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APPENDIX: PROOFS

In this appendix, we first give the proofs of Lemmas 2.1-2.2. Denote C as a generic

constant which may vary from place to place in the rest of this paper. The proofs

of Lemmas 2.1-2.2 rely on the following three basic lemmas:

Lemma A.1. Suppose that yt is strictly stationary, ergodic and absolutely regular

with mixing coefficients β(m) = O(m−A) for some A > v/(v−1) and r > v > 1; and

there exists an A0 > 1 such that 2A0rv/(r−v) < A. Then, for any γ = (rL, rU) ∈ Γ,

we have
∞∑

j=1



E




j∏

i=1

I(rL < yt−i ≤ rU)








(r−v)/2A0rv

< ∞.

Proof. First, denote ξi = I(rL < yt−i ≤ rU). Then, ξi is strictly stationary,

ergodic and α-mixing with mixing coefficients α(m) = O(m−A). Next, take ι ∈(
[2A0rv/(r − v) + 1]/(A + 1), 1

)
, and let p = bjιc and s = bj/jιc, where bxc is the

largest integer not greater than x. When j ≥ j0 is large enough, we can always find

{ξkp+1}s−1
k=0, a subsequence of {ξi}j

i=1.

Furthermore, let Fn
m = σ(ξi,m ≤ i ≤ n). Then, ξkp+1 ∈ Fkp+2

kp+1 . Note that

E [ξkp+1] < P (a ≤ yt ≤ b) , ρ ∈ (0, 1). Hence, by Proposition 2.6 in Fan and

Yao (2003, p.72), we have that for j ≥ j0,

E




j∏

i=1

ξi


 ≤ E

[
s−1∏

k=0

ξkp+1

]

=

{
E

[
s−1∏

k=0

ξkp+1

]
−

s−1∏

k=0

E [ξkp+1]

}
+

s−1∏

k=0

E [ξkp+1]

≤ 16(s− 1)α(p) + ρs

≤ Cbj/jιcbjιc−A + ρbj/jιc.

1
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Therefore, since (r − v)/2A0rv > 0, by using the inequality (x + y)k ≤ C(xk + yk)

for any x, y, k > 0, it follows that

∞∑

j=1



E




j∏

i=1

ξi








(r−v)/2A0rv

≤ (j0 − 1) +
∞∑

j=j0



E




j∏

i=1

ξi








(r−v)/2A0rv

≤ (j0 − 1) + C
∞∑

j=j0

[
bj/jιcbjιc−A

](r−v)/2A0rv

+ C
∞∑

j=j0

ρbj/jιc(r−v)/2A0rv.(A.1)

Since ι > [2A0rv/(r − v) + 1]/(A + 1), we have (ιA + ι− 1)(r − v)/2A0rv > 1, and

hence
∑∞

j=1 j−(ιA+ι−1)(r−v)/2A0rv < ∞, which implies that

∞∑

j=j0

[bj/jιc
bjιcA

](r−v)/2A0rv

≤
∞∑

j=1

[
j

jι(jι − 1)A

](r−v)/2A0rv

< ∞.(A.2)

On the other hand, since
(
ρbj/jιc(r−v)/2A0rv

)1/j
< 1, by Cauchy’s root test, we have

∞∑

j=j0

ρbj/jιc(r−v)/2A0rv <
∞∑

j=1

ρbj/jιc(r−v)/2A0rv < ∞.(A.3)

Now, the conclusion follows directly from (A.1)-(A.3). This completes the proof.

Lemma A.2. Suppose that the conditions in Lemma A.1 hold, and yt has a

bounded and continuous density function. Then, there exists a B0 > 1 such that for

any γ1, γ2 ∈ Γ, we have

‖Rt(γ1)−Rt(γ2)‖2rv/(r−v) ≤ C|γ1 − γ2|(r−v)/2B0rv.

