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S1 Notation and Assumptions

For a matrix M, its eigenvalues, minimum eigenvalue, maximum eigenvalue and trace are
labeled by A; (M), Amin (M), Amax (M) and tr(M) respectively. Let | M| = sup|,, (=1 [Mzy|| =
{Amax(MTM)}/2 be the matrix Ly norm; let || M||p = {tr(M™ M)}'/? be the Frobenius
norm. See Golub and Van Loan (1996) for details. Throughout the proof, C' is used as

a generic finite constant.

We first impose some regularity conditions, which are not the weakest possible but
facilitate the technical derivations.

Condition A:
AQ. sup,;>, 18011 < oo,

Al || Xp|leo = maxi<j<p | Xj| is bounded almost surely.

~ =T
A2. E(X, X, ) exists and is nonsingular.

A4. There is a large enough open subset of RP» 1 which contains the true parameter
~ T~ ~
point B3, such that F~1(X, 3) is bounded almost surely for all 3 in the subset.

A5. w(-) > 0 is a bounded function. Assume that ¢ (r) is a bounded, odd function,
and twice differentiable, such that ¢’ (r), ¥’ (r)r, ¥" (r), ¥" (r)r and " (r)r? are bounded;
V() > 0, V() is continuous. The matrix H,, is positive definite, with eigenvalues
uniformly bounded away from 0.

A6. ¢®(-) is continuous, and ¢@(-) < 0. G¥(.) is continuous.
A7. F(-) is monotone and a bijection, F(3)(.) is continuous, and F™M(-) # 0.

Condition B:
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B5. The matrices 2, and H,, are positive definite, with eigenvalues uniformly
bounded away from 0. Also, |H, 1€, is bounded away from oo.

Condition C:

C4. There is a large enough open subset of RP» 1 which contains the true parameter

~ ~ T~ ~
point 3y, such that 4,8, = g,, and F~}(X,, 3) is bounded almost surely for all 3 in
the subset.
Condition D:
D5. The eigenvalues of H,, are uniformly bounded away from 0. Also, |H,, 12on ol
is bounded away from oco.

S2 Proofs of Main Results

Proof of Theorem 1

We follow the idea of the proof in Fan and Peng (2004). Let r, = /p,/n and u,, =
(uo,u1, ..., up, )T € RP-T1 Tt suffices to show that for any given e > 0, there exists a
sufficiently large constant C. such that, for large n we have

p{ i (B + Tatin) > en(Bo)} >1—ec (S2.1)
Unp||=0Ce
This implies that with probability at least 1 — ¢, there exists a local minimizer B of 4, (E)

in the ball {8, + rnl, : |[U,]| < C.} such that |3 — B,l| = Op(ry). To show (S2.1),
consider

~ _ ~ ~T ~ _
ln(By + ralln) — ln(By) = — Z{p (Yi, (X, (Bg + ratin)) ) w(X ni)
—pq(Yi,F H(X i) (X i)}

= Il, (822)

where ||u,| = C

By Taylor’s expansion,

L=hai+ha+hg3, (S2.3)

where
n —T

L, = T"/nzpl (Yis X ,i80)w(X M)X U,

=1

n 7 _
11,2 = n/ 2TL Z le’an/GnO) (an)(anun)27
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n T~ ~T _
Il,3 = r?z/(@n’)zps (levan/Gn)w(an)(anun)g
i=1
for EZ located between Bn;O and Bn;O + rpu,. Hence

[, = Op(rav/p, /n)

|1 1] <7y

Tl (52.4)

1 & ~T ~ ~
E Z P: (Y;7 anﬁn,O)w(an)an
1=1

For I 5 in (S2.3),

2 n —~T _
11,2 = 2_712 {pz Y;7anﬁn O) (Xﬂi)(Xniun)2}
27 n —~T _ 2 ~T ~ T _ 2
+ Z b, }/1’ anﬁn 0) (an)(anun) - E{pz (}/Zv an/Bn,O)w(XnZ)(anun) }]
= ILon + 11 2,25

where I1 51 = 27 'r2ulH,u,,. Meanwhile, we have

[

1 & ~T ~ ~ =T ~T ~ ~ =T
=3 [P (V0 X B )X ) Ko X s = B, (Vi X B0 w0(X ) X X |
F

2000 V) [l

122 < 72

Thus,
2

Iio = %ﬂﬁfﬂnﬁn + Op(r2p, /)|t (S2.5)
For I 3 in (S2.3), we observe that
1 o T ~x .
113 STELEZWB(}Q;XmBan( i) X i Tl* = Op (r3p%/2) [T,
i=1

which follows from Conditions A0, A1, A4 and A5.

