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S1 On the minimization of the anticipated variance
in (2.6)

Let X and Z be matrices with rows x′
i, i ∈ A and z′i, i ∈ A, respectively. Also let V be

the diagonal matrix with diagonal elements vi, i ∈ A. Then it suffices to show that (a)
the matrix

H = (Z ′X)−1(Z ′V Z)(X ′Z)−1 − (X ′V −1X)−1

is non-negative definite and that (b) H equals the null matrix when Z ′ = X ′V −1. Since
(b) is obvious, we consider only (a). Let T = (Z ′X)−1Z ′−(X ′V −1X)−1X ′V −1. Clearly,
TV T ′ is non-negative definite. But a little algebra shows that TV T ′ = H and this proves
(a).

S2 Computational details

λ̂1 in (3.1) is the solution of the following calibration equation

∑
j∈A

w̃jxj =

N∑
i=1

xi, (S2.1)

where

w̃j = 1 + w̃∗
j = 1 + (N − n)

(dj − 1)exp
{
λ′
1z1j/(dj − 1)

}∑
j∈A(dj − 1)exp

{
λ′
1z1j/(dj − 1)

} . (S2.2)

Note that (S2.1) can be written as∑
i∈A(di − 1) exp(λ′

1z
∗
1i)x1i∑

i∈A(di − 1) exp(λ′
1z

∗
1i)

=
1

N − n

∑
i∈Ac

x1i, (S2.3)
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where z∗1i = z1i/(di−1). The left side of (S2.3) is a weighted mean of x1i among sampled
units while the right side of (S2.3) is a simple mean of x1i among non-sampled units.

To solve (S2.3), we can use a Newton-type algorithm. Let x̄1M be equal to the right
side of (S2.3). We can express (S2.3) as

U(λ1) ≡
∑
i∈A

wi(λ1) (x1i − x̄1M ) = 0 (S2.4)

where wi(λ1) = (di − 1) exp(λ′
1z

∗
1i). The Newton method for solving (S2.4) can be

written as

λ̂
(t+1)

1 = λ̂
(t)

1 −
{
M(λ̂

(t)

1 )
}−1∑

i∈A

wi(λ̂
(t)

1 ) (x1i − x̄1M ) (S2.5)

where M(λ1) =
∑

i∈A exp(λ′
1z1i)z

′
1i (x1i − x̄1M ) . Since the partial derivative M(λ̂

(t)

1 )
in (S2.5) may be not symmetric, which can make numeric problems in computation,
instead of (S2.5), we can use

λ̂
(t+1)

1 = λ̂
(t)

1 −
{
M(λ̂

(t)

1 )′M(λ̂
(t)

1 )
}−1

M(λ̂
(t)

1 )′
∑
i∈A

wi(λ̂
(t)

1 ) (x1i − x̄1M ) , (S2.6)

which is equivalent to finding λ̂1 that minimizes Q(λ) = U(λ)′U(λ). We can simply

use λ̂
(0)

1 = 0 as the initial value of λ1.

S3 Proof of (3.2)

To prove (3.2), assume that a sequence of finite populations and samples is defined as in
Isaki and Fuller (1982), which satisfies

N−1

∑
j∈A

dj(x
′
j , yj)−

N∑
i=1

(x′
i, yi)

 = Op(n
−1/2).

Moreover, we assume that the calibration equation (S2.1) has one unique solution almost
everywhere.

For Ŷp, after some calculation, we can establish that
∑

i∈Ac x′
iβ̂z is equivalent to

(N − n)−1
∑
i∈Ac

x′
iβ̂z =

ỹ + (X̄N−n − X̃1)
′Γ−1

∑
j∈A

(dj − 1)(z∗1j − Z̃∗
1)yj

 ,

where ỹ =
∑

j∈A(dj − 1)yj/{
∑

j∈A(dj − 1)}, X̄N−n = (N − n)−1
∑

i∈Ac x1i, Γ =∑
i∈A(di−1)(z∗1i−Z̃∗

1)(x1i−X̃1)
′, z∗1i = z1i/(di−1), X̃1 =

∑
i∈A(di−1)x1i/

∑
i∈A(di−1),

and Z̃∗
1 =

∑
i∈A z1i/

∑
i∈A(di − 1).
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Write

ηj(ϕ̂) =
(dj − 1)exp

(
ϕ̂z∗1j/fN

)
∑

j∈A(dj − 1)exp
(
ϕ̂z∗1j/fN

) ,
where fN = n/N , ϕ̂ = fN λ̂1, and λ̂1 is the unique solution of the calibration equation

