TESTING FOR THE BUFFERED AUTOREGRESSIVE PROCESSES (SUPPLEMENTARY MATERIAL)

By Ke Zhu, Philip L.H. Yu and Wai Keung Li
Chinese Academy of Sciences and University of Hong Kong

APPENDIX: PROOFS

In this appendix, we first give the proofs of Lemmas 2.1-2.2. Denote C as a generic constant which may vary from place to place in the rest of this paper. The proofs of Lemmas 2.1-2.2 rely on the following three basic lemmas:

Lemma A.1. Suppose that y_{t} is strictly stationary, ergodic and absolutely regular with mixing coefficients $\beta(m)=O\left(m^{-A}\right)$ for some $A>v /(v-1)$ and $r>v>1$; and there exists an $A_{0}>1$ such that $2 A_{0} r v /(r-v)<A$. Then, for any $\gamma=\left(r_{L}, r_{U}\right) \in \Gamma$, we have

$$
\sum_{j=1}^{\infty}\left\{E\left[\prod_{i=1}^{j} I\left(r_{L}<y_{t-i} \leq r_{U}\right)\right]\right\}^{(r-v) / 2 A_{0} r v}<\infty
$$

Proof. First, denote $\xi_{i}=I\left(r_{L}<y_{t-i} \leq r_{U}\right)$. Then, ξ_{i} is strictly stationary, ergodic and α-mixing with mixing coefficients $\alpha(m)=O\left(m^{-A}\right)$. Next, take $\iota \in$ $\left(\left[2 A_{0} r v /(r-v)+1\right] /(A+1), 1\right)$, and let $p=\left\lfloor j^{\iota}\right\rfloor$ and $s=\left\lfloor j / j^{\iota}\right\rfloor$, where $\lfloor x\rfloor$ is the largest integer not greater than x. When $j \geq j_{0}$ is large enough, we can always find $\left\{\xi_{k p+1}\right\}_{k=0}^{s-1}$, a subsequence of $\left\{\xi_{i}\right\}_{i=1}^{j}$.

Furthermore, let $\mathcal{F}_{m}^{n}=\sigma\left(\xi_{i}, m \leq i \leq n\right)$. Then, $\xi_{k p+1} \in \mathcal{F}_{k p+1}^{k p+2}$. Note that $E\left[\xi_{k p+1}\right]<P\left(a \leq y_{t} \leq b\right) \triangleq \rho \in(0,1)$. Hence, by Proposition 2.6 in Fan and Yao (2003, p.72), we have that for $j \geq j_{0}$,

$$
\begin{aligned}
E\left[\prod_{i=1}^{j} \xi_{i}\right] & \leq E\left[\prod_{k=0}^{s-1} \xi_{k p+1}\right] \\
& =\left\{E\left[\prod_{k=0}^{s-1} \xi_{k p+1}\right]-\prod_{k=0}^{s-1} E\left[\xi_{k p+1}\right]\right\}+\prod_{k=0}^{s-1} E\left[\xi_{k p+1}\right] \\
& \leq 16(s-1) \alpha(p)+\rho^{s} \\
& \leq C\left\lfloor j / j^{\iota}\right\rfloor\left\lfloor j^{\iota}\right\rfloor{ }^{-A}+\rho^{\left\lfloor j / j^{\iota}\right\rfloor} .
\end{aligned}
$$

Therefore, since $(r-v) / 2 A_{0} r v>0$, by using the inequality $(x+y)^{k} \leq C\left(x^{k}+y^{k}\right)$ for any $x, y, k>0$, it follows that

$$
\begin{aligned}
\sum_{j=1}^{\infty}\left\{E\left[\prod_{i=1}^{j} \xi_{i}\right]\right\}^{(r-v) / 2 A_{0} r v} & \leq\left(j_{0}-1\right)+\sum_{j=j_{0}}^{\infty}\left\{E\left[\prod_{i=1}^{j} \xi_{i}\right]\right\}^{(r-v) / 2 A_{0} r v} \\
& \leq\left(j_{0}-1\right)+C \sum_{j=j_{0}}^{\infty}\left[\left\lfloor j / j^{l}\right\rfloor\left\lfloor j^{l}\right\rfloor^{-A}\right]^{(r-v) / 2 A_{0} r v}
\end{aligned}
$$

$$
\begin{equation*}
+C \sum_{j=j_{0}}^{\infty} \rho^{\left\lfloor j / j^{j}\right\rfloor(r-v) / 2 A_{0} r v} \tag{A.1}
\end{equation*}
$$

