H}_n) = o_P(n^{-1/2}),$$
 in which the fact $\lambda_{\min}(B_n\mathbf{H}_nB_n^T) \ge \lambda_{\min}(\mathbf{H}_n)$ is used.

The proof of the second part proceeds in three steps. In Step 1, we use the following Taylor expansion for $\ell_n(B_n^T \widehat{\gamma}_n + \mathbf{c}_0) - \ell_n(\widehat{\widetilde{\beta}})$,

$$\ell_{n}(B_{n}^{T}\widehat{\boldsymbol{\gamma}}_{n} + \boldsymbol{c}_{0}) - \ell_{n}(\widehat{\widetilde{\boldsymbol{\beta}}}) = \frac{1}{2n} \sum_{i=1}^{n} p_{2}(Y_{i}; \widetilde{\boldsymbol{X}}_{ni}^{T}\widehat{\boldsymbol{\beta}}) w(\boldsymbol{X}_{ni}) \{\widetilde{\boldsymbol{X}}_{ni}^{T}(B_{n}^{T}\widehat{\boldsymbol{\gamma}}_{n} + \boldsymbol{c}_{0} - \widehat{\widetilde{\boldsymbol{\beta}}})\}^{2}$$

$$+ \frac{1}{6n} \sum_{i=1}^{n} p_{3}(Y_{i}; \widetilde{\boldsymbol{X}}_{ni}^{T} \widetilde{\boldsymbol{\beta}}_{n}^{*}) w(\boldsymbol{X}_{ni}) \{\widetilde{\boldsymbol{X}}_{ni}^{T}(B_{n}^{T}\widehat{\boldsymbol{\gamma}}_{n} + \boldsymbol{c}_{0} - \widehat{\widetilde{\boldsymbol{\beta}}})\}^{3}$$

$$\equiv I_{1} + I_{2},$$

where $\widetilde{\boldsymbol{\beta}}_n^*$ lies between $\widehat{\boldsymbol{\beta}}$ and $B_n^T \widehat{\boldsymbol{\gamma}}_n + \boldsymbol{c}_0$.

In Step 2, we analyze the stochastic order of $B_n^T \widehat{\gamma}_n + \mathbf{c}_0 - \widehat{\widehat{\boldsymbol{\beta}}}$. For a matrix X whose column vectors are linearly independent, set $P_X = X(X^TX)^{-1}X^T$. Define $H_n = \mathbf{I}_{p_n+1} - P_{\mathbf{H}_n^{1/2}B_n^T} = P_{\mathbf{H}_n^{-1/2}A_n^T}$. Then $\mathbf{H}_n^{-1} - B_n^T (B_n \mathbf{H}_n B_n^T)^{-1} B_n = \mathbf{H}_n^{-1/2} H_n \mathbf{H}_n^{-1/2}$. By (S2.9) and the first part of Lemma 1, we see immediately that

$$B_{n}^{T}\widehat{\boldsymbol{\gamma}}_{n} + \boldsymbol{c}_{0} - \widehat{\boldsymbol{\beta}} = B_{n}^{T}(\widehat{\boldsymbol{\gamma}}_{n} - \boldsymbol{\gamma}_{n;0}) - (\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}_{n;0})$$

$$= \mathbf{H}_{n}^{-1/2} H_{n} \mathbf{H}_{n}^{-1/2} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbf{p}_{1,i} w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \right\} + o_{P}(n^{-1/2}) (S2.10)$$

where $\mathbf{p}_{1,i} = \mathbf{p}_1(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_{n;0})$. Note that $\|\mathbf{H}_n^{-1/2} H_n \mathbf{H}_n^{-1/2} \{ n^{-1} \sum_{i=1}^n \mathbf{p}_{1,i} w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \} \| = O_P(1/\sqrt{n})$. This gives

$$||B_n^T \widehat{\gamma}_n + c_0 - \widehat{\widetilde{\beta}}|| = O_P(1/\sqrt{n}). \tag{S2.11}$$

