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Supplementary Material

In this supplement the proofs of the results of the paper are collected.

S1 Proofs of Theorem 3.1, Proposition 3.3, and Corol-
laries 3.2 and 3.4

This section is dedicated to the proof of Theorem 3.1 and Corollaries 3.2 and 3.4 in
Section 3. The proof is separated in four parts. We start with some technical results,
then we calculate the entropy numbers of the considered function spaces, which yield
the basic arguments to show consistency of the estimator in (3.1). Finally, we give the
proof of the asymptotic results given in Theorem 3.1 and Corollaries 3.2 and 3.4. This
section is dedicated to the proof of Theorem 3.1 and Corollaries 3.2 and 3.4 in Section
3. The proof is separated in four parts. We start with some technical results, then we
calculate the entropy numbers of the considered function spaces, which yield the basic
arguments to show consistency of the estimator in (3.1). Finally, we give the proof of
the asymptotic results given in Theorem 3.1 and Corollaries 3.2 and 3.4.

S1.1 Some technical lemmata

Before we give the proofs of the main results in Section 3, we need some technical
lemmata.

Lemma S1.1. For p ∈ [1,∞) the mapping F : (Θk, | · |∞)→ (Fk, ‖ · ‖Lp), θ 7→ f(·, θ) is
Hölder continuous with index 1/p, and there exists a constant L independent of k such
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that for all θ(1), θ(2) ∈ Θ the following estimate holds true:∥∥∥F(θ(2))− F(θ(1))
∥∥∥
Lp
≤
(
L(k + 1)

∣∣∣θ(2) − θ(1)
∣∣∣
∞

)1/p

.

Proof. Let θ(1) = (ϑ
(1)
1 , τ

(1)
1 , . . . , ϑ

(1)
k ), θ(2) = (ϑ

(2)
1 , τ

(2)
1 , . . . , ϑ

(2)
k ) ∈ Θk and consider the

mapping λ : [0, 1]→ L1([a, b]),

λ(t) := f(·, θ(1) + t(θ(2) − θ(1))) .

Setting ϑi(t) := ϑ
(1)
i +t(ϑ

(2)
i −ϑ

(1)
i ) for i = 1, . . . , k+1 and and τi(t) := τ

(1)
i +t(τ

(2)
1 −τ

(1)
i )

for i = 0, . . . , k + 1 we get from the integral form of the mean value theorem that

∥∥∥F(θ(2))− F(θ(1))
∥∥∥p
Lp

= ‖λ(1)− λ(0)‖pLp ≤
k+1∑
i=1

∫ τi(t)

τi−1(t)

∫ 1

0

∣∣∣∣(ϑ(2)
i − ϑ

(1)
i

)> ∂f

∂ϑ
(y, ϑi(t))

∣∣∣∣p dtdy

+

k∑
i=1

∫ 1

0

∣∣∣[f(τi(t), θ(t))]
∣∣∣p dt ∣∣∣τ (2)

i − τ (1)
i

∣∣∣
≤ (1 + k)C

∣∣∣θ(2) − θ(1)
∣∣∣
∞

with the constant C := supϑ∈Ψ,y∈[a,b] max((2|f(y, ϑ)|)p, (b− a)diam∞(Ψ)p−1| ∂f∂ϑ (y, ϑ)|p1),
which is finite since Ψ is compact.

Lemma S1.2. Suppose that Assumption C holds true. Then Λ : Θk → L2(I) is contin-
uously differentiable and the derivative is given by

(Λ′[θ]ei)(x) =


∫ b

a

ϕ(x, y) ∂
∂θi
f(y, θ)dy i 6= 0 mod (r + 1) ,

ϕ(x, τ i
r+1

) [f(·, θ)] (τ i
r+1

) i = 0 mod (r + 1) .

(S1.1)

Proof. We show that the mapping Λ0 : Ψ× [a, b]2 → L2(I)

Λ0(ϑ, τ1, τ2) :=

∫ τ2

τ1

ϕ(·), y)f(y, ϑ) dy

is continuously differentiable with derivative

Λ′0[ϑ, τ1, τ2](δϑ, δτ1, δτ2) =

∫ τ2

τ1

ϕ(·), y)
∂f

∂ϑ
(y, ϑ)δϑdy

− ϕ(·, τ1)f(ϑ)(τ1, ϑ) δτ1 + ϕ(·, τ2)f(ϑ)(τ2, ϑ) δτ2

(S1.2)

from which the assertion follows immediately. We write Λ0 = Φ0 ◦ F as the composition
of the mappinng F : Ψ×[a, b]2 → C([a, b])×[a, b]2, F(ϑ, τ1, τ2) := (f(·, ϑ), τ1, τ2)>, which is
continuously differentiable with derivate F′[ϑ, τ1, τ2](δϑ, δτ1, δτ2) = ( ∂f∂ϑ (·, ϑ)δϑ, δτ1, δτ2)>

by the first property in Definition 2.1, and the integral operator Φ0 : C([a, b])× [a, b]2 →