Since $\iota>\left[2 A_{0} r v /(r-v)+1\right] /(A+1)$, we have $(\iota A+\iota-1)(r-v) / 2 A_{0} r v>1$, and hence $\sum_{j=1}^{\infty} j^{-(\iota A+\iota-1)(r-v) / 2 A_{0} r v}<\infty$, which implies that

$$
\begin{equation*}
\sum_{j=j_{0}}^{\infty}\left[\frac{\left\lfloor j / j^{\iota}\right\rfloor}{\left\lfloor j^{\iota}\right\rfloor}\right]^{(r-v) / 2 A_{0} r v} \leq \sum_{j=1}^{\infty}\left[\frac{j}{j^{\iota}\left(j^{\iota}-1\right)^{A}}\right]^{(r-v) / 2 A_{0} r v}<\infty \tag{A.2}
\end{equation*}
$$

On the other hand, since $\left(\rho^{\left\lfloor j / j^{i}\right\rfloor(r-v) / 2 A_{0} r v}\right)^{1 / j}<1$, by Cauchy's root test, we have

$$
\begin{equation*}
\sum_{j=j_{0}}^{\infty} \rho^{\left\lfloor j / j^{\dagger}\right\rfloor(r-v) / 2 A_{0} r v}<\sum_{j=1}^{\infty} \rho^{\left\lfloor j / j^{i}\right\rfloor(r-v) / 2 A_{0} r v}<\infty . \tag{A.3}
\end{equation*}
$$

Now, the conclusion follows directly from (A.1)-(A.3). This completes the proof.
Lemma A.2. Suppose that the conditions in Lemma A. 1 hold, and yt has a bounded and continuous density function. Then, there exists a $B_{0}>1$ such that for any $\gamma_{1}, \gamma_{2} \in \Gamma$, we have

$$
\left\|R_{t}\left(\gamma_{1}\right)-R_{t}\left(\gamma_{2}\right)\right\|_{2 r v /(r-v)} \leq C\left|\gamma_{1}-\gamma_{2}\right|^{(r-v) / 2 B_{0} r v}
$$

Proof. Let $\gamma_{1}=\left(r_{1 L}, r_{1 U}\right)$ and $\gamma_{2}=\left(r_{2 L}, r_{2 U}\right)$. Since $R_{t}(\gamma)=I\left(y_{t-d} \leq r_{L}\right)+$ $R_{t-1}(\gamma) I\left(r_{L}<y_{t-d} \leq r_{U}\right)$, we have

$$
R_{t}\left(\gamma_{1}\right)-R_{t}\left(\gamma_{2}\right)=\Delta_{t}\left(\gamma_{1}, \gamma_{2}\right)+I\left(r_{1 L}<y_{t-d} \leq r_{1 U}\right)\left[R_{t-1}\left(\gamma_{1}\right)-R_{t-1}\left(\gamma_{2}\right)\right]
$$

where

$$
\begin{aligned}
\Delta_{t}\left(\gamma_{1}, \gamma_{2}\right)= & I\left(r_{2 L}<y_{t-d} \leq r_{1 L}\right) \\
& +R_{t-1}\left(\gamma_{2}\right)\left[I\left(r_{1 L}<y_{t-d} \leq r_{1 U}\right)-I\left(r_{2 L}<y_{t-d} \leq r_{2 U}\right)\right]
\end{aligned}
$$

