Statistica Sinica: Supplement

INSTRUMENTAL-VARIABLE CALIBRATION ESTIMATION IN SURVEY SAMPLING

SEUNGHWAN PARK AND JAE KWANG KIM

Seoul National University and Iowa State University

Supplementary Material

S1 On the minimization of the anticipated variance in (2.6)

Let X and Z be matrices with rows \mathbf{x}'_i , $i \in A$ and \mathbf{z}'_i , $i \in A$, respectively. Also let V be the diagonal matrix with diagonal elements v_i , $i \in A$. Then it suffices to show that (a) the matrix

$$H = (Z'X)^{-1}(Z'VZ)(X'Z)^{-1} - (X'V^{-1}X)^{-1}$$

is non-negative definite and that (b) H equals the null matrix when $Z' = X'V^{-1}$. Since (b) is obvious, we consider only (a). Let $T = (Z'X)^{-1}Z' - (X'V^{-1}X)^{-1}X'V^{-1}$. Clearly, TVT' is non-negative definite. But a little algebra shows that TVT' = H and this proves (a).

S2 Computational details

 $\hat{\lambda}_1$ in (3.1) is the solution of the following calibration equation

$$\sum_{j \in A} \tilde{w}_j \mathbf{x}_j = \sum_{i=1}^N \mathbf{x}_i, \tag{S2.1}$$

where

$$\tilde{w}_{j} = 1 + \tilde{w}_{j}^{*} = 1 + (N - n) \frac{(d_{j} - 1) \exp\left\{\lambda_{1}' \mathbf{z}_{1j} / (d_{j} - 1)\right\}}{\sum_{j \in A} (d_{j} - 1) \exp\left\{\lambda_{1}' \mathbf{z}_{1j} / (d_{j} - 1)\right\}}.$$
 (S2.2)

Note that (S2.1) can be written as

$$\frac{\sum_{i \in A} (d_i - 1) \exp(\boldsymbol{\lambda}_1' \mathbf{z}_{1i}^*) \mathbf{x}_{1i}}{\sum_{i \in A} (d_i - 1) \exp(\boldsymbol{\lambda}_1' \mathbf{z}_{1i}^*)} = \frac{1}{N - n} \sum_{i \in A^c} \mathbf{x}_{1i},$$
(S2.3)

where $\mathbf{z}_{1i}^* = \mathbf{z}_{1i}/(d_i - 1)$. The left side of (S2.3) is a weighted mean of \mathbf{x}_{1i} among sampled units while the right side of (S2.3) is a simple mean of \mathbf{x}_{1i} among non-sampled units.

To solve (S2.3), we can use a Newton-type algorithm. Let $\bar{\mathbf{x}}_{1M}$ be equal to the right side of (S2.3). We can express (S2.3) as

$$\mathbf{U}(\boldsymbol{\lambda}_1) \equiv \sum_{i \in A} w_i(\boldsymbol{\lambda}_1) \left(\mathbf{x}_{1i} - \bar{\mathbf{x}}_{1M} \right) = \mathbf{0}$$
(S2.4)

where $w_i(\lambda_1) = (d_i - 1) \exp(\lambda'_1 \mathbf{z}^*_{1i})$. The Newton method for solving (S2.4) can be written as

$$\hat{\boldsymbol{\lambda}}_{1}^{(t+1)} = \hat{\boldsymbol{\lambda}}_{1}^{(t)} - \left\{ M(\hat{\boldsymbol{\lambda}}_{1}^{(t)}) \right\}^{-1} \sum_{i \in A} w_{i}(\hat{\boldsymbol{\lambda}}_{1}^{(t)}) \left(\mathbf{x}_{1i} - \bar{\mathbf{x}}_{1M} \right)$$
(S2.5)

where $M(\lambda_1) = \sum_{i \in A} \exp(\lambda'_1 \mathbf{z}_{1i}) \mathbf{z}'_{1i} (\mathbf{x}_{1i} - \bar{\mathbf{x}}_{1M})$. Since the partial derivative $M(\hat{\lambda}_1^{(t)})$ in (S2.5) may be not symmetric, which can make numeric problems in computation, instead of (S2.5), we can use