ASYMPTOTIC LAWS FOR CHANGE POINT ESTIMATION S3

L2(I), (Φ0(g, τ1, τ2))(x) :=
∫ τ2
τ1
ϕ(x, y)g(y) dy which is continuously differentiable with

derivative Φ′0[g, τ1, τ2](δg, δτ1, δτ2) = Φ0(δg, τ1, τ2)−ϕ(·, τ1)g(τ1)δτ1 +ϕ(·, τ2)g(τ2)δτ2 by
the fundamental theorem of calculus and Assumption C. Now (S1.2) follows from the
chain rule Λ′0[θ̄](δθ̄) = Φ′0[F(θ̄)]F′[θ̄](δθ̄) with θ̄ := (ϑ, τ1, τ2).

Corollary S1.3. Suppose that Assumptions B and C are met. Then, uniformly for all
f ∈ Fk([a, b]), it holds

oP (1) + sl‖Φf‖2n ≤ ‖Φf‖2L2([a,b)] ≤ su‖Φf‖
2
n + oP (1)

with constants sl, su depending on the design density (cf. Assumption B), only.

Proof. The claim follows from Boysen, Bruns, and Munk (2009, Lemma 4.3) together
with Assumption Ci).

S1.2 Entropy results

In order to show consistency of the least squares estimator f̂n in (3.1), we apply uniform
deviation inequalities from empirical process theory. To this end, it is necessary to
calculate the entropy of the space of interest, which is defined in the following way.

Definition S1.4. Given a subset G of a linear space G, a semi-norm ‖ · ‖ : G→ [0,∞),
and a real number δ > 0, the δ-covering number N(δ,G, ‖ ·‖) is defined as the smallest
value of N such that there are functions g1, . . . , gN with

min
1≤j≤N

‖g − gj‖ ≤ δ for all g ∈ G.

Moreover, the δ-entropy H and the entropy integral J of G are defined as

H(δ,G, ‖ · ‖) = logN(δ,G, ‖ · ‖) and

J(δ,G, ‖ · ‖) := max

(
δ,

∫ δ

0

H1/2(u,G, ‖ · ‖)du

)
,

respectively.

We are interested in the entropy of the set

Gk := {Φf ∈ L2(I) | f ∈ F k[a, b]}, (S1.3)

where Φ is a known integral operator with kernel ϕ as defined in (1.2). In order to

deduce consistency of f̂n, additionally we have to know the entropy of the set F k. By
definition, all functions f ∈ F k are determined by a parameter vector θ. Thus the core
of the problem reduces to determination of the entropy of the parameter set Θk.
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Lemma S1.5. Let Fk and d = (k + 1)r + k be as in Definition 2.4. Then there exists
a constant TF , T̃F > 0 depending only on the considered function class F in Definition
2.1, such that

H (δ,Fk, ‖ · ‖L1) ≤ d log

(
(k + 1)TF + δ

δ

)
, (S1.4)

H (δ,Gk, ‖ · ‖n) ≤ d log

(
(k + 1)T̃F + δ

δ

)
. (S1.5)

Proof. Note that the diameter of Θk with respect to the maximum norm is bounded by
a constant M independent of k and recall that F : (Θk, | · |∞)→ (Fk, ‖ · ‖L1), θ 7→ f(·, θ)
is Lipschitz continuous with constant L(k + 1) (cf. Lemma S1.1). Hence, (S1.4) with
TF := 2ML follows from the fact that the number of balls with radius δ/(L(k + 1))
which are needed to cover a subset of Rd with diameter bounded by M can be estimated
by (2ML(k+ 1) + δ)d/δd (cf. del Barrio, Deheuvels, and van de Geer (2007, Lem. 2.5)).
Analogously, we obtain (S1.5) with T̃F := 2ML‖Φ‖L1→L∞ .

S1.3 Consistency

Theorem S1.6. Let Φ be an operator satisfying Assumption C and f0 = f(·, θ0) ∈ Fk.