Thus, by iteration we can show that

$$
\begin{align*}
& R_{t}\left(\gamma_{1}\right)-R_{t}\left(\gamma_{2}\right) \\
& \quad=\Delta_{t}\left(\gamma_{1}, \gamma_{2}\right)+\sum_{j=1}^{\infty} \Delta_{t-j}\left(\gamma_{1}, \gamma_{2}\right) \prod_{i=1}^{j} I\left(r_{1 L}<y_{t-i-d} \leq r_{1 U}\right) . \tag{A.4}
\end{align*}
$$

Next, for brevity, we assume that $r_{2 L} \leq r_{1 L} \leq r_{2 U} \leq r_{1 U}$, because the proofs for other cases are similar. Note that for any $j \geq 0, R_{t-j-1}\left(\gamma_{2}\right) \leq 1$ and

$$
\begin{aligned}
& I\left(r_{1 L}<y_{t-j-d} \leq r_{1 U}\right)-I\left(r_{2 L}<y_{t-j-d} \leq r_{2 U}\right) \\
& \quad=I\left(r_{2 U}<y_{t-j-d} \leq r_{1 U}\right)-I\left(r_{2 L}<y_{t-j-d} \leq r_{1 L}\right)
\end{aligned}
$$

Let $f(x)$ be the density function of y_{t}. Since $\sup _{x} f(x)<\infty$ and $\left|\Delta_{t-j}\left(\gamma_{1}, \gamma_{2}\right)\right| \leq 2$, by Hölder's inequality and Taylor's expansion, it follows that for any $s \geq 1$,

$$
\begin{align*}
E\left|\Delta_{t-j}\left(\gamma_{1}, \gamma_{2}\right)\right|^{s} & \leq 2^{s-1} E\left|\Delta_{t-j}\left(\gamma_{1}, \gamma_{2}\right)\right| \\
& \leq 2^{s-1}\left[2 \sup _{x} f(x)\left|r_{1 L}-r_{2 L}\right|+\sup _{x} f(x)\left|r_{1 U}-r_{2 U}\right|\right] \\
& \leq C\left|\gamma_{1}-\gamma_{2}\right| . \tag{A.5}
\end{align*}
$$

Let $A_{0}>1$ be specified in Lemma A.1, and choose B_{0} such that $1 / A_{0}+1 / B_{0}=1$. By Hölder's inequality and (A.5), we can show that

$$
\begin{aligned}
E \mid & \left.\Delta_{t-j}\left(\gamma_{1}, \gamma_{2}\right) \prod_{i=1}^{j} I\left(r_{1 L}<y_{t-i-d} \leq r_{1 U}\right)\right|^{2 r v /(r-v)} \\
\leq & \left\{E\left[\Delta_{t-j}\left(\gamma_{1}, \gamma_{2}\right)\right]^{2 B_{0} r v /(r-v)}\right\}^{1 / B_{0}} \\
& \times\left\{E\left[\prod_{i=1}^{j} I\left(r_{1 L}<y_{t-i-d} \leq r_{1 U}\right)\right]\right\}^{1 / A_{0}} \\
\leq & 2^{\left[2 B_{0} r v /(r-v)\right]-1}\left\{E\left|\Delta_{t-j}\left(\gamma_{1}, \gamma_{2}\right)\right|\right\}^{1 / B_{0}} \\
& \times\left\{E\left[\prod_{i=1}^{j} I\left(r_{1 L}<y_{t-i-d} \leq r_{1 U}\right)\right]\right\}^{1 / A_{0}}
\end{aligned}
$$

$$
\begin{equation*}
\leq C\left|\gamma_{1}-\gamma_{2}\right|^{1 / B_{0}}\left\{E\left[\prod_{i=1}^{j} I\left(r_{1 L}<y_{t-i-d} \leq r_{1 U}\right)\right]\right\}^{1 / A_{0}} \tag{A.6}
\end{equation*}
$$