In Step 3, we conclude from (S2.11) that $I_2 = O_P\{(p_n/n)^{3/2}\} = o_P(1/n)$. Then $2n\{\ell_n(B_n^T\widehat{\gamma}_n + \mathbf{c}_0) - \ell_n(\widehat{\widehat{\beta}})\} = 2nI_1 + o_P(1)$. Similar to the proof of Proposition 1, it is straightforward to see that

$$2nI_1 = n(B_n^T \widehat{\boldsymbol{\gamma}}_n + \boldsymbol{c}_0 - \widehat{\boldsymbol{\beta}})^T \left\{ \frac{1}{n} \sum_{i=1}^n \mathbf{p}_2(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widehat{\boldsymbol{\beta}}) w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \widetilde{\boldsymbol{X}}_{ni}^T \right\} (B_n^T \widehat{\boldsymbol{\gamma}}_n + \boldsymbol{c}_0 - \widehat{\boldsymbol{\beta}})$$

$$= n(B_n^T \widehat{\boldsymbol{\gamma}}_n + \boldsymbol{c}_0 - \widehat{\boldsymbol{\beta}})^T \left\{ \frac{1}{n} \sum_{i=1}^n \mathbf{p}_2(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} \widetilde{\boldsymbol{X}}_{ni}^T \right\} (B_n^T \widehat{\boldsymbol{\gamma}}_n + \boldsymbol{c}_0 - \widehat{\boldsymbol{\beta}}) + o_P(1)$$

$$= n(B_n^T \widehat{\boldsymbol{\gamma}}_n + \boldsymbol{c}_0 - \widehat{\boldsymbol{\beta}})^T E\{ \mathbf{p}_2(Y_n; \widetilde{\boldsymbol{X}}_n^T \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_n \widetilde{\boldsymbol{X}}_n^T \} (B_n^T \widehat{\boldsymbol{\gamma}}_n + \boldsymbol{c}_0 - \widehat{\boldsymbol{\beta}}) + o_P(1)$$

$$= n(B_n^T \widehat{\boldsymbol{\gamma}}_n + \boldsymbol{c}_0 - \widehat{\boldsymbol{\beta}})^T \mathbf{H}_n(B_n^T \widehat{\boldsymbol{\gamma}}_n + \boldsymbol{c}_0 - \widehat{\boldsymbol{\beta}}) + o_P(1).$$

Then the second part of Lemma 1 is proved. ■

We now show Theorem 3. For part (i), a direct use of Lemma 1 and (S2.10) leads to

$$2n\{\ell_n(B_n^T\widehat{\boldsymbol{\gamma}}_n + \boldsymbol{c}_0) - \ell_n(\widehat{\boldsymbol{\beta}})\}$$

$$= \left\{\frac{1}{\sqrt{n}}\sum_{i=1}^n \mathbf{p}_{1,i}w(\boldsymbol{X}_{ni})\widetilde{\boldsymbol{X}}_{ni}\right\}^T \mathbf{H}_n^{-1/2}H_n\mathbf{H}_n^{-1/2}\left\{\frac{1}{\sqrt{n}}\sum_{i=1}^n \mathbf{p}_{1,i}w(\boldsymbol{X}_{ni})\widetilde{\boldsymbol{X}}_{ni}\right\} + o_P(1).$$

Since H_n is idempotent of rank k, it can be written as $H_n = C_n^T C_n$, where C_n is a $k \times (p_n + 1)$ matrix satisfying $C_n C_n^T = \mathbf{I}_k$. Then

$$2n\{\ell_n(B_n^T\widehat{\boldsymbol{\gamma}}_n + \boldsymbol{c}_0) - \ell_n(\widehat{\boldsymbol{\beta}})\}$$

$$= \left\{\frac{1}{\sqrt{n}}C_n\mathbf{H}_n^{-1/2}\sum_{i=1}^n \mathbf{p}_{1,i}w(\boldsymbol{X}_{ni})\widetilde{\boldsymbol{X}}_{ni}\right\}^T \left\{\frac{1}{\sqrt{n}}C_n\mathbf{H}_n^{-1/2}\sum_{i=1}^n \mathbf{p}_{1,i}w(\boldsymbol{X}_{ni})\widetilde{\boldsymbol{X}}_{ni}\right\} + o_P(1).$$