Furthermore, assume that Assumption A1 and B are met. Then, for f̂n = f(·, θ̂n), the
least squares estimator in (3.1), it holds that

‖Φf̂n − Φf0‖n = oP (1).

Proof. Due to Inequality (3.1) we have

‖Φf̂n − Y ‖2n ≤ ‖Φf0 − Y ‖2n + op(n
−1).

Inserting Y = Φf0 + ε leads to

‖Φf̂n − Φf0‖2n − 2〈Φf̂n − Φf0, ε〉n + ‖ε‖2n ≤ ‖ε‖2n + op(n
−1)

which implies

‖Φf̂n − Φf0‖2n ≤ 2〈Φf̂n − Φf0, ε〉n + op(n
−1)

= 2(〈Φf̂n, ε〉n − 〈Φf0, ε〉n) + op(n
−1)

≤ 4 sup
g∈Gk

|〈g, ε〉n|+ op(n
−1).

Lemma S1.5 gives boundedness of the entropy H (δ,Gk, Pn) uniformly in n, for all
δ > 0 and so n−1H (δ,Gk, Pn)→ 0 as n→∞. With this result it follows directly from
van de Geer (2000, Theorem 4.8) that supg∈Gk

|〈g, ε〉n| = oP (1).
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Corollary S1.7. Under the assumptions of Theorem S1.6 one has

‖Φf̂n − Φf0‖L2(I) = oP (1).

Proof. Since the design in Definition (1.1) is assumed to satisfy Assumption B the claim
follows directly from Theorem S1.6 and Corollary S1.3.

Lemma S1.8. Under the assumptions of Theorem S1.6 it holds that

‖Φf̂n − Φf0‖L2(I) = op(1) implies ‖f(·, θ0)− f(·, θ̂n)‖L2([a,b]) = op(1).

Proof. The operator Φ : (Fk, ‖ · ‖L2([a,b])) −→ (L2(I), ‖ · ‖L2(I)) is linear and bounded
and hence continuous. According to Assumption Cii) it is injective and it follows from
Lemma S1.5 that the set (Fk, ‖ · ‖L2([a,b])) is totally bounded. Since it also contains
functions with less than k change points, it is additionally closed and therefore compact.
Hence Φ : Fk −→ {Φf ∈ L2(I) : f ∈ Fk} is a bijective continuous mapping from a
compact set to a Hausdorff space, hence a homeomorphism (see tom Dieck (2008, Prop
1.5.3)).

Lemma S1.9. Assume that f0 = f(·, θ0) ∈ Fk with ]J (f0) = k and let {f(·, θn)}n∈N be
a sequence in Fk. Then

‖f(·, θ0)− f(·, θn)‖L2([a,b]) = o(1) implies |θ0 − θn|∞ = o(1).

Proof. Due to the definition of J (·) in Subsection 2.2, the assumption ]J (f0) = k
implies that f(·, θ0) has precisely k change points. That means, f(·, θ0) ≡ f(·, θ) implies
θ = θ0, i.e. for all θ0 6= θ ∈ Θk we have ‖f(·, θ0) − f(·, θ)‖L2([a,b]) > 0. Now assume
that ‖f(·, θ0)− f(·, θn)‖L2([a,b]) = o(1) but that there exist a subsequence {θkn}n∈N and
a constant c1 > 0, such that |θ0 − θkn |∞ > c1 for all n ∈ N. Since Θk is compact, we

can choose a further subsequence of this subsequence, which converges to some θ̂ ∈ Θk.
W.l.o.g we assume limn→∞ |θ̂ − θkn |∞ = 0. By construction |θ0 − θ̂|∞ > c1 and so

uniqueness of θ0 implies ‖f(·, θ0)− f(·, θ̂)‖L2([a,b]) > c2 > 0 for some constant c2. Since
the mapping θ 7→ ‖f(·, θ) − f(·, θ0)‖L2([a,b]) is continuous by Lemma S1.1, there exists
some n0 ∈ N, such that for all n ≥ n0 we have

‖f(·, θ0)− f(·, θkn)‖L2([a,b]) >
1

2
c2 > 0.

This is a contradiction to ‖f(·, θ0)− f(·, θn)‖L2([a,b]) = o(1) and the claim follows.

Corollary S1.10. Under the assumptions of Theorem S1.6 it holds that

‖f(·, θ0)− f(·, θ̂n)‖L2([a,b]) = oP (1).

Moreover, if the true function f0 has exactly k change points it also holds that

|θ0 − θ̂n|∞ = oP (1).