(S2.1), then Ŷcal,p =
∑

j∈A{1 + (N − n)ηj(ϕ̂)}yj . Since ϕ̂ is the unique solution of the
following equation :

Û(ϕ) ≡
∑
j∈A

ηj(ϕ)x
′
1j −

1

N − n

∑
i∈Ac

x′
1i = 0,

a Taylor expansion of Û(ϕ̂) around ϕ̂ = 0 yields

0 = Û(0) + U̇(0)(ϕ̂− 0) + op(||ϕ̂||),

where U̇(ϕ) = ∂Û(ϕ)/∂ϕ. Note that U̇(0) = f−1
N

[∑
j∈A(dj − 1)

]−1

Γ is bounded in

probability. By Cauchy-Schwarz inequality,

√
n||ϕ̂|| ≤ ||U̇−1(0)|| ||

√
nU̇(0)ϕ̂||

≤ ||
√
nU̇−1(0)Û(0)||+ op(

√
n||U̇−1(0)ϕ̂||)

= Op(1) + op(
√
n||ϕ̂||).

Thus ϕ̂ = Op(n
−1/2) and

ϕ̂ = −U̇−1(0)Û(0) + op(n
−1/2). (S3.1)

Now, taking a Taylor expansion of ηj(ϕ̂) around ϕ̂ = 0 and by the continuity of the
partial derivatives of ηj(ϕ), we have∑

j∈A

ηj(ϕ̂)yj =
∑
j∈A

ηj(0)yj +
∑
j∈A

yj η̇j(0)(ϕ̂− 0) + op(n
−1/2),

where η̇j(ϕ) = ∂η̇j(ϕ)/∂ϕ. Using (S3.1), ηj(0) = {
∑

i∈A(di−1)}−1(dj −1), and η̇j(0) =

f−1
N

[∑
j∈A(dj − 1)

]−1

(dj − 1)(z∗1j − Z̃∗
1), we have established

∑
j∈A

ηj(ϕ̂)yj = ỹ + (X̄N−n − X̃1)
′Γ−1

∑
j∈A

(dj − 1)(z∗1j − Z̃∗
1)yj + op(n

−1/2).

Since (N − n)−1(Ŷcal,p − Ŷp) = (N − n)−1
∑

i∈Ac x′
iβ̂z −

∑
j∈A ηj(ϕ̂)yj , we have (3.2).
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S4 Two-step Calibration

For the two-step calibration weights proposed in Section 4, we have

w
(1)
2k

∼= d2k +

(∑
A1

d1kxk −
∑
A2

d2kxk

)′(∑
A2

zkx
′
k

)−1

zk,

w
(2)
2k

∼= w
(1)
2k +

(∑
U

x1k −
∑
A2

w
(1)
2k x1k

)′(∑
A2

d2k
d1k

z1kx
′
k

)−1
d2k
d1k

z1k

and the alternative estimator Ŷtp,new =
∑

i∈A2
w

(2)
2i yi has the form of

Ŷtp,new =
∑
i∈A2

w
(1)
2i yi +

(∑
i∈U

x1i −
∑
i∈A2

w
(1)
2i x1i

)′

b̂1,

=
∑
i∈A2

d2i

(
yi − x′

iβ̂
)
+
∑
i∈A1

d1i

(
x′
iβ̂ − x′

1ib̂1

)
+
∑
i∈U

x1ib̂1,

where

b̂1 =

(∑
i∈A2

d2k
d1k

z1ix
′
1i

)−1(∑
i∈A2

d2k
d1k

z1iyi

)
.

Writing

b̃1 =

(∑
i∈A1

z1ix
′
1i

)−1(∑
i∈A1

z1iyi

)
,

we can establish

Ŷtp,new
∼=

∑
i∈A2

d2i

(
yi − x′

iβ̂
)
+
∑
i∈A1

d1i

(
x′
iβ̂ − x′

1ib̃1

)
+
∑
i∈U

x1ib̃1

and
p lim b̃1 = p lim

(
β̂1,z + β̂x,zβ̂2,z

)
= p lim B̂1,z.

Thus,

Ŷtp,new
∼=

∑
i∈A2

d2i

(
yi − x′

iβ̂
)
+
∑
i∈A1

d1i

(
x′
iβ̂ − x′

1iB̂1,z

)
+
∑
i∈U

x1iB̂1,z,

which establishes the asymptotic equivalence between Ŷtp,r in (4.5) and Ŷtp,new =
∑

i∈A2
w

(2)
2i yi.