By (S2.4) and p? /n — 0, we can choose some large C. such that I ; and I 3 are
all dominated by the first term of I; 5 in (S2.5), which is positive by the eigenvalue
assumption on H,,. This implies (52.1). W

Proof of Theorem 2

Notice the estimating equations Otn é’a |~ = = 0, since ﬁ is a local minimizer of ¢, (ﬁ)

Taylor’s expansion applied to the left side of the estimation equations yields

1 & ~T ~ —
i=1
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+{% Z Py (}/“ /X/:zgn,O)w(an)/X/nz}\(/:l } (ﬁ - /Bn;O)
i=1

1 - ~T ~x* T = - N
+am 2 P06 X)X} (X s (B = Bro) X

= {2 S O B0 K 4 Kl = Brg) 4 K (526)
=1

where BZ lies between Bn;O and B Below, we will show

K> —H,| = Op(p,/Vn), (52.7)
K3l = Op(®/?/n). (52.8)

First, to show (S2.7), note that Ko — H,, = K3 — E(K3) = Ly. Similar arguments
for the proof of I1 52 in Theorem 1 give ||L|| = Op(p, /\/1).

Second, a similar proof used for I 3 in (S2.3) completes (S2.8).

Third, by (S2.6)—(52.8) and ||3 — Bn;OH = Op(+/p, /n), we see that
1 & ~T ~ —

where |lu,|| = Op(p>/?/n). Note that by Condition B5,
VA2, Pu, | < Vil Ay, |1|b;/\max( 22
= Va{tr(An AN ) unll = Op (032 /VR) = 0,.(1).
Thus

VA, Q;, 1/2{H B - ﬁno>}

_ _TA Nom 1/221)1 (¥ X i) 0(X ) X i + 0, (1),
=1

To complete proving Theorem 2, we apply the Lindeberg-Feller central limit theorem (van
T ~ ~

der Vaart, 1998) to Y. | Z,;, where Z,,; = —11_1/2An§2;1/2p1 (Yi; X 0iBn0)w(X i) X i

It suffices to check (1) Y1, cov(Z ) — G; (1) Yoi E(||Zni]|*+°) = o(1) for some § > 0.

T~ —
Condition (1) follows from the fact that var{p, (Y; X,, B,,.0)w(X»)Xn} = Q. To verify
condition (1), notice that using Conditions B5 and A5,

B(1Zil*7) < 0 @R A, 30 10,2 X

[0 m(X)) = 6 () DY D)
)

< O~ G2 BN X |V {0 (r (Y, m(X )

min

w(X,,)

)
) — Gi(m(X))} %

I}
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{q"(m(Xn)) VvV N}/ F'(m(Xn) IH]

< Cp“’*‘”/2 ’(2”)/2E|{¢ (r(Y,m(Xn))) — G1(m(Xn))} %
{q"(m v )}/ F (m (X)) P+)
< O((p, /n)

Thus, we get Y7 | E(||Z,,i[**°) < O(n(p, /n)?9)/2) = O(p3+9)/2 /nd/2), which is o(1).
This verifies Condition (II). H

Proposition 1 (covariance matrix estimation) Assume A0, Al, A2, A4, A5, B5,
A6, and AT in the Appendiz. Let V,, = H 'Q,H, ! and V,, = H,'Q,H, . pri/n —0
as n — oo, then for any \/n/p,-consistent estimator E of Bn;o, we have An(f/n

V,)AT 250 for any k x (p, + 1) matriz A, satisfying A, AL — G, where G is a k x k
matriz and k is any fived integer.

Proof: Note || An(V,, =V, )AT|| < ||1A/n—Vn||||An||2F Since ||4,]|% — tr(G), it suffices
to prove that |V, — V4| = op(1).