Proof. This follows from Theorem S1.6 by application of Lemma S1.8 and S1.9.
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S1.4 Asymptotic normality

In this subsection we show asymptotic normality of the least squares estimator θ̂n in (3.1).

Therefore, we focus on the stochastic process ‖Y −Φf̂n‖2n = n−1
∑n
i=1(yi−Φf̂n(xi))

2 for
the random observations (Y,X) as in (1.1), which henceforth we write as the empirical
expectation

Enm(·, ·, θ) := n−1
n∑
i=1

m(xi, yi, θ),

with m defined as
m(x, y, θ) := (y − (Λ(θ))(x))2. (S1.6)

Hence, θ̂n the least squares estimator is the minimizer of θ 7−→ Enm(·, ·, θ). Let Eε1 = 0
and Eε2

1 = σ2 then expectation of m(·, ·, θ) can be calculated as

Em(·, ·, θ) = E(Φf(·, θ0)− Φf(·, θ))2 + σ2

= E(Φf(·, θ0)− Φf(·, θ))2 + Em(·, ·, θ0). (S1.7)

By Lemma S1.2, the function θ 7→ m(·, y, θ) is differentiable with derivative ∂/∂θm(·, y, θ) =
2(Λ(θ)− y)Λ′[θ] such that for all h1, h2 ∈ Rd

E

(
∂m

∂θ
(·, ·, θ0)h1

) (
∂m

∂θ
(·, ·, θ0)h2

)
= 4σ2E(Λ′[θ0]h1)(Λ′[θ0]h2) = 4σ2h>1 Vθ0h2.

(S1.8)

Classical conditions for asymptotic normality of θ̂n require that the function θ 7→ m(x, y, θ)
is twice differentiable, which is not the case on our situation. Therefore, we follow a dif-
ferent route according to Theorem 5.23 (Chapter 5.3) in van der Vaart (1998) where a
second order expansion of the expectation θ 7→ Em(·, ·, θ) instead of the function m itself
is sufficient to obtain the desired normality.

Theorem S1.11. For each θ in an open subset of Euclidean space let (x, y) 7→ m(x, y, θ)
be a measurable function such that θ 7→ m(x, y, θ) is differentiable at θ0 for P-almost
every (x, y) and such that, for every θ1 and θ2 in a neighborhood of θ0 and a measurable
function ṁ with Eṁ2 <∞

|m(x, y, θ1)−m(x, y, θ2)| ≤ ṁ(x, y)|θ1 − θ2|∞. (S1.9)

Furthermore, assume that the map θ 7→ Em(·, ·, θ) has the asymptotic behavior

Em(·, ·, θ) = Em(·, ·, θ0) +
1

2
(θ − θ0)>V (θ − θ0) + o(|θ0 − θ|2∞), as |θ0 − θ|∞ → 0

(S1.10)

at a point of minimum θ0 with a nonsingular symmetric matrix V . If Enm(·, ·, θ̂n) ≤
infθ Enm(·, ·, θ) + oP (n−1) and θ̂n

P→ θ0, then

√
n(θ̂n − θ0) = −V −1 1√

n

n∑
1=1

∂m

∂θ
(xi, yi, θ0) + oP (1).

In particular, the sequence
√
n(θ̂n − θ0) is asymptotically normal with mean zero and

covariance matrix V −1E∂m
∂θ (·, ·, θ0)∂m∂θ (·, ·, θ0)>V −1.
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Proof. Along the lines of the proof of van der Vaart (1998, Thm 2.23).

Proof. (of Theorem 3.1) We show that the assumptions of Theorem S1.11 are satisfied:
It follows from Lemma S1.1 and the assumed boundedness of Φ : L1([a, b])→ L∞(I) that
Λ = Φ · F : (Θ, | · |∞) → (L∞, ‖ · ‖L∞) is Lipschitz continuous, which implies condition
(S1.9) is satisfied with constant ṁ. Moreover, (S1.10) with V = Vθ0 follows from Lemma

S1.2. According to this theorem, together with (S1.8), the sequence
√
n(θ̂n − θ0) is

asymptotically normal with mean zero and covariance matrix σ2V −1
θ0
, which proves (i).

Part (ii) follows from van der Vaart (1998, Cor. 5.53). Part (iii) is now a consequence
of part (ii) and Lemma S1.1. Finally, part (iv) follows from part (iii) with p = 1 and the
boundedness of Φ : L1([a, b])→ L∞(I).