Now consider part (ii). If $\psi(r) = r$ and the q-function satisfies (4.5), then $p_1(y;\theta) = q_1(y;\theta)$, $p_2(y;\theta) = q_2(y;\theta)$ and $\mathbf{H}_n = \Omega_n/C$, where $q_j(y;\theta) = \frac{\partial^j}{\partial \theta^j} Q_q(y,F^{-1}(\theta))$. In this case, similar arguments for Theorem 2 yield

$$\frac{1}{\sqrt{n}}C_n\mathbf{H}_n^{-1/2}\sum_{i=1}^n\mathbf{q}_1(Y_i;\widetilde{\boldsymbol{X}}_{ni}^T\widetilde{\boldsymbol{\beta}}_{n;0})w(\boldsymbol{X}_{ni})\widetilde{\boldsymbol{X}}_{ni}\overset{\mathcal{L}}{\longrightarrow}N(\mathbf{0},C\mathbf{I}_{\mathsf{k}}),$$

which completes the proof.

Proof of Theorem 4

Before showing Theorem 4, Lemma 2 is needed.

Lemma 2 Assume conditions of Theorem 4. Then

$$\begin{split} \widehat{\widetilde{\boldsymbol{\beta}}} - \widetilde{\boldsymbol{\beta}}_{n;0} &= -\frac{1}{n} \mathbf{H}_n^{-1} \sum_{i=1}^n \mathbf{p}_1(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} + o_P(n^{-1/2}), \\ \sqrt{n} (A_n \widehat{\mathbf{H}}_n^{-1} \widehat{\Omega}_n \widehat{\mathbf{H}}_n^{-1} A_n^T)^{-1/2} A_n(\widehat{\widetilde{\boldsymbol{\beta}}} - \widetilde{\boldsymbol{\beta}}_{n;0}) \stackrel{\mathcal{L}}{\longrightarrow} N(\mathbf{0}, \mathbf{I}_k). \end{split}$$

Proof: Following (S2.9) in the proof of Theorem 2, we observe that $\|\mathbf{u}_n\| = O_P(p_n^{5/2}/n) = o_P(n^{-1/2})$. Condition B5 completes the proof for the first part.

To show the second part, denote $U_n = A_n \mathbf{H}_n^{-1} \Omega_n \mathbf{H}_n^{-1} A_n^T$ and $\widehat{U}_n = A_n \widehat{\mathbf{H}}_n^{-1} \widehat{\Omega}_n \widehat{\mathbf{H}}_n^{-1} A_n^T$. Notice that the eigenvalues of $\mathbf{H}_n^{-1} \Omega_n \mathbf{H}_n^{-1}$ are uniformly bounded away from 0. So are the eigenvalues of U_n . From the first part, we see that

$$A_n(\widehat{\widetilde{\boldsymbol{\beta}}} - \widetilde{\boldsymbol{\beta}}_{n;0}) = -\frac{1}{n} A_n \mathbf{H}_n^{-1} \sum_{i=1}^n \mathbf{p}_1(Y_i; \widetilde{\boldsymbol{X}}_{ni}^T \widetilde{\boldsymbol{\beta}}_{n;0}) w(\boldsymbol{X}_{ni}) \widetilde{\boldsymbol{X}}_{ni} + o_P(n^{-1/2}).$$