First, we prove |[H, — H,| = op(1). Note that

1 n —~T = ~T ~ —~ T

1 < T ~ — T
+{E Z P, (Y;7 anﬁn,O)w(an)anan - Hn}
i=1
= Il + IQ.
From the proof of (S2.7) in Theorem 2, we know that || I2|| = Op(p, /v/n) = op(1). We

only need to consider the term 1. Let m; = m(X ), mi = m(X ), 7 = r(Y;, m;) and
r; = r(Y;,m;). Then

Bo= L Dl + (00 - Gl )

—Ao(Yi,mi) = {(r1) = G (ma) }As (m3)]e0(X i) X X
= ——Z{G’ () A (705) — G () A1 () }oo (X ) X i X

S ANV ) () A () — AoV ) = () A () (X ) K K
= 1171 fljl_rg.

Let g(-) = G (-)A1(-). By the assumptions, g(-) is differentiable. Thus

n

I~ o 1 T =~
=3 lgm) = gmal = =3 Mg o F7Y (KB X 1B~ Buo)
i=1 =1

= Op(1)0Op(\/p,)Op(\/p,/n) = Op(p, /Vn),
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where BZ is between B and Bn;O' Thus

LS g (X)) g (X)) X ) K X

— Op(p, /V/)Op(p,) = Op(p? /).

F

Similar arguments give ||I11| = Op(p?//n) and ||I12]| = Op(p?/y/n). Thus ||| =
Op(p? //n) = op(1).

Second, we show [|Q, — Q|| = op(1). It is casy to see that

. 1 < ~T = ~T ~ ~ =T
=1

1 < 5 T~ ) .
= A1+ A,

where ||A1 ]| = Op(p? /y/n) and ||A12]| = Op(p, //n). We observe that (1€, — Q|| =
Op(p? //n) = op(1).

Third, we show H\A/n — V.|l = op(1). Note ‘771 — V. = Ly 4+ Ly + L3, where
Ly =H; (Q,-Q,)H, "', Ly = H,'(H, - H,)H;'Q,H," and L3 = H,'Q,H; ' (H, -
I/-\IAn)H;l. By Assumption B5, it is straightforward to verify that IH, 1 < o),
IF;Y < Op(1) and [[H;'Qu)| < O(1). Since ||La]| < [[H; 1€, — Qall[H,
we conclude [|[L1]| = op(1), and similarly ||La|] = op(1) and ||Ls|| = op(1). Hence
Vo —V,=op(1). R

Proof of Theorem 3

For the matrix A, in (4.3), there exists a (p, + 1 — k) x (p, + 1) matrix B, satisfying
BBl =1, .1\ and A, B} = 0. Therefore, An,@n = g, is equivalent to Bn =BTy, +
co, where 7, is a (p, +1 — k) x 1 vector and ¢y = AZG 'g,. Thus under Hy in
(4.3), we have Bn;o = Bl'~,.0 + co. Then minimizing 0,(B,) subject to 4,8, = g,
is equivalent to minimizing ¢, (BL~,, + CAO) with respect to v,,, and we denote by ¥,,

the minimizer. Note that under (4.4), B8 is the unique minimizer of £, (8,). Hence

A = 2n{0,(BT3, + co) — £n(B)}. Before showing Theorem 3, we need Lemma 1.

Lemma 1 Assume conditions of Theorem 3. Then under Hy in (4.3), we have that
T ~ _

BZ(%n_vn;O) = _nilB;Izj(BanB;I;)ian Z?:l pl (}/1’ Xniﬁn;o)w(Xni)Xni+0P(nil/Q)’

and 2n{l(B17, + co) — €n(B)} = n(BLF, + co — B)TH,(BL7, + ¢y — B) + op(1).
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Proof: To obtain the first part, following the proof of (S2.9) in Theorem 2, we have
a similar expression for 4,,,

_ 1 - ~T ~ N
BanBZ (¥ — Yno) = _EBn Z p, (Vi Xni/Bn;O)w(Xni)Xni + Wn,
i=1
with ||w,| = op(n=1/?). As a result,
~ 1 n ~T ~ —
BZ; (Yn=Tn0) = __BZ; (BanBZ;)_an Z p, (Vi Xniﬁn-o)w(Xni)Xni"’BZ; (BanBg)_lwn'
; n ;
i=1
We notice that
”Brjzj(BanBrjzj)ilwnH < H(BanBf)flllllwnH < [wall/Amin(Hy) = OP(nil/Q)v
in which the fact A\pin(BaHpBL) > Amin (H,,) is used.
The proof of the second part proceeds in three steps. In Step 1, we use the following

Taylor expansion for £,(BL, + co) — (,(B),

~

en(B;—Z;%\’n'i_cO)_gn(B) = Z Yvanzﬁ ( nl){X (BT’Yn—i_CO _ﬁ)}z

~

+ ZPS }/“an/@ ) ( Nl){X (BT’Yn—i_CO_/G)}B

= Il +12;

~

where BZ lies between 3 and BT5, + cq.