Proof. Let γ1 = (r1L, r1U) and γ2 = (r2L, r2U). Since Rt(γ) = I(yt−d ≤ rL) +

Rt−1(γ)I(rL < yt−d ≤ rU), we have

Rt(γ1)−Rt(γ2) = ∆t(γ1, γ2) + I(r1L < yt−d ≤ r1U) [Rt−1(γ1)−Rt−1(γ2)] ,

where

∆t(γ1, γ2) = I(r2L < yt−d ≤ r1L)

+ Rt−1(γ2) [I(r1L < yt−d ≤ r1U)− I(r2L < yt−d ≤ r2U)] .
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Thus, by iteration we can show that

Rt(γ1)−Rt(γ2)

= ∆t(γ1, γ2) +
∞∑

j=1

∆t−j(γ1, γ2)
j∏

i=1

I(r1L < yt−i−d ≤ r1U).(A.4)

Next, for brevity, we assume that r2L ≤ r1L ≤ r2U ≤ r1U , because the proofs for

other cases are similar. Note that for any j ≥ 0, Rt−j−1(γ2) ≤ 1 and

I(r1L < yt−j−d ≤ r1U)− I(r2L < yt−j−d ≤ r2U)

= I(r2U < yt−j−d ≤ r1U)− I(r2L < yt−j−d ≤ r1L).

Let f(x) be the density function of yt. Since supx f(x) < ∞ and |∆t−j(γ1, γ2)| ≤ 2,

by Hölder’s inequality and Taylor’s expansion, it follows that for any s ≥ 1,

E|∆t−j(γ1, γ2)|s ≤ 2s−1E|∆t−j(γ1, γ2)|
≤ 2s−1

[
2 sup

x
f(x)|r1L − r2L|+ sup

x
f(x)|r1U − r2U |

]

≤ C|γ1 − γ2|.(A.5)

Let A0 > 1 be specified in Lemma A.1, and choose B0 such that 1/A0 + 1/B0 = 1.

By Hölder’s inequality and (A.5), we can show that

E

∣∣∣∣∣∣
∆t−j(γ1, γ2)

j∏

i=1

I(r1L < yt−i−d ≤ r1U)

∣∣∣∣∣∣

2rv/(r−v)

≤
{
E[∆t−j(γ1, γ2)]

2B0rv/(r−v)
}1/B0

×


E




j∏

i=1

I(r1L < yt−i−d ≤ r1U)








1/A0

≤ 2[2B0rv/(r−v)]−1 {E|∆t−j(γ1, γ2)|}1/B0

×


E




j∏

i=1

I(r1L < yt−i−d ≤ r1U)








1/A0

≤ C|γ1 − γ2|1/B0



E




j∏

i=1

I(r1L < yt−i−d ≤ r1U)








1/A0

.(A.6)

By (A.4)-(A.6), Minkowski’s inequality, Lemma A.1 and the compactness of Γ, we
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have

‖Rt(γ1)−Rt(γ2)‖2rv/(r−v)

≤ C|γ1 − γ2|(r−v)/2rv + C|γ1 − γ2|(r−v)/2B0rv

×
∞∑

j=1



E




j∏

i=1

I(r1L < yt−i−d ≤ r1U)








(r−v)/2A0rv

≤ C|γ1 − γ2|(r−v)/2B0rv.

This completes the proof.

Lemma A.3. Suppose that the conditions in Lemma A.2 hold and Ey4
t < ∞.

Then,

sup
γ∈Γ

∣∣∣∣∣
X

′
γX

n
− Σγ

∣∣∣∣∣ → 0 a.s. as n →∞.

Proof. For brevity, we only prove the uniform convergence for n−1 ∑n
t=1 φt(γ),

the last component of n−1X
′
γX, where

φt(γ) = y2
t−pRt(γ).

First, for fix ε > 0, we partition Γ by {B1, · · · , BKε}, where Bk = {(rL, rU); ωk <

rL ≤ ωk+1, νk < rU ≤ νk+1} ∩ Γ. Here, {ωk} and {νk} are chosen such that

(ωk+1 − ωk)
(r−v)/2B0rv < C1ε and (νk+1 − νk)

(r−v)/2B0rv < C1ε,(A.7)

where B0 > 1 is specified as in Lemma A.2, and C1 > 0 will be selected later.

Next, we set

fu
t (ε) = y2

t−pRt(ωk+1, νk+1) and f l
t(ε) = y2

t−pRt(ωk, νk).

By construction, since Rt(γ) is a nondecreasing function with respect to rL and rU ,

for any γ ∈ Γ, there is some k such that γ ∈ Bk and f l
t(ε) ≤ φt(γ) ≤ fu

t (ε).