By (A.4)-(A.6), Minkowski's inequality, Lemma A. 1 and the compactness of Γ, we
have

$$
\begin{aligned}
& \left\|R_{t}\left(\gamma_{1}\right)-R_{t}\left(\gamma_{2}\right)\right\|_{2 r v /(r-v)} \\
& \quad \leq C\left|\gamma_{1}-\gamma_{2}\right|^{(r-v) / 2 r v}+C\left|\gamma_{1}-\gamma_{2}\right|^{(r-v) / 2 B_{0} r v} \\
& \quad \times \sum_{j=1}^{\infty}\left\{E\left[\prod_{i=1}^{j} I\left(r_{1 L}<y_{t-i-d} \leq r_{1 U}\right)\right]\right\}^{(r-v) / 2 A_{0} r v} \\
& \leq C\left|\gamma_{1}-\gamma_{2}\right|^{(r-v) / 2 B_{0} r v} .
\end{aligned}
$$

This completes the proof.
Lemma A.3. Suppose that the conditions in Lemma A.2 hold and Ey $y_{t}^{4}<\infty$. Then,

$$
\sup _{\gamma \in \Gamma}\left|\frac{X_{\gamma}^{\prime} X}{n}-\Sigma_{\gamma}\right| \rightarrow 0 \text { a.s. as } n \rightarrow \infty .
$$

Proof. For brevity, we only prove the uniform convergence for $n^{-1} \sum_{t=1}^{n} \phi_{t}(\gamma)$, the last component of $n^{-1} X_{\gamma}^{\prime} X$, where

$$
\phi_{t}(\gamma)=y_{t-p}^{2} R_{t}(\gamma)
$$

First, for fix $\varepsilon>0$, we partition Γ by $\left\{B_{1}, \cdots, B_{K_{\varepsilon}}\right\}$, where $B_{k}=\left\{\left(r_{L}, r_{U}\right) ; \omega_{k}<\right.$ $\left.r_{L} \leq \omega_{k+1}, \nu_{k}<r_{U} \leq \nu_{k+1}\right\} \cap \Gamma$. Here, $\left\{\omega_{k}\right\}$ and $\left\{\nu_{k}\right\}$ are chosen such that

$$
\begin{equation*}
\left(\omega_{k+1}-\omega_{k}\right)^{(r-v) / 2 B_{0} r v}<C_{1} \varepsilon \text { and }\left(\nu_{k+1}-\nu_{k}\right)^{(r-v) / 2 B_{0} r v}<C_{1} \varepsilon, \tag{A.7}
\end{equation*}
$$

where $B_{0}>1$ is specified as in Lemma A.2, and $C_{1}>0$ will be selected later.
Next, we set

$$
f_{t}^{u}(\varepsilon)=y_{t-p}^{2} R_{t}\left(\omega_{k+1}, \nu_{k+1}\right) \quad \text { and } \quad f_{t}^{l}(\varepsilon)=y_{t-p}^{2} R_{t}\left(\omega_{k}, \nu_{k}\right)
$$

By construction, since $R_{t}(\gamma)$ is a nondecreasing function with respect to r_{L} and r_{U}, for any $\gamma \in \Gamma$, there is some k such that $\gamma \in B_{k}$ and $f_{t}^{l}(\varepsilon) \leq \phi_{t}(\gamma) \leq f_{t}^{u}(\varepsilon)$.

Furthermore, since $r v /(2 r v-r+v)<1$, we have

$$
\left\|y_{t-p}^{2}\right\|_{2 r v /(2 r v-r+v)}<\left\|y_{t-p}^{2}\right\|_{2}<\infty .
$$

Thus, by Hölder's inequality, Lemma A. 2 and (A.7), we have

$$
\begin{aligned}
& E\left[f_{t}^{u}(\varepsilon)-f_{t}^{l}(\varepsilon)\right] \\
& \quad \leq\left\|y_{t-p}^{2}\right\|_{2 r v /(2 r v-r+v)}\left\|R_{t}\left(\omega_{k+1}, \nu_{k+1}\right)-R_{t}\left(\omega_{k}, \nu_{k}\right)\right\|_{2 r v /(r-v)} \\
& \quad \leq C\left[\left(\omega_{k+1}-\omega_{k}\right)^{(r-v) / 2 B_{0} r v}+\left(\nu_{k+1}-\nu_{k}\right)^{(r-v) / 2 B_{0} r v}\right] \\
& \quad \leq 2 C C_{1} \varepsilon .
\end{aligned}
$$

By setting $C_{1}=(2 C)^{-1}$, we have $E\left[f_{t}^{u}(\varepsilon)-f_{t}^{l}(\varepsilon)\right] \leq \varepsilon$. Thus, the conclusion holds according to Theorem 2 in Pollard (1984, p.8). This completes the proof.