In Step 2, we analyze the stochastic order of BI¥, + co — B For a matrix X
whose column vectors are linearly independent, set Py = X (X7 X)"!X”. Define H,, =

_ _ —-1/2 —1/2
L, 41— Pyjopr = Pyoioyr Then H' — BT(B,H,BY) ™' B, = H, ?H,H,"? By
(S2.9) and the first part of Lemma 1, we see immediately that

~

B;Ilj%n—i_co_ﬁ = B;Ilj(a\/n_q/n,O)_(ﬁ_IBn,O)

n

1 ~

= H;WHnH;l/z{— Zpl,iw(Xm‘)Xm‘} +op(n~1/2182.10)

n

i=1

_ T —1/2 —1/2¢ 150 B'a _

where p1 ; = p, (Vi; X,,:8,..0)- Note that [|[H, " “H,H, "“{n=" 31" p1,iw(X i) Xni}|| =
Op(1/+/n). This gives

IBXA,, + co — Bl = Op(1/v/n). (S2.11)

In Step 3, we conclude from (S2.11) that I, = Op{(p, /n)*/?} = op(1/n). Then
2n{l,(BT7, + co) — £n(B)} = 2nI, + op(1). Similar to the proof of Proposition 1, it is
straightforward to see that

~

— T R =
2”‘[1 = (B ’Y'n,+co_ { Zp2 Y;7an/8) ( nZ)XWZXn'L}(BZ;’Yn—i_CO_/G)
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~

N 2 1 <& ~T ~ ~ ~T . =
= TL(BZ;’Yn +co — ﬁ)T{ n Z b, (Y;7 an/an,O)w(an)Xanz}(31,1;771 +co— ﬁ) + OP(l)
i=1

~

~ = T~ -~ T ~
= n(Br7, +co—B) E{p,(Yn; X, B.0)w(X i) Xn X, }(BL 7, + co — B) + op(1)

= n(BiA, +co—B) Hu(B)7, + co— B) + op(1).
Then the second part of Lemma 1 is proved. B

We now show Theorem 3. For part (i), a direct use of Lemma 1 and (S2.10) leads
to

~

2n{l,(BL 7, + co) — €n(B)} .,
1 & ~ 1 & ~
= {% Zpl,iw(Xm)Xm} H;1/2H"H;1/2{ﬁ Zpl,iw(Xm‘)Xm} +op(1).
i=1 i=1

Since H, is idempotent of rank k, it can be written as H, = CZCn, where C,, is a
k x (p, + 1) matrix satisfying C,,C}. = I,. Then

~

20{ln(BEA, + co) = £a(B)}

o 1 71/2 - N g 1 71/2 -
= {%Can ;Puw(Xm)Xm} %Oan ;pl,iw(Xni)Xni +op(1).

Now consider part (ii). If ¢(r) = r and the g-function satisfies (4.5), then p, (y;0) =

a4, (4:0), p,(y;0) = q,(y; 0) and H,, = Q,,/C, where q, (y;0) = £ Q,(y, F~1(0)). In this
case, similar arguments for Theorem 2 yield

1 - ~T ~ —~
%OﬂHgl/Q Z q, (}/1? anﬁn,o)w(an)an é N(Oa OIk)a
1=1

which completes the proof. H

Proof of Theorem 4

Before showing Theorem 4, Lemma 2 is needed.

Lemma 2 Assume conditions of Theorem 4. Then

= ~ 1. n ~T ~ —~ B
l6 - ﬁn‘O = __Hnl Zp1 (E7anﬁn,0)w(an)XnZ + OP(TL 1/2)5

5 n .
1=1

Vi(AH QAT T2 4,8 - B,,.0) <5 N(0,1).