Proof. (of Corollary 3.2) Due to the differentiability of h in Definition 2.6 Lemma S1.1
and S1.2 hold analogously for the reduced parameter domain by the chain rule. More-
over, the mapping δθ̃ 7→ Λ′[h(θ̃]h′[θ̃]δθ̃ is injective by Assumption C and the injectivity
assumption in Definition 2.6, and hence Vθ̃ is nonsingular. Therefore, the proof of the
corollary is completely analogous to the proof of Theorem 3.1.

Proof. (of Corollary 3.4) Statements (i) - (iv) from Theorem 3.1 are valid for the reduced
parameter vectors θ̃0 and θ̃n by Corollary 3.2. In order to show (3.6), we skip the
dependencies of the parameter components, for the sake of simplicity and consider the
pieces f(y, ϑi) instead of f(y, ϑi(θ̃)) for all i = 1, ..., k + 1, keeping in mind that for all
occurring derivatives we actually need to apply the chain rule.

Now f has a kink in τi for all i = 1, ..., k. W.l.o.g. we assume that τi > τ̂i, then we
have∫ τ̂i

τi

(
f(y, ϑi+1)− f(y, ϑ̂i)

)p
dy ≤

∫ τ̂i

τi

(
|f(y, ϑi+1)− f(τi, ϑ

i+1)|

+ |f(τi, ϑi+1)− f(τi, ϑ
i)|+ |f(τi, ϑi)− f(τi, ϑ̂

i)|+ |f(τi, ϑ̂i)− f(y, ϑ̂i)|
)p

dy.

By the mean value theorem we have |f(τi, ϑi) − f(τi, ϑ̂
i)| = O(|ϑi − ϑ̂i|). The term

|f(τi, ϑi+1) − f(τi, ϑ
i)| vanishes because there is a kink at τi. Finally, remembering the

definition of the modulus of continuity ν in (3.5), we get

sup
y∈[τi,τ̂i]

(|f(y, ϑi+1)− f(τi, ϑ
i+1)|, |f(τi, ϑ̂i)− f(y, ϑ̂i)|) = ν(F , |τi − τ̂i|) .

Hence, it follows from (ii) that∫ τ̂i

τi

(
f(y, ϑi+1)− f(y, ϑ̂i)

)p
dy = O(|τi − τ̂i|)(ν(F , |τi − τ̂i|) + |ϑi − ϑ̂i|)2

= OP (n−
1
2 (ν(F , n− 1

2 )p + n−p/2)).

Since this holds for all i = 1, ..., k, this proves (3.6).
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S1.5 Proof of Proposition 3.3

Proof. (Proposition 3.3) It is obvious from the definition (3.4) that the matrix Vθ is
symmetric and positive semi-definite, so we have to study under which conditions it is

positive definite. Since h>Vθh =
∫ b
a
|Λ′[θ0]h|2s dy for h ∈ Rd, it follows from Assumption

B on s that that h>Vθh = 0 is equivalent to Λ′[θ]h = 0. Hence, Vθ0 is non-singular if
and only if Λ′[θ] is injective. It follows from Lemma S1.2 that Λ′[θ] = Φ ◦ F′[θ] is the
composition of the integral operator Φ :M→ L2(I), which is injective by Assumption
Cii) and the formal derivative F′[θ0] : Θk →M, of the mapping Fθ := f(·, θ) given by

F′[ϑ1, τ1, ϑ2, . . . , τk, ϑk+1](δϑ1, δτ1, δϑ2 . . . , δτk, δϑk+1)

:=

k+1∑
j=1

(δϑj)
> ∂f

∂ϑj
(·, ϑj)1[τj−1,τj) +

k∑
j=1

[f(·, θ)] (τj)δτj .

Since the mappings F′[τj−1,τj)
[ϑj ]δϑj = (δϑj)

> ∂f
∂ϑj

(·, ϑj) are assumed to be injective (see

Definition 2.1) F is injective if and only if [f(·, θ)](τj) 6= 0 for j = 1, . . . , k, i.e. if and
only if f(·, θ) has jumps at all change points.

S2 Proof of Theorem 3.5

From Inequality (3.2) we obtain the basic inequality

‖Φf̂λn − Φf0‖2n ≤ 2〈Φf0 − Φf̂λn , ε〉n + λn(]J(f0)− ]J(f̂λn)) + o(n−1). (S2.11)

Again we have to consider the behavior of the empirical process 〈Φf0 − Φf̂λn , ε〉n, and
therefore the entropy of the respective function space to gain a bound for this process.
We use the results from Boysen, Bruns, and Munk (2009).