$$\hat{\boldsymbol{\lambda}}_{1}^{(t+1)} = \hat{\boldsymbol{\lambda}}_{1}^{(t)} - \left\{ M(\hat{\boldsymbol{\lambda}}_{1}^{(t)})' M(\hat{\boldsymbol{\lambda}}_{1}^{(t)}) \right\}^{-1} M(\hat{\boldsymbol{\lambda}}_{1}^{(t)})' \sum_{i \in A} w_{i}(\hat{\boldsymbol{\lambda}}_{1}^{(t)}) \left(\mathbf{x}_{1i} - \bar{\mathbf{x}}_{1M} \right), \qquad (S2.6)$$

which is equivalent to finding $\hat{\lambda}_1$ that minimizes $\mathcal{Q}(\lambda) = \mathbf{U}(\lambda)'\mathbf{U}(\lambda)$. We can simply use $\hat{\lambda}_1^{(0)} = \mathbf{0}$ as the initial value of λ_1 .

S3 Proof of (3.2)

To prove (3.2), assume that a sequence of finite populations and samples is defined as in Isaki and Fuller (1982), which satisfies

$$N^{-1}\left(\sum_{j\in A} d_j(\mathbf{x}'_j, y_j) - \sum_{i=1}^N (\mathbf{x}'_i, y_i)\right) = O_p(n^{-1/2}).$$

Moreover, we assume that the calibration equation (S2.1) has one unique solution almost everywhere.

For \hat{Y}_p , after some calculation, we can establish that $\sum_{i \in A^c} \mathbf{x}'_i \hat{\beta}_z$ is equivalent to

$$(N-n)^{-1} \sum_{i \in A^c} \mathbf{x}'_i \hat{\beta}_z = \left\{ \tilde{y} + (\bar{\mathbf{X}}_{N-n} - \tilde{\mathbf{X}}_1)' \Gamma^{-1} \sum_{j \in A} (d_j - 1) (\mathbf{z}_{1j}^* - \tilde{\mathbf{Z}}_1^*) y_j \right\},\$$

where $\tilde{y} = \sum_{j \in A} (d_j - 1) y_j / \{ \sum_{j \in A} (d_j - 1) \}, \ \bar{\mathbf{X}}_{N-n} = (N-n)^{-1} \sum_{i \in A^c} \mathbf{x}_{1i}, \ \Gamma = \sum_{i \in A} (d_i - 1) (\mathbf{z}_{1i}^* - \tilde{\mathbf{Z}}_1^*) (\mathbf{x}_{1i} - \tilde{\mathbf{X}}_1)', \ \mathbf{z}_{1i}^* = \mathbf{z}_{1i} / (d_i - 1), \ \tilde{\mathbf{X}}_1 = \sum_{i \in A} (d_i - 1) \mathbf{x}_{1i} / \sum_{i \in A} (d_i - 1),$ and $\tilde{\mathbf{Z}}_1^* = \sum_{i \in A} \mathbf{z}_{1i} / \sum_{i \in A} (d_i - 1).$ Write

$$\eta_j(\hat{\boldsymbol{\phi}}) = \frac{(d_j - 1) \exp\left(\hat{\boldsymbol{\phi}} \mathbf{z}_{1j}^* / f_N\right)}{\sum_{j \in A} (d_j - 1) \exp\left(\hat{\boldsymbol{\phi}} \mathbf{z}_{1j}^* / f_N\right)},$$

where $f_N = n/N$, $\hat{\phi} = f_N \hat{\lambda}_1$, and $\hat{\lambda}_1$ is the unique solution of the calibration equation (S2.1), then $\hat{Y}_{cal,p} = \sum_{j \in A} \{1 + (N - n)\eta_j(\hat{\phi})\}y_j$. Since $\hat{\phi}$ is the unique solution of the following equation :