Proof: Following (52.9) in the proof of Theorem 2, we observe that ||u,|| = Op(p®/?/n) =
0, (n~1/2). Condition B5 completes the proof for the first part.
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To show the second part, denote U,, = A, H;'Q, H;*AT and U,, = A, H;'Q, H;* AT,
Notice that the eigenvalues of H,,'Q2, H,'! are uniformly bounded away from 0. So are
the eigenvalues of U,,. From the first part, we see that

= ~ 1 _ n ~T ~ —~ B
An(ﬁ - IBn;O) = _ﬁAanl Zpl (}/Za anan,O)w(XnZ)XnZ + Op (n 1/2)'

i=1
It follows that

\/_U 1/2A 6 /Bno Zznz+0

where Z; = —n~ Y205 Y2 A H; (Vi X piBr0) (X ni) X i To show Y7, Zi 55
N(0,1y), similar to the proof for Theorem 2, we check (1) Y0 | cov(Z,;) — L (IV)
S E(1Zil*T°) = o(1) for some § > 0. Condition (Ill) is straightforward since
S cov(Zy;) = U, U, U, ? = I To check condition (IV), similar arguments used
in the proof of Theorem 2 give that E(||Z,;?>T?) = O((p, /n)?T9/2). This and the
boundedness of ¢ yield 37 | E(|| Z,:]|*T°) < O(p@+%) /2/n5/2) = o(1). Hence

\/ﬁUg”QAn(ﬁ ~ Bo) ~£5 N(0,1). (S2.12)

From the proof of Proposition 1, it can be concluded that HUn — Uyl = op(1) and
that the eigenvalues of U,, are uniformly bounded away from 0 and oo with probability
tending to one. Consequently,

U, 2UN2 =T = 0,,(1). (S2.13)
Combining (S2.12), (S2.13) and Slutsky’s theorem completes the proof that /nUs, 24, (B—
/Bn;O) i> N(Ou Ik) |

We now show Theorem 4, which follows directly from Hy in (4.3) and the second
part of Lemma 2. This completes the proof. B

Proof of Theorem 5

Note that W, can be decomposed into three additive terms,

L= n{An(B Bl (AT AT) {An(B ~ B0},
L = 2”(1471571;0 - QO)T(Anj}nAZ)_I{Ag(B - Bn;o)}7
Iz = n(AuB,0— QO)T(AnVnAZ)_l(Anﬁn;o - 9o)s

where V,, = H;1Q,,H, L. We observe that I N xi following the second part of Lemma

25 I3 - n( n/Bn;O gO)TM ( n/Bn;O 90){1 + OP( )} by PI‘OpOSitiOn 17 IQ = OP(\/E)
by Cauchy-Schwartz inequality. Thus

N s 2> Amin (M) AnB0 — g0l {1 + 0p(1)} = At M) [ 4B, — gol* + 0p(1).
These complete the proof for W,,. B
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Proof of Theorem 6

Following the second part of Lemma 2, we observe that /n(A, V, AT)~1/2(A,,8—g,) £,
N(M~12¢, 1)), which completes the proof. W

Proof of Theorem 7

We first need to show Lemma 3.
Lemma 3 Suppose that (X,Y°) follows the distribution of (X ,,Y) and is independent
of the training set T,. If @ is a BD, then

E{Q(Y?, m(X7))} = BE{Q(Y?, m(X7))} + E{@(m(X75), m(X7))}-

Proof: Let q be the generating function of Q. Then

QY (X3) = [a(m(X3)) — B{Q(Y°) | T, X1 + [E{a(Y) | Tn, X2}
—a(Y?)] - a(m(X2)) + q(i(X3) + {Y° - m(X3)}d (M(X3). (S2.14)

Since (X7, Y°) is independent of T,,, we deduce from Chow and Teicher (1989, Corollary
3, p. 223) that
E{a(Y?) | Tn, X7} = E{a(Y°) | X7} (52.15)

Similarly,
E{Y°q'(m(X7)) | Tu, X7} = E(Y? | X7)q'(M(X7)) = m(X7)q (M(X7)).  (52.16)
Applying (S2.15) and (S2.16) to (S2.14) results in
E{Q(Y?, m(X7)) | To, X5} = E{Q(Y?,m(X7)) | X7} +Q(m(X7), m(X7))
and thus the conclusion. W
Now show Theorem 7. Setting Q in Lemma 3 to be the misclassification loss gives
1/2[E{R(6n)} = R(énp)] < Ellm(X;) - 5|{m(X}) < 5, m(X;) > 5}]

5
+HE[Im(X7) — S[{m(X7) > .5, m(X7) <.5}]
L+ L.