It follows that

$$\sqrt{n}U_n^{-1/2}A_n(\widehat{\widetilde{\boldsymbol{\beta}}}-\widetilde{\boldsymbol{\beta}}_{n;0})=\sum_{i=1}^n\boldsymbol{Z}_{ni}+o_P(1),$$

where $\mathbf{Z}_{ni} = -n^{-1/2}U_n^{-1/2}A_n\mathbf{H}_n^{-1}\mathbf{p}_1(Y_i; \widetilde{\mathbf{X}}_{ni}^T\widetilde{\boldsymbol{\beta}}_{n;0})w(\mathbf{X}_{ni})\widetilde{\mathbf{X}}_{ni}$. To show $\sum_{i=1}^n \mathbf{Z}_{ni} \xrightarrow{\mathcal{L}} N(\mathbf{0}, \mathbf{I}_k)$, similar to the proof for Theorem 2, we check (III) $\sum_{i=1}^n \operatorname{cov}(\mathbf{Z}_{ni}) \to \mathbf{I}_k$; (IV) $\sum_{i=1}^n E(\|\mathbf{Z}_{ni}\|^{2+\delta}) = o(1)$ for some $\delta > 0$. Condition (III) is straightforward since $\sum_{i=1}^n \operatorname{cov}(\mathbf{Z}_{ni}) = U_n^{-1/2}U_nU_n^{-1/2} = \mathbf{I}_k$. To check condition (IV), similar arguments used in the proof of Theorem 2 give that $E(\|\mathbf{Z}_{ni}\|^{2+\delta}) = O((p_n/n)^{(2+\delta)/2})$. This and the boundedness of ψ yield $\sum_{i=1}^n E(\|\mathbf{Z}_{ni}\|^{2+\delta}) \leq O(p_n^{(2+\delta)/2}/n^{\delta/2}) = o(1)$. Hence

$$\sqrt{n}U_n^{-1/2}A_n(\widehat{\widetilde{\boldsymbol{\beta}}}-\widetilde{\boldsymbol{\beta}}_{n;0}) \stackrel{\mathcal{L}}{\longrightarrow} N(\mathbf{0}, \mathbf{I}_{\mathbf{k}}).$$
(S2.12)

From the proof of Proposition 1, it can be concluded that $\|\widehat{U}_n - U_n\| = o_P(1)$ and that the eigenvalues of \widehat{U}_n are uniformly bounded away from 0 and ∞ with probability tending to one. Consequently,

$$\|\widehat{U}_n^{-1/2}U_n^{1/2} - \mathbf{I}_{\mathsf{k}}\| = o_P(1). \tag{S2.13}$$

Combining (S2.12), (S2.13) and Slutsky's theorem completes the proof that $\sqrt{n}\widehat{U}_n^{-1/2}A_n(\widehat{\widetilde{\beta}}-\widetilde{\beta}_{n:0}) \stackrel{\mathcal{L}}{\longrightarrow} N(\mathbf{0},\mathbf{I}_k)$.

We now show Theorem 4, which follows directly from H_0 in (4.3) and the second part of Lemma 2. This completes the proof.

Proof of Theorem 5

Note that W_n can be decomposed into three additive terms,

$$I_{1} = n\{A_{n}(\widehat{\widetilde{\boldsymbol{\beta}}} - \widetilde{\boldsymbol{\beta}}_{n;0})\}^{T}(A_{n}\widehat{V}_{n}A_{n}^{T})^{-1}\{A_{n}(\widehat{\widetilde{\boldsymbol{\beta}}} - \widetilde{\boldsymbol{\beta}}_{n;0})\},$$

$$I_{2} = 2n(A_{n}\widetilde{\boldsymbol{\beta}}_{n;0} - \boldsymbol{g}_{0})^{T}(A_{n}\widehat{V}_{n}A_{n}^{T})^{-1}\{A_{n}(\widehat{\widetilde{\boldsymbol{\beta}}} - \widetilde{\boldsymbol{\beta}}_{n;0})\},$$

$$I_{3} = n(A_{n}\widetilde{\boldsymbol{\beta}}_{n;0} - \boldsymbol{g}_{0})^{T}(A_{n}\widehat{V}_{n}A_{n}^{T})^{-1}(A_{n}\widetilde{\boldsymbol{\beta}}_{n;0} - \boldsymbol{g}_{0}),$$