$$\hat{\mathbf{U}}(\boldsymbol{\phi}) \equiv \sum_{j \in A} \eta_j(\boldsymbol{\phi}) \mathbf{x}'_{1j} - \frac{1}{N-n} \sum_{i \in A^c} \mathbf{x}'_{1i} = 0,$$

a Taylor expansion of $\hat{\mathbf{U}}(\hat{\boldsymbol{\phi}})$ around $\hat{\boldsymbol{\phi}} = \mathbf{0}$ yields

$$0 = \hat{\mathbf{U}}(\mathbf{0}) + \dot{\mathbf{U}}(\mathbf{0})(\hat{\boldsymbol{\phi}} - 0) + o_p(||\hat{\boldsymbol{\phi}}||),$$

where $\dot{\mathbf{U}}(\boldsymbol{\phi}) = \partial \hat{\mathbf{U}}(\boldsymbol{\phi}) / \partial \boldsymbol{\phi}$. Note that $\dot{\mathbf{U}}(0) = f_N^{-1} \left[\sum_{j \in A} (d_j - 1) \right]^{-1} \Gamma$ is bounded in probability. By Cauchy-Schwarz inequality,

$$\begin{aligned} \sqrt{n} ||\hat{\boldsymbol{\phi}}|| &\leq ||\dot{\mathbf{U}}^{-1}(0)|| ||\sqrt{n}\dot{\mathbf{U}}(0)\hat{\boldsymbol{\phi}}|| \\ &\leq ||\sqrt{n}\dot{\mathbf{U}}^{-1}(0)\hat{\mathbf{U}}(0)|| + o_p(\sqrt{n}||\dot{\mathbf{U}}^{-1}(0)\hat{\boldsymbol{\phi}}||) \\ &= O_p(1) + o_p(\sqrt{n}||\hat{\boldsymbol{\phi}}||). \end{aligned}$$

Thus $\hat{\phi} = O_p(n^{-1/2})$ and

$$\hat{\boldsymbol{\phi}} = -\dot{\mathbf{U}}^{-1}(0)\hat{\mathbf{U}}(0) + o_p(n^{-1/2}).$$
(S3.1)

Now, taking a Taylor expansion of $\eta_j(\hat{\phi})$ around $\hat{\phi} = \mathbf{0}$ and by the continuity of the partial derivatives of $\eta_j(\phi)$, we have

$$\sum_{j \in A} \eta_j(\hat{\phi}) y_j = \sum_{j \in A} \eta_j(\mathbf{0}) y_j + \sum_{j \in A} y_j \dot{\eta}_j(\mathbf{0}) (\hat{\phi} - \mathbf{0}) + o_p(n^{-1/2}),$$

where $\dot{\eta}_j(\boldsymbol{\phi}) = \partial \dot{\eta}_j(\boldsymbol{\phi}) / \partial \boldsymbol{\phi}$. Using (S3.1), $\eta_j(\mathbf{0}) = \{\sum_{i \in A} (d_i - 1)\}^{-1} (d_j - 1)$, and $\dot{\eta}_j(\mathbf{0}) = f_N^{-1} \left[\sum_{j \in A} (d_j - 1)\right]^{-1} (d_j - 1) (\mathbf{z}_{1j}^* - \tilde{\mathbf{Z}}_1^*)$, we have established

$$\sum_{j \in A} \eta_j(\hat{\phi}) y_j = \tilde{y} + (\bar{\mathbf{X}}_{N-n} - \tilde{\mathbf{X}}_1)' \Gamma^{-1} \sum_{j \in A} (d_j - 1) (\mathbf{z}_{1j}^* - \tilde{\mathbf{Z}}_1^*) y_j + o_p (n^{-1/2}).$$

Since $(N-n)^{-1}(\hat{Y}_{cal,p}-\hat{Y}_p) = (N-n)^{-1} \sum_{i \in A^c} \mathbf{x}'_i \hat{\beta}_z - \sum_{j \in A} \eta_j(\hat{\phi}) y_j$, we have (3.2).