For any € > 0, it follows that

I E[lm(X?2) — 5{m(X?%) < .5 —¢, Mm(X2) > .5}]
+E[m(X2) — 5I{.5 —e <m(X?%) < .5, m(X2) > .5}]

P{m(X3) —m(X7)] > e} +€

IN

and similarly, Iy < e+ P{|m(X) — m(X{)| > €}. Recall that

~

(X2)—m(X2)| = |FH (X2 B)—F (XY, Buo)l < |(F1Y(X2 BNXNIB—Buoll




for some BZ between Bn;O and B, where 3(\2

—~T ~x = ~ —~o
that (F~1) (X B,) = Op(l). This along with |8 — 8,0l = Op(1) and || X, || =
Op(y/p,) implies that |m(X ) —m(X?)| = Op(rn\/p, ) = op(1). Therefore I; — 0 and

Robust-BD Estimation and Inference

I5 — 0, which completes the proof. B

(1, X°")T. By Condition A4, we conclude

S3 Figures 7-10 in Section 6.2

0.51

o

-0.5

0.51
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Figure 7: (Simulated Bernoulli response data with contamination) Boxplots of Bj — Bj.0
1,...,p, (from left to right in each panel). Left panels: the non-robust estimates;

J=0,

contaminated data, classical dev. loss,w=1

contaminated data, robust dev. loss, withw

j

contaminated data, classical exp. loss,w=1

-+ 1 05¢f o % =+ 1
,7%,,,i777 - of =3 - - - - -
e ol DV o
e T {1 -05} =+ ]
1l
0 1 2 0 1 2

j

contaminated data, robust exp. loss, withw

B + osp & -
= ***$L~ oF == - - =1 - - %*
=+ = ] o8l - % =+

. +

right panels: the robust estimates.
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contaminated data, robust dev. loss, withw, Hg) contaminated data, robust dev. loss, withw, composite Hg')

8

15} 1
6

10+ 1
4
57 1 2
or 1 0

o] 2 4 6 8 10 0 2 4 6

contaminated data, robust exp. loss, withw, Hg) contam
+ 8

15} + 1
6

N +

10+ + |

e 4

a
N

Figure 8: (Simulated Bernoulli response data with contamination) Empirical quantiles
(on the y-axis) of test statistics W,, versus quantiles (on the z-axis) of the xZ distribution.

Solid line: the 45 degree reference line. Left panels: for testing Hél); right panels: for
testing HSH).
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deviance loss, Hg) deviance loss, composite Hg')
1 e m = — = 1
7
0.8 e 0.8
7
0.6f 0.6
7
7
0.4 0.4 4
7/
N 7
0.2 021 P
T
(0] (0] —
2 4 6 8 10 2 4 6 8 10
d d
exponential loss, Hg) exponential loss, composite Hg')
1 — = = — = — = — = — — — — — — — — 1 s - === =
. P
\ s
0.8 0.8 \ /
» /
0.6 0.6 \
/
\ /
0.4 0.4 \
/
\ /
0.2 - 0.2 \ P
L
(o] (0]
2 4 6 8 10 2 4 6 8 10
d d

Figure 9: Level of tests for the Bernoulli response data. The dashed line corresponds
to the non-robust Wald-type test; the solid line corresponds to the robust Wald-type
test; the dotted line indicates the 5% nominal level. Left panels: for testing Hél); right
panels: for testing HéH).
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non—contaminated case, deviance loss, Hg) contaminated case, deviance loss, H(O')

-0.2 -0.1 (o] 0.1 0.2 0.3 -0.2 -0.1 (o] 0.1 0.2 0.3

Figure 10: Observed power functions of tests for the Bernoulli response data. The
dashed line corresponds to the non-robust Wald-type test; the solid line corresponds to
the robust Wald-type test; the dotted line indicates the 5% nominal level. Left panels:
non-contaminated case; right panels: contaminated case.