Furthermore, since rv/(2rv − r + v) < 1, we have

∥∥∥y2
t−p

∥∥∥
2rv/(2rv−r+v)

<
∥∥∥y2

t−p

∥∥∥
2

< ∞.
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Thus, by Hölder’s inequality, Lemma A.2 and (A.7), we have

E
[
fu

t (ε)− f l
t(ε)

]

≤
∥∥∥y2

t−p

∥∥∥
2rv/(2rv−r+v)

‖Rt(ωk+1, νk+1)−Rt(ωk, νk)‖2rv/(r−v)

≤ C
[
(ωk+1 − ωk)

(r−v)/2B0rv + (νk+1 − νk)
(r−v)/2B0rv

]

≤ 2CC1ε.

By setting C1 = (2C)−1, we have E
[
fu

t (ε)− f l
t(ε)

]
≤ ε. Thus, the conclusion holds

according to Theorem 2 in Pollard (1984, p.8). This completes the proof.

Proof of Lemma 2.1. First, since Kγγ is positive definite by Assumption 2.1,

we know that both Σ and Σγ are positive definite. By using the same argument

as for Lemma 2.1(iv) in Chan (1990), it is not hard to show that for every γ ∈ Γ,

Σγ −ΣγΣ
−1Σ′

γ is positive definite. Second, by the ergodic theorem, it is easy to see

that

X ′X
n

→ Σ a.s. as n →∞.(A.8)

Third, by Lemma A.3 we have

sup
γ∈Γ

∣∣∣∣∣
X

′
γX

n
− Σγ

∣∣∣∣∣ → 0 and sup
γ∈Γ

∣∣∣∣∣
X

′
γXγ

n
− Σγ

∣∣∣∣∣ → 0 a.s.(A.9)

as n →∞. Note that if H0 holds, we have

Tγ =
1√
n

{
X

′
γ −X

′
γX(X ′X)−1X ′} ε

=
1√
n

(
− (X ′

γX)(X ′X)−1, I
)
Z ′

γε.

Then, (i) and (ii) follow readily from (A.8)-(A.9). This completes the proof. ¤

Proof of Lemma 2.2. Denote

Gn(γ) ≡ 1√
n

Z
′
γε =

1√
n

N∑

t=p

xt(γ)εt.

It is straightforward to show that the finite dimensional distribution of {Gn(γ)}
converges to that of {σGγ}. By Pollard (1990, Sec.10), we only need to verify the

stochastic equicontinuity of {Gn(γ)}. To establish it, we use Theorem 1, Application



6

4 in Doukhan, Massart, and Rio (1995, p.405); see also Andrews (1993) and Hansen

(1996).

First, the envelop function is supγ |xt(γ)εt| = x̄t|εt|, where x̄t = supγ |xt(γ)|. By

Hölder’s inequality and Assumption 2.1, we know that the envelop function is L2v

bounded. Next, for any γ1, γ2 ∈ Γ, by Assumptions 2.1-2.3, Lemma A.2 and Hölder’s

inequality, we have

‖xt(γ1)εt − xt(γ2)εt‖2v = ‖ht(γ1)εt − ht(γ2)εt‖2v

≤ ‖xtεt‖2r‖Rt(γ1)−Rt(γ2)‖2rv/(r−v)

≤ C‖xt‖4r‖εt‖4r |γ1 − γ2|(r−v)/2B0rv

≤ C|γ1 − γ2|(r−v)/2B0rv

for some B0 > 1, where the last inequality holds since ‖xt‖4r‖εt‖4r < ∞.

Now, following the argument in Hansen (1996, p.426), we know that Gn(γ) is

stochastically equicontinuous. This completes the proof. ¤

Next, we give Lemmas A.4-A.6, in which Lemma A.4 is crucial for proving Lemma

A.5, and Lemmas A.5 and A.6 are needed to prove Corollary 2.1 and Theorem 3.1,

respectively.