where $\widehat{V}_n = \widehat{\mathbf{H}}_n^{-1} \widehat{\Omega}_n \widehat{\mathbf{H}}_n^{-1}$. We observe that $I_1 \xrightarrow{\mathcal{L}} \chi_k^2$ following the second part of Lemma 2; $I_3 = n(A_n \widetilde{\boldsymbol{\beta}}_{n;0} - \boldsymbol{g}_0)^T \mathbf{M}^{-1} (A_n \widetilde{\boldsymbol{\beta}}_{n;0} - \boldsymbol{g}_0) \{1 + o_P(1)\}$ by Proposition 1; $I_2 = O_P(\sqrt{n})$ by Cauchy-Schwartz inequality. Thus

$$n^{-1}I_3 \ge \lambda_{\min}(\mathbf{M}^{-1}) \|A_n \widetilde{\boldsymbol{\beta}}_{n:0} - \boldsymbol{g}_0\|^2 \{1 + o_P(1)\} = \lambda_{\max}^{-1}(\mathbf{M}) \|A_n \widetilde{\boldsymbol{\beta}}_{n:0} - \boldsymbol{g}_0\|^2 + o_P(1).$$

These complete the proof for W_n .

Proof of Theorem 6

Following the second part of Lemma 2, we observe that $\sqrt{n}(A_n\widehat{V}_nA_n^T)^{-1/2}(A_n\widehat{\widehat{\beta}}-\boldsymbol{g}_0) \xrightarrow{\mathcal{L}} N(\mathbf{M}^{-1/2}\boldsymbol{c}, \mathbf{I}_k)$, which completes the proof.

Proof of Theorem 7

We first need to show Lemma 3.

Lemma 3 Suppose that (X_n^o, Y^o) follows the distribution of (X_n, Y) and is independent of the training set \mathcal{T}_n . If Q is a BD, then

$$E\{Q(Y^o, \widehat{m}(\boldsymbol{X}_n^o))\} = E\{Q(Y^o, m(\boldsymbol{X}_n^o))\} + E\{Q(m(\boldsymbol{X}_n^o), \widehat{m}(\boldsymbol{X}_n^o))\}.$$

Proof: Let q be the generating function of Q. Then

$$\begin{aligned} \mathbf{Q}(Y^o,\widehat{m}(\boldsymbol{X}_n^o)) &= [\mathbf{q}(m(\boldsymbol{X}_n^o)) - E\{\mathbf{q}(Y^o) \mid \mathcal{T}_n, \boldsymbol{X}_n^o\}] + [E\{\mathbf{q}(Y^o) \mid \mathcal{T}_n, \boldsymbol{X}_n^o\} \\ &- \mathbf{q}(Y^o)] - \mathbf{q}(m(\boldsymbol{X}_n^o)) + \mathbf{q}(\widehat{m}(\boldsymbol{X}_n^o)) + \{Y^o - \widehat{m}(\boldsymbol{X}_n^o)\}\mathbf{q}'(\widehat{m}(\boldsymbol{X}_n^o)). \end{aligned} (S2.14)$$

Since $(\boldsymbol{X}_{n}^{o}, Y^{o})$ is independent of \mathcal{T}_{n} , we deduce from Chow and Teicher (1989, Corollary 3, p. 223) that

$$E\{q(Y^o) \mid \mathcal{T}_n, \boldsymbol{X}_n^o\} = E\{q(Y^o) \mid \boldsymbol{X}_n^o\}.$$
 (S2.15)

Similarly,

$$E\{Y^{o}\mathsf{q}'(\widehat{m}(\boldsymbol{X}_{n}^{o})) \mid \mathcal{T}_{n}, \boldsymbol{X}_{n}^{o}\} = E(Y^{o} \mid \boldsymbol{X}_{n}^{o})\mathsf{q}'(\widehat{m}(\boldsymbol{X}_{n}^{o})) = m(\boldsymbol{X}_{n}^{o})\mathsf{q}'(\widehat{m}(\boldsymbol{X}_{n}^{o})). \quad (S2.16)$$