Lemma S2.1. Suppose that Assumptions A and A1 are satisfied. Then, for all Φf ∈
G∞ = {Φf ∈ L2(I) | f ∈ F∞}, we have

|〈Φf, ε〉n| = OP (n−
1
2 )‖Φf‖1−εn (]J(f))

1
2 (1+2ε),

for any ε > 0.

Proof. For fixed number of jumps k, we find from Lemma S1.5 that

H(δ,Gk, Pn) ≤ d log

(
T̃F
√
k + 1 + δ

δ

)
,

with d = (k + 1)r+ k and a constant T̃F , which is independent of k. Using this entropy
bound, it follows along the lines of the proof of Lemma 4.18 in Boysen, Bruns, and Munk
(2009) that

sup
g∈Gk, ‖g‖n≤δ

|〈g, ε〉n|
√
kδ
(

1 + log
(
T̃F
√
k+δ
δ

)) = OP (n−
1
2 ),
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holds uniformly for all k. For all Φf ∈ G∞ this implies

|〈Φf, ε〉n|√
]J(f)‖Φf‖n

(
1 + log

(
T̃F
√
]J(f)+‖Φf‖n
‖Φf‖n

))
≤ sup

g∈G]J(f),

‖g‖n≤‖Φf‖n

|〈g, ε〉n|√
]J(f)‖Φf‖n

(
1 + log

(
T̃F
√
]J(f)+‖Φf‖n
‖Φf‖n

)) = OP (n−
1
2 ).

Analogously to the proof of Corollary 4.19 in Boysen, Bruns, and Munk (2009), this
directly yields the claim.

Lemma S2.2. Let f0 ∈ F∞ and {fn}n∈N a sequence in F]J(f0),D, with

‖f0 − fn‖L2([a,b]) = o(1).

Then, there exists an n0 ∈ N, such that for all n ≥ n0

]J(f0) = ]J(fn).

Proof. W.l.o.g let ]J(f0) = 1. Now we assume that there exists a subsequence fkn with
no jumps, i.e. fkn ∈ F 0,D for all n. Furthermore fkn is a subsequence of a converging
sequence, and thus converges to the same limit function f0. As shown in the proof of
Lemma S1.8, the set F 0,D is compact thus the limit function of fkn has to be contained
in F 0,D, which leads the contradiction

f0 ∈ F 0,D.

Now we are prepared for the proof of Theorem 3.5.

Proof. (of Theorem 3.5) Throughout the proof w.l.o.g we assume that ε ≤ 1. From
Lemma S2.1 and (S2.11), it follows that

‖Φf̂λn − Φf0‖2n ≤ OP (n−
1
2 )‖Φf̂λn − Φf0‖

1− 1
2 ε

n (]J (f̂λn − f0))
1
2 (1+ε)

+λn(]J (f0)− ]J (f̂λn)) + o(n−1)

≤ OP (n−
1
2 )‖Φf̂λn − Φf0‖

1− 1
2 ε

n ]J (f̂λn)
1
2 (1+ε) − λn]J (f̂λn) + λn]J (f0),

where we took into account that λn is assumed to converge slower than n−1 and that
we have ]J (f0) <∞, which implies that ]J (f̂λn − f0) = OP (]J (f̂λn)).

Choosing f ≡ 0 on the right hand side of Equation (3.2) implies λn]J (f̂λn) ≤
‖Y ‖2n = OP (1) and hence, we have

]J (f̂λn) = OP (λ−1
n ). (S2.12)
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We assumed that λ−1
n n−1/(1+ε) → 0, for n→∞, which gives

n−1 = o(λ1+ε
n ). (S2.13)

By compactness of Ψ we have that supf∈F∞ ‖f‖∞ ≤ R and thus

sup
f∈F∞

‖Φf‖n ≤ ‖ϕ‖∞R <∞ (S2.14)

Inserting (S2.14), (S2.12) and (S2.13) into (S2.12), we obtain

‖Φf̂λn − Φf0‖2n ≤ oP (λ
1+ε
2

n )OP (λ
1−ε
2

n )‖Φf̂λn − Φf0‖
1− 1

2 ε
n ]J (f̂n)− λn]J (f̂λn) + λn]J (f0)

= (op(λn)− λn)]J (f̂λn) + λn]J (f0). (S2.15)

Since op(λn)− λn becomes negative for increasing n, this implies

‖Φf̂λn − Φf0‖2n = OP (λn)

and with Corollary S1.3,

‖Φf̂λn − Φf0‖2L2(I) = OP (λn) + oP (1) = oP (1). (S2.16)

Again considering Equation (S2.15) we find that this is equivalent to

0 ≤ (op(λn)− λn)]J (f̂λn) + λn]J (f0),

which means
(1− oP (1))]J (f̂λn) ≤ ]J (f0).