Lemma A.4. Suppose that yt is strictly stationary and ergodic. Then, (i) n0 =

Op(1); (ii) furthermore, if E|yt|2 < ∞ and E|εt|2 < ∞, for any an = o(1), we have

sup
γ∈Γ

∣∣∣∣∣∣
an

n0−1∑

t=p

xtx
′
tRt(γ)

∣∣∣∣∣∣
= Op(1)(A.10)

and

sup
γ∈Γ

∣∣∣∣∣∣
an

n0−1∑

t=p

ht(γ)εt

∣∣∣∣∣∣
= Op(1).(A.11)

Proof. First, by the ergodic theory, we have that

1

M

M∑

t=p

I(a ≤ yt−d ≤ b) = P (a ≤ yt−d ≤ b) , κ > 0 a.s.

as M →∞. Thus, ∀η > 0, there exists an integer M(η) > 0 such that

P


 1

M

M∑

t=p

I(a ≤ yt−d ≤ b) <
κ

2


 < η.
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By the definition of n0, it follows that

P (n0 > M) = P




M∑

t=p

I(a ≤ yt−d ≤ b) = 0




= P


 1

M

M∑

t=p

I(a ≤ yt−d ≤ b) = 0




≤ P


 1

M

M∑

t=p

I(a ≤ yt−d ≤ b) <
κ

2




< η,(A.12)

i.e., (i) holds. Furthermore, by taking M̃ = M2, from (A.12) and Markov’s inequality,

it follows that ∀η > 0,

P


sup

γ∈Γ

∣∣∣∣∣∣
an

n0−1∑

t=p

xtx
′
tRt(γ)

∣∣∣∣∣∣
> M̃




= P


sup

γ∈Γ

∣∣∣∣∣∣
an

n0−1∑

t=p

xtx
′
tRt(γ)

∣∣∣∣∣∣
> M̃, n0 ≤ M




≤ P


 max

p≤k≤M
sup
γ∈Γ

∣∣∣∣∣∣
an

k−1∑

t=p

xtx
′
tRt(γ)

∣∣∣∣∣∣
> M̃




≤
M∑

k=p

P


an

k−1∑

t=p

|xt|2 > M̃




≤ an

M∑

k=p

k−1∑

t=p

E|xt|2
M̃

= O

(
anM

2

M̃

)
= O (an) < η(A.13)

as n is large enough. Thus, we know that equation (A.10) holds. Next, by Hölder’s

inequality and a similar argument as for (A.13), it is not hard to show that ∀η > 0,

P


sup

γ∈Γ

∣∣∣∣∣∣
an

n0−1∑

t=p

ht(γ)εt

∣∣∣∣∣∣
> M̃


 ≤ O (an) < η

as n is large enough, i.e., (A.11) holds. This completes the proof.
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Lemma A.5. If Assumptions 2.1-2.3 hold, then it follows that under H0 or H1n,

(i) sup
γ∈Γ

∣∣∣∣
1

n

(
Xγ − X̃γ

)′
X

∣∣∣∣ = op(1),

(ii) sup
γ∈Γ

∣∣∣∣
1

n

(
X

′
γXγ − X̃

′
γX̃γ

)∣∣∣∣ = op(1),

(iii) sup
γ∈Γ

∣∣∣Tγ − T̃γ

∣∣∣ = op(1),

where X̃γ and T̃γ are defined in the same way as Xγ and Tγ, respectively, with Rt(γ)

being replaced by R̃t(γ).

Proof. (i) Note that

1

n

(
Xγ − X̃γ

)′
X =

1√
n


 1√

n

n0−1∑

t=p

xtx
′
tRt(γ)


 .

Hence, we know that (i) holds by taking an = n−1/2 in equation (A.10).

(ii) By a similar argument as for (i), we can show that (ii) holds.

(iii) Note that when λ0 = (φ′0, h
′/
√

n)′, we have

Tγ − T̃γ =
1√
n

(
Xγ − X̃γ

)′
ε− 1√

n

(
Xγ − X̃γ

)′
X(X ′X)−1X ′ε

− 1

n

(
Xγ − X̃γ

)′
X(X ′X)−1X ′Xγ0h

− 1

n
X̃ ′

γX(X ′X)−1X ′ (Xγ0 − X̃γ0

)
h

+
1

n

(
X ′

γXγ0 − X̃ ′
γX̃γ0

)
h

, I1n(γ)− I2n(γ)− I3n(γ)− I4n(γ) + I5n(γ) say.