S4 Two-step Calibration

For the two-step calibration weights proposed in Section 4, we have

$$w_{2k}^{(1)} \cong d_{2k} + \left(\sum_{A_1} d_{1k} \mathbf{x}_k - \sum_{A_2} d_{2k} \mathbf{x}_k\right)' \left(\sum_{A_2} \mathbf{z}_k \mathbf{x}'_k\right)^{-1} \mathbf{z}_k,$$

$$w_{2k}^{(2)} \cong w_{2k}^{(1)} + \left(\sum_{U} \mathbf{x}_{1k} - \sum_{A_2} w_{2k}^{(1)} \mathbf{x}_{1k}\right)' \left(\sum_{A_2} \frac{d_{2k}}{d_{1k}} \mathbf{z}_{1k} \mathbf{x}'_k\right)^{-1} \frac{d_{2k}}{d_{1k}} \mathbf{z}_{1k}$$

and the alternative estimator $\hat{Y}_{tp,new} = \sum_{i \in A_2} w_{2i}^{(2)} y_i$ has the form of

$$\hat{Y}_{tp,new} = \sum_{i \in A_2} w_{2i}^{(1)} y_i + \left(\sum_{i \in U} \mathbf{x}_{1i} - \sum_{i \in A_2} w_{2i}^{(1)} \mathbf{x}_{1i} \right)' \hat{\mathbf{b}}_1, \\
= \sum_{i \in A_2} d_{2i} \left(y_i - \mathbf{x}'_i \hat{\boldsymbol{\beta}} \right) + \sum_{i \in A_1} d_{1i} \left(\mathbf{x}'_i \hat{\boldsymbol{\beta}} - \mathbf{x}'_{1i} \hat{\mathbf{b}}_1 \right) + \sum_{i \in U} \mathbf{x}_{1i} \hat{\mathbf{b}}_1,$$

where

$$\hat{\mathbf{b}}_1 = \left(\sum_{i \in A_2} \frac{d_{2k}}{d_{1k}} \mathbf{z}_{1i} \mathbf{x}'_{1i}\right)^{-1} \left(\sum_{i \in A_2} \frac{d_{2k}}{d_{1k}} \mathbf{z}_{1i} y_i\right).$$

Writing

$$\tilde{\mathbf{b}}_1 = \left(\sum_{i \in A_1} \mathbf{z}_{1i} \mathbf{x}'_{1i}\right)^{-1} \left(\sum_{i \in A_1} \mathbf{z}_{1i} y_i\right),\,$$

we can establish

$$\hat{Y}_{tp,new} \cong \sum_{i \in A_2} d_{2i} \left(y_i - \mathbf{x}'_i \hat{\boldsymbol{\beta}} \right) + \sum_{i \in A_1} d_{1i} \left(\mathbf{x}'_i \hat{\boldsymbol{\beta}} - \mathbf{x}'_{1i} \tilde{\mathbf{b}}_1 \right) + \sum_{i \in U} \mathbf{x}_{1i} \tilde{\mathbf{b}}_1$$

and

$$p \lim \tilde{\mathbf{b}}_1 = p \lim \left(\hat{\boldsymbol{\beta}}_{1,z} + \hat{\boldsymbol{\beta}}_{x,z} \hat{\boldsymbol{\beta}}_{2,z} \right) = p \lim \hat{\mathbf{B}}_{1,z}.$$

Thus,

$$\hat{Y}_{tp,new} \cong \sum_{i \in A_2} d_{2i} \left(y_i - \mathbf{x}_i' \hat{\boldsymbol{\beta}} \right) + \sum_{i \in A_1} d_{1i} \left(\mathbf{x}_i' \hat{\boldsymbol{\beta}} - \mathbf{x}_{1i}' \hat{\mathbf{B}}_{1,z} \right) + \sum_{i \in U} \mathbf{x}_{1i} \hat{\mathbf{B}}_{1,z},$$

which establishes the asymptotic equivalence between $\hat{Y}_{tp,r}$ in (4.5) and $\hat{Y}_{tp,new} = \sum_{i \in A_2} w_{2i}^{(2)} y_i$.

S4