Because ]J (f0) and ]J (f̂λn) are integers, this implies P (]J (f̂λn) ≤ ]J (f0)) → 1. For

]J (f̂λn) ≤ ]J (f0) in turn, it holds that f0, f̂λn ∈ F ]J (f0) and Lemma S1.8 together with
(S2.16), yields

‖f0 − f̂λn‖L2([a,b]) = oP (1).

Using Lemma S2.2 this implies that limn→∞ P
(
]J (f0) = ]J (f̂λn)

)
= 1, which is the

claim.

S3 Proofs of the Theorems 4.2, 4.3 and 4.4

Proof. (Theorem 4.2) ad Ci): It is straightforward to show that ‖Φf‖L∞ ≤ ‖φ‖L∞‖f‖L1 ,
so φ ∈ L

(
L1([a, b]), L∞([c, d])

)
. Since φ ∈ BV ([ac, bd]) there exist monotonically increas-

ing and bounded functions φ1, φ2 such that φ = φ1 − φ2. Setting ϕi(x, y) := φi(xy) for
i = 1, 2 we obtain for x, x+ δ ∈ [a, b] with δ > 0

|(Φf)(x)− (Φf)(x+ δ)| =

∣∣∣∣∣
∫ b

a

(ϕ1(x, y)− ϕ1(x+ δ, y)− ϕ2(x, y) + ϕ2(x+ δ, y))f(y)dy

∣∣∣∣∣
≤ ‖f‖∞

[∫ b

a

|ϕ1(x+ δ, y)− ϕ1(x, y)|dy +

∫ b

a

|ϕ2(x+ δ, y)− ϕ2(x+ δ, y)|dy

]
(S3.17)

= ‖f‖∞

[∫ b

a

(ϕ1(x+ δ, y)− ϕ1(x, y)) dy +

∫ b

a

(ϕ2(x+ δ, y)− ϕ2(δ, y)) dy

]
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using the monotonicity of φi in the last line. The integrals on the left hand side can be
estimated by∫ b

a

[φi((x+ δ)y)− φi(xy)] dy =
1

x+ δ

∫ b(x+δ)

a(x+δ)

φi(u)du− 1

x

∫ bx

ax

φi(u)du

=

(
1

x+ δ
− 1

x

)∫ bx

ax

φi(u)du+
1

x+ δ

(∫ b(x+δ)

bx

φi(u)du−
∫ a(x+δ)

ax

φi(u)du

)

≤
(
b− a
x+ δ

δ +
δb− δa
x+ δ

)
‖φi‖∞ ≤

b− a
a

2δ‖φi‖∞ ,

so |(Φf)(x)− (Φf)(x+ δ)| ≤ b−a
a 2δ(‖φ1‖∞ + ‖φ2‖∞) ‖f‖∞.

ad Cii): Assume that the Müntz condition (4.1) holds true and that

(Φµ)|[ρ1
a ,

ρ2
b

] ≡ 0

for some Borel measure µ ∈ B([a, b]). Since xy ∈ [ρ1, ρ2] if x ∈ [ρ1a ,
ρ2
b ] and y ∈ [a, b] and

since the series expansion of φ converges absolutely and hence uniformly on the compact
interval [ρ1, ρ2], integration and summation may be interchanged, and we obtain

(Φµ)(x) =

∫ b

a

φ(xy)dµ(y) =

∞∑
j=0

xj
∫ b

a

αjy
jdµ(y) =

∞∑
j=0

cjx
j , x ∈

[ρ1

a
,
ρ2

b

]
with cj := αj

∫ b
a
yjdµ(y). In order to see that the power series

∑∞
j=0 cjx

j converges

absolutely and uniformly for x ∈ [ρ1a ,
ρ2
b ], note that |cj | ≤ |µ|([a, b])|αj |bj , so

∞∑
j=0

∣∣cjxj∣∣ ≤ |µ|([a, b]) ∞∑
j=0

|αj |ρj2 <∞, x ∈
[ρ1

a
,
ρ2

b

]
.

Since a power series with positive radius of convergence vanishes identically if and only
if all its coefficients vanish, we obtain∫ b

a

yjdµ(y) = 0 for all j ∈ J.