First, since

I1n(γ) =
1

n1/4


 1

n1/4

n0−1∑

t=p

ht(γ)εt


 ,

it follows that supγ |I1n(γ)| = op(1) by taking an = n−1/4 in equation (A.11). Next,

since

I2n(γ) =


 1

n

n0−1∑

t=p

xtx
′
tRt(γ)




(
X ′X

n

)−1
X ′ε√

n
,

we have that supγ |I2n(γ)| = op(1) from (i). Similarly, we can show that supγ |Iin(γ)| =
op(1) for i = 3, 4, 5. Hence, under H0 (i.e., h ≡ 0) or H1n, we know that (iii) holds.

This completes the proof.
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Lemma A.6. If Assumptions 2.1-2.3 hold, then it follows that under H0 or H1n,

sup
γ∈Γ

√
n|λn(γ)− λ0| = Op(1).

Proof. First, for any γ ∈ Γ, by Taylor’s expansion we have

N∑

t=p

[
ε2

t (λn(γ), γ)− ε2
t (λ0, γ)

]

= −(λn(γ)− λ0)
′



N∑

t=p

2εt(λ0, γ)xt(γ)




+ (λn(γ)− λ0)
′



N∑

t=p

xt(γ)xt(γ)′

 (λn(γ)− λ0).(A.14)

Next, when λ0 = (φ′0, h
′/
√

n)′, we can show that

1√
n

N∑

t=p

εt(λ0, γ)xt(γ) =
1√
n

Z ′
γε +

1√
n

N∑

t=p

xt(γ)[xt(γ0)− xt(γ)]′λ0

=
1√
n

Z ′
γε +

1

n

N∑

t=p


 xtx

′
t[Rt(γ0)−Rt(γ)]

xtx
′
t[Rt(γ)Rt(γ0)−Rt(γ)]


 h

, G∗
n(γ).(A.15)

Let λmin(γ) > 0 be the minimum eigenvalue of Kγγ . Then, by equations (A.14)-

(A.15), ∀η > 0, there exists a M(η) > 0 such that

P

(
sup
γ∈Γ

√
n|λn(γ)− λ0| > M

)

= P


√n|λn(γ)− λ0| > M,

N∑

t=p

[
ε2

t (λn(γ), γ)− ε2
t (λ0, γ)

]
≤ 0

for some γ ∈ Γ)

≤ P
(√

n|λn(γ)− λ0| > M, −2
√

n|λn(γ)− λ0||G∗
n(γ)|

+n|λn(γ)− λ0|2[λmin(γ) + op(1)] ≤ 0 for some γ ∈ Γ
)

≤ P
(
M <

√
n|λn(γ)− λ0| ≤ 2[λmin(γ) + op(1)]−1|G∗

n(γ)|
for some γ ∈ Γ)

≤ P (|G∗
n(γ)| > M [λmin(γ) + op(1)]/2 for some γ ∈ Γ)

≤ η,
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where the last inequality holds because G∗
n(γ) = Op(1) by Lemma 2.2 and Lemma

A.3. Hence, under H0 (i.e., h ≡ 0) or H1n, our conclusion holds. This completes the

proof.

Proof of Corollary 2.1. The conclusion follows directly from Theorems 2.1-

2.2 and Lemma A.5. ¤

Proof of Theorem 3.1. We use the method in the proof of Theorem 2 in

Hansen (1996). Let W denote the set of samples ω for which

lim
n→∞

1

n

N∑

t=p

sup
γ∈Γ

|xt(γ)|ε2
t < ∞ a.s.,(A.16)

lim
n→∞ sup

γ,δ∈Γ

∣∣∣∣∣∣
1

n

N∑

t=p

xt(γ)xt(δ)
′ε2

t − σ2Kγδ

∣∣∣∣∣∣
→ 0 a.s.(A.17)

Since supγ∈Γ |xt(γ)| ≤ √
2|xt| and E|xt|ε2

t < ∞ due to Assumption 2.1, by the

ergodic theorem we have

lim
n→∞

1

n

N∑

t=p

sup
γ∈Γ

|xt(γ)|ε2
t ≤ lim

n→∞

√
2

n

N∑

t=p

|xt|ε2
t < ∞ a.s.,

i.e., (A.16) holds. Furthermore, by Assumptions 2.1-2.3 and a similar argument as

for Lemma A.3, it is not hard to see that

lim
n→∞ sup

γ,δ∈Γ

∣∣∣∣∣∣
1

n

N∑

t=p

xt(γ)xt(δ)
′ε2

t − σ2Kγδ

∣∣∣∣∣∣
→ 0 a.s.,

i.e., (A.17) holds. Thus, P (W ) = 1. Take any ω ∈ W . For the remainder of the proof,

all operations are conditionally on ω, and hence all of the randomness appears in

the i.i.d. N(0, 1) variables {vt}.
Define

Z∗
n(γ) =

1√
n

N∑

t=p

xt(γ)εtvt.

