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The supplementary material collects the proofs for all the lemmas in Appendix A.2 of the
paper.

S1 Proof of Lemmas

Proof of Lemma A.1. Denote
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Forany § > 0 and 8; € WJ",
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So, by letting & — 0, it is easy to see that the necessary and sufficient condition for 5 to minimize
(2.2) is, for any 81 € Wi, L1(B, B1) = 0, where
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In (S1.1), letting B1(t) = t*, k = 0,1,...,m, we obtain m equalities in (A.12). For
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example, when (3 () = 1, we have
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Further, since
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Following the same procedure, it may be shown that (A.12) holds.

Next, using these equalities, we show that L1 (53, 1) = fol Lg(ﬁ)ﬁ%m) (t)dt, where
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Note that

:ﬁl(l)Xi(_l)(l)—ﬁ ( 2) / X( 2) // (s)ds
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Plugging this into L1 (8, 51) = 0, together with (A.12), we have L, (3, 51) = fol Ly (B) im) (t)dt.
Finally, since L1 (8, 81) = 0 for any 8; € W3", we have L2(8) = 0 a.e., which completes the
proof of the lemma. O
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Proof of Lemma A.2. Observe that

Hence,forj=1,...,m
1 m—1

[ 600,950 = 3 (000D [T, 95 s
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From (A.16), we have

Hp,(1 lZ:QZ / GEm) ()3 (5)ds, (S12)
i—1 0
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where 3, (1) = {5(1), -5, (—1)”‘1,5’(’”_1)(1)} T. Hence, (A.17) follows by plugging
(S1.2) into (A.15). ]

Proof of Lemma A.3. Direct calculation yields

,Zel HﬁOv m/ lelSe m') m) d8+ Zel :

Combining this with (S1.2) leads
Bo(1) = Bon(1) = (~1)™ ! / MG (s) (B (5) — 85 (5) ) ds + % doal
Therefore,
| 26)(36) = u(s))as (s1.3)
> ! —m >(m m
= 27 (B.1) = Bou(1)) + (-1)" / 25 (s)(B) (s) ~ 85 (s) ) ds
m b a(m (m) T 1
= (1) /OU(s;Z) ([3( )(s) — BS™( )ds+ Zez H1Z:(1).

From Lemma A.2,
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Plugging this into (S1.3) leads to (A.18). This completes the proof of the lemma. O

Proof of Lemma A.4. Let H(K) denote the reproducing kernel space associated withe the kernel
K. For two covariance kernel K and L on [0,1]?> we write K < L if ¢cL — K is nonnegative
definite for some positive constant ¢. Then, K < L implies H(K) C H(L). From (A.21),

QR< G+ H(Q) C H(G).

Let A1 (G) > Aa(G) > --- > 0 be the eigenvalues of G. Let ¢, be the eigenfunction of Q)
which corresponds to « such that Q¢ = kj¢r. The minimax principle [see Weidmann(1980),
Theorem 7.3] yields

Q <€ G = Ky, < c\,(G) for some positive constant c. (S1.4)

We may write H(G) = H(Q) ® H(G — Q), and H(G — Q) is the orthogonal complement of
H(Q). Note that H(G — Q) is a finite dimensional space with rank m. Let f1,..., fn be an
orthonormal base of H (G — @), and let 1 denote the sets of normalized functions in L that

are orthogonal to f1, ..., fi,. Let Eé‘ = span{dx, dk+1, .- ., }. The minimax principle implies

Aepm(G) < sup  (Gf, f) = sup  (Qf,f) < sup (Qf, f) =k (S1.5)
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From Al, Ritter et al. (1995) showed that \;(G) =< k—2(m+7)_ Further, (S1.4) and (S1.5) yield
that kg < k=20"+7). Since H(G — Q) is not an empty set, the operator () is not a strictly
positive definite operator, and () has m zero eigenvalues. O

Proof of Lemma A.5. In the lemma, we discuss the relationship between B and B . Denote

A(Br, Ba; Xi) =0 (n(Xy; B1)) — V' (n( X5 B2)) — b (n(Xi; B2))n(Xi; B1 — Ba).

Let §; satisfy
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For k > 2, let Jy, satisfy

(~1)m 8" Zb” (X33 8-1))n( X33 1) X (8)
1 n ( ) k— k—2
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By summing all these equations together, it is easy to verify that B =B+ > pey k. Following
the same discussion in Lemma A.1, for any 8, € W3,
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where A; = A(B, Bo; X;). By choosing 81 = 41,
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Therefore,
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Recall that the (v}, ;) are the eigenvalue-eigenfunction pairs for the covariance kernel K. By

S5
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A4,

n
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So,
1 2
B3I} = Elo1]}?, < Co(A+n~"A" 7m0 a7l )

Similarly, we may establish, for & > 1,

El5el2 = BlS1 2. < Co(A4n A7 4n1)
okl = Ello1llt, < C2(A+n D 4 n ,

Therefore, Y=, 0k is of order O (A +n 1A~ 279 + n~1). This shows the lemma. O