Applying (S2.15) and (S2.16) to (S2.14) results in

$$E\{Q(Y^o, \widehat{m}(\boldsymbol{X}_n^o)) \mid \mathcal{T}_n, \boldsymbol{X}_n^o\} = E\{Q(Y^o, m(\boldsymbol{X}_n^o)) \mid \boldsymbol{X}_n^o\} + Q(m(\boldsymbol{X}_n^o), \widehat{m}(\boldsymbol{X}_n^o))$$

and thus the conclusion. \blacksquare

Now show Theorem 7. Setting Q in Lemma 3 to be the misclassification loss gives

$$1/2[E\{R(\widehat{\phi}_n)\} - R(\phi_{n,B})] \leq E[|m(\boldsymbol{X}_n^o) - .5|I\{m(\boldsymbol{X}_n^o) \leq .5, \ \widehat{m}(\boldsymbol{X}_n^o) > .5\}] \\ + E[|m(\boldsymbol{X}_n^o) - .5|I\{m(\boldsymbol{X}_n^o) > .5, \ \widehat{m}(\boldsymbol{X}_n^o) \leq .5\}] \\ = I_1 + I_2.$$

For any $\epsilon > 0$, it follows that

$$I_{1} = E[|m(\boldsymbol{X}_{n}^{o}) - .5|I\{m(\boldsymbol{X}_{n}^{o}) < .5 - \epsilon, \ \widehat{m}(\boldsymbol{X}_{n}^{o}) > .5\}] + E[|m(\boldsymbol{X}_{n}^{o}) - .5|I\{.5 - \epsilon \le m(\boldsymbol{X}_{n}^{o}) \le .5, \ \widehat{m}(\boldsymbol{X}_{n}^{o}) > .5\}] \le P\{|\widehat{m}(\boldsymbol{X}_{n}^{o}) - m(\boldsymbol{X}_{n}^{o})| > \epsilon\} + \epsilon$$

and similarly, $I_2 \leq \epsilon + P\{|\widehat{m}(\boldsymbol{X}_n^o) - m(\boldsymbol{X}_n^o)| \geq \epsilon\}$. Recall that

$$|\widehat{m}(\boldsymbol{X}_{n}^{o}) - m(\boldsymbol{X}_{n}^{o})| = |F^{-1}(\widetilde{\boldsymbol{X}_{n}^{o}}^{T}\widehat{\boldsymbol{\beta}}) - F^{-1}(\widetilde{\boldsymbol{X}_{n}^{o}}^{T}\widetilde{\boldsymbol{\beta}}_{n:0})| \leq |(F^{-1})'(\widetilde{\boldsymbol{X}_{n}^{o}}^{T}\widetilde{\boldsymbol{\beta}}_{n}^{*})| \|\boldsymbol{X}_{n}^{o}\| \|\widehat{\widehat{\boldsymbol{\beta}}} - \widetilde{\boldsymbol{\beta}}_{n:0}\|,$$

for some $\widetilde{\boldsymbol{\beta}}_n^*$ between $\widetilde{\boldsymbol{\beta}}_{n;0}$ and $\widehat{\widetilde{\boldsymbol{\beta}}}$, where $\widetilde{\boldsymbol{X}_n^o} = (1, {\boldsymbol{X}_n^o}^T)^T$. By Condition A4, we conclude that $(F^{-1})'(\widetilde{\boldsymbol{X}_n^o}^T\widetilde{\boldsymbol{\beta}}_n^*) = O_P(1)$. This along with $\|\widehat{\widetilde{\boldsymbol{\beta}}} - \widetilde{\boldsymbol{\beta}}_{n;0}\| = O_P(1)$ and $\|\widetilde{\boldsymbol{X}}_n^o\| = O_P(\sqrt{p_n})$ implies that $|\widehat{m}(\boldsymbol{X}_n^o) - m(\boldsymbol{X}_n^o)| = O_P(r_n\sqrt{p_n}) = o_P(1)$. Therefore $I_1 \to 0$ and $I_2 \to 0$, which completes the proof.