By using the same argument as in Hansen (1996, p.426-427), we have

Z∗
n(γ) ⇒ σGγ a.s. as n →∞.(A.18)

Note that

sup
γ∈Γ

|Ẑn(γ)− Z∗
n(γ)| ≤ sup

γ∈Γ

∣∣∣∣∣∣
1

n

N∑

t=p

xt(γ)xt(γ)′vt

∣∣∣∣∣∣
sup
γ∈Γ

∣∣∣
√

n(λn(γ)− λ0)
∣∣∣ .
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Using the same argument as for (A.18) (see, e.g., Hansen (1996, p.427)), we have

1

n

N∑

t=p

xt(γ)xt(γ)′vt ⇒ 0 a.s. as n →∞.(A.19)

Now, by Lemma A.6 and (A.19), it follows that under H0 or H1n,

Ẑn(γ)− Z∗
n(γ) ⇒ 0 in probability as n →∞.(A.20)

Thus, by (A.18) and (A.20), we know that under H0 or H1n,

Ẑn(γ) ⇒ σGγ in probability as n →∞.(A.21)

Next, we consider the functional

L : x(·) ∈ D2p+2(Γ) → 1

σ2
sup
γ∈Γ

x(γ)′Ωγx(γ),

where D2p+2(Γ) denotes the function spaces of all functions, mapping R2(Γ) into

R2p+2, that are right continuous and have right-hand limits. Clearly, L(·) is a con-

tinuous functional; see e.g., Chan (1990, p.1891). By the continuous mapping theory

and (A.21), it follows that under H0 or H1n,

L(Ẑn(γ)) ⇒ L(σGγ) in probability as n →∞.(A.22)

Furthermore, since σ2
n → σ2 a.s. and (X1n(γ), I)′[X2n(γ)]−1(X1n(γ), I) → Ωγ uni-

formly in γ by Lemma A.3, we have that

sup
γ∈Γ

L̂Rn(γ) = L(Ẑn(γ)) + op(1).(A.23)

Finally, the conclusion follows from (A.22)-(A.23). This completes the proof. ¤

Proof of Corollary 3.1. Conditional on the sample {y0, · · · , yN}, let F̂n,J

and F̂n be the conditional empirical c.d.f. and c.d.f. of L̂Rn, respectively. Then,

P
(
LRn ≥ cJ

n,α

)

= E
[
P

(
LRn ≥ cJ

n,α|y0, · · · , yN

)]

= E
[
P

(
F̂n,J(LRn) ≥ 1− α|y0, · · · , yN

)]
.
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By the Glivenko-Cantelli Theorem and Theorem 3.1, it follows that under H0 or

H1n,

lim
n→∞ lim

J→∞
P

(
LRn ≥ cJ

n,α

)

= lim
n→∞E

[
P

(
F̂n(LRn) ≥ 1− α|y0, · · · , yN

)]

= lim
n→∞E [P (F0(LRn) ≥ 1− α|y0, · · · , yN)]

= lim
n→∞P (F0(LRn) ≥ 1− α) ,(A.24)

where F0 is the c.d.f. of supγ∈Γ G′
γΩγGγ. Thus, by (A.24) and Theorem 2.1, under

H0 we have

lim
n→∞ lim

J→∞
P

(
LRn ≥ cJ

n,α

)
= P

(
sup
γ∈Γ

G′
γΩγGγ ≥ F−1

0 (1− α)

)
= α,

i.e., (i) holds. Furthermore, by (A.24) and Theorem 2.2, under H1n we have

lim
h→∞

lim
n→∞ lim

J→∞
P

(
LRn ≥ cJ

n,α

)
= lim

h→∞
P

(
Bh ≥ F−1

0 (1− α)
)

= 1,

where Bh , supγ∈Γ

{
G′

γΩγGγ + h′µγγ0h
}

and the last equation holds since Bh →∞
in probability as h →∞. Thus, (ii) holds. This completes the proof. ¤
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