By the Müntz-Theorem 4.1 this implies that
∫ b
a
g(y)dµ(y) = 0 for all g ∈ C([a, b]), so

µ ≡ 0, i.e. Φ : B([a, b])→ L2([a, b]) is injective.

If the Müntz condition (4.1) is violated, then the converse implication of the full
Müntz Theorem 4.1 entails that the closure of span({yj : j ∈ J}) does not coincide
with C([a, b]), and as a consequence of the Hahn-Banach theorem (cf. Yosida (1995,
§IV.6)) there exists a functional µ0 6= 0 in the dual space C([a, b])′ which vanishes on
span({yj : j ∈ J}). By the Riesz representation theorem (cf. Rudin (1987, Thm 6.19))

µ0 can be expressed by a (signed) Borel measure µ0 ∈ B([a, b]) via µ0(g) =
∫ b
a
gdµ0, and

our previous computations show that Φµ0 = 0.
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Proof. (Theorem 4.3) ad Ci): Obviously, ‖Φf‖L∞ ≤ ‖φ‖L∞‖f‖L1 , so φ ∈ L
(
L1([a, b]), L∞([a, b])

)
.

As in the proof of Theorem 4.2, we can write φ = φ1 − φ2 with bounded, monotonically
increasing functions φ1, φ2, and define ϕi(x, y) := φi(x − y) such that eq. (S3.17) holds
true. Here the integrals on the left hand side of (S3.17) can be estimated by∫ b

a

(φi(x+ δ − y)− φi(x− y)) dy = −
∫ x−b+δ

x−b
φi(u)du+

∫ x−a+δ

x−a
φi(u)du ≤ 2|δ|‖φi‖∞,

and we obtain |(Φf)(x)− (Φf)(x+ δ)| ≤ 2δ(‖φ1‖∞ + ‖φ2‖∞)‖f‖∞ .

ad Cii): Take µ = f +
∑
j=1 γjδxj ∈M([a, b]) and assume that

(Φµ)(x) =

∫ b

a

φ(x− y)f(y) dy +

n∑
j=1

γjφ(x− xj) = 0, for all x ∈ [a, b].

Extending f by 0 on R \ [a, b], it follows from the Plancherel theorem and the Fourier
convolution theorem that

0 =

∫ ∞
−∞

f(x)(Φµ)(x) dx+

n∑
k=1

γk(Φµ)(xk)

=

∫ ∞
−∞

f(x)

∫ ∞
−∞

φ(x− y)f(y) dy dx+

n∑
j=1

γj

∫ ∞
−∞

f(x)φ(x− xj) dx

+

n∑
k=1

γk

∫ ∞
−∞

φ(xk − y)f(y) dy +

n∑
k=1

n∑
j=1

γkγjφ(xj − xk)

=

∫ ∞
−∞

∣∣∣∣∣∣f̂(ξ) +

n∑
j=1

γje
−2πiξxj

∣∣∣∣∣∣
2

φ̂(ξ) dξ .

Using the assumption φ̂ > 0 a.e., we find that f̂(ξ) +
∑n
j=1 γje

−2πiξxj = 0 for a.e.

ξ ∈ R. Since lim|ξ|→0 f̂(ξ) = 0 by the Riemann-Lebesgue lemma, this implies f̂ = 0 and
γ1 = · · · = γn = 0, so µ = 0.

Proof. (Theorem 4.4) ad Cii): This follows from the first part of Theorem 4.3 since
analytic functions are of bounded variation.

ad Cii): Assume that Φµ = 0 for µ = f +
∑
j=1 γjδxj ∈ M([a, b]). Since φ is

analytic, it has a holomorphic extension to a neighborhood U of R in C. By a compactness
argument U0 :=

⋂
y∈[a,b] U − y is also a neighborhood of R in C. Define

g(z) :=

∫ b

a

φ(z − y)f(y) dy +

n∑
j=1

γjφ(z − xj), z ∈ U0.

Interchanging differentiation and integration, it follows that g is holomorphic, and g(x) =
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(Φµ)(x) = 0 for x ∈ [a, b]. Hence, g vanishes identically. Therefore,

0 =

∫ ∞
−∞

e−2πiξxg(x) dx = φ̂(ξ)

f̂(ξ) +

n∑
j=1

γje
2πiξxj

 , ξ ∈ R.

Since we have assumed that φ̂ 6= 0 a.e., it follows that the term in parenthesis vanishes
a.e., and hence µ = 0.
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