S3 Figures 7–10 in Section 6.2

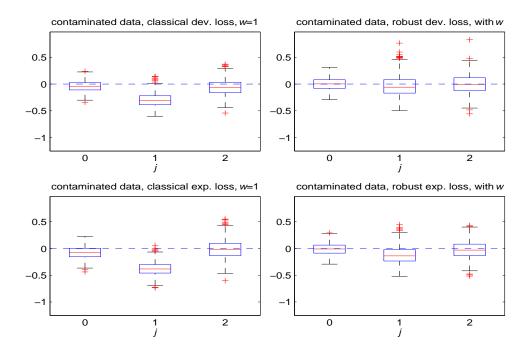


Figure 7: (Simulated Bernoulli response data with contamination) Boxplots of $\widehat{\beta}_j - \beta_{j;0}$, $j = 0, 1, \ldots, p_n$ (from left to right in each panel). Left panels: the non-robust estimates; right panels: the robust estimates.

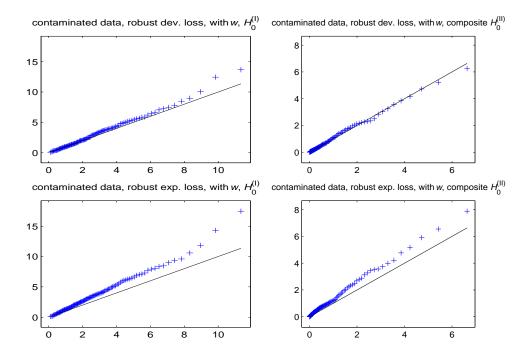


Figure 8: (Simulated Bernoulli response data with contamination) Empirical quantiles (on the y-axis) of test statistics W_n versus quantiles (on the x-axis) of the χ^2_k distribution. Solid line: the 45 degree reference line. Left panels: for testing $H_0^{(I)}$; right panels: for testing $H_0^{(II)}$.

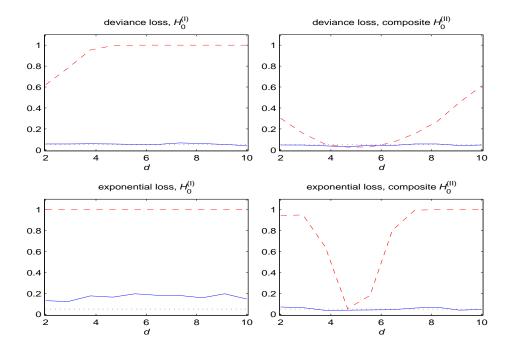


Figure 9: Level of tests for the Bernoulli response data. The dashed line corresponds to the non-robust Wald-type test; the solid line corresponds to the robust Wald-type test; the dotted line indicates the 5% nominal level. Left panels: for testing $H_0^{(\mathrm{II})}$; right panels: for testing $H_0^{(\mathrm{II})}$.

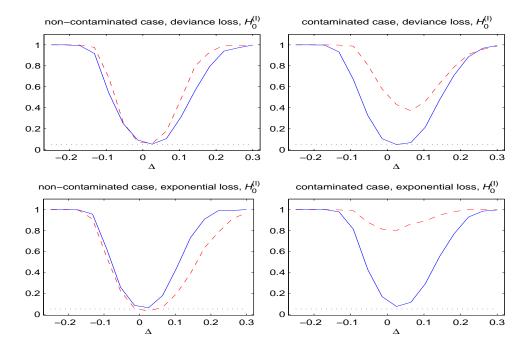


Figure 10: Observed power functions of tests for the Bernoulli response data. The dashed line corresponds to the non-robust Wald-type test; the solid line corresponds to the robust Wald-type test; the dotted line indicates the 5% nominal level. Left panels: non-contaminated case; right panels: contaminated case.