Proof of Lemma 2.1. First, since $K_{\gamma \gamma}$ is positive definite by Assumption 2.1, we know that both Σ and Σ_{γ} are positive definite. By using the same argument as for Lemma 2.1(iv) in Chan (1990), it is not hard to show that for every $\gamma \in \Gamma$, $\Sigma_{\gamma}-\Sigma_{\gamma} \Sigma^{-1} \Sigma_{\gamma}^{\prime}$ is positive definite. Second, by the ergodic theorem, it is easy to see that

$$
\begin{equation*}
\frac{X^{\prime} X}{n} \rightarrow \Sigma \text { a.s. as } n \rightarrow \infty \tag{A.8}
\end{equation*}
$$

Third, by Lemma A. 3 we have

$$
\begin{equation*}
\sup _{\gamma \in \Gamma}\left|\frac{X_{\gamma}^{\prime} X}{n}-\Sigma_{\gamma}\right| \rightarrow 0 \text { and } \sup _{\gamma \in \Gamma}\left|\frac{X_{\gamma}^{\prime} X_{\gamma}}{n}-\Sigma_{\gamma}\right| \rightarrow 0 \text { a.s. } \tag{A.9}
\end{equation*}
$$

as $n \rightarrow \infty$. Note that if H_{0} holds, we have

$$
\begin{aligned}
T_{\gamma} & =\frac{1}{\sqrt{n}}\left\{X_{\gamma}^{\prime}-X_{\gamma}^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime}\right\} \varepsilon \\
& =\frac{1}{\sqrt{n}}\left(-\left(X_{\gamma}^{\prime} X\right)\left(X^{\prime} X\right)^{-1}, I\right) Z_{\gamma}^{\prime} \varepsilon .
\end{aligned}
$$

Then, (i) and (ii) follow readily from (A.8)-(A.9). This completes the proof.

Proof of Lemma 2.2. Denote

$$
G_{n}(\gamma) \equiv \frac{1}{\sqrt{n}} Z_{\gamma}^{\prime} \varepsilon=\frac{1}{\sqrt{n}} \sum_{t=p}^{N} x_{t}(\gamma) \varepsilon_{t} .
$$

It is straightforward to show that the finite dimensional distribution of $\left\{G_{n}(\gamma)\right\}$ converges to that of $\left\{\sigma G_{\gamma}\right\}$. By Pollard (1990, Sec.10), we only need to verify the stochastic equicontinuity of $\left\{G_{n}(\gamma)\right\}$. To establish it, we use Theorem 1, Application

4 in Doukhan, Massart, and Rio (1995, p.405); see also Andrews (1993) and Hansen (1996).

First, the envelop function is $\sup _{\gamma}\left|x_{t}(\gamma) \varepsilon_{t}\right|=\bar{x}_{t}\left|\varepsilon_{t}\right|$, where $\bar{x}_{t}=\sup _{\gamma}\left|x_{t}(\gamma)\right|$. By Hölder's inequality and Assumption 2.1, we know that the envelop function is $L^{2 v}$ bounded. Next, for any $\gamma_{1}, \gamma_{2} \in \Gamma$, by Assumptions 2.1-2.3, Lemma A. 2 and Hölder's inequality, we have

$$
\begin{aligned}
\left\|x_{t}\left(\gamma_{1}\right) \varepsilon_{t}-x_{t}\left(\gamma_{2}\right) \varepsilon_{t}\right\|_{2 v} & =\left\|h_{t}\left(\gamma_{1}\right) \varepsilon_{t}-h_{t}\left(\gamma_{2}\right) \varepsilon_{t}\right\|_{2 v} \\
& \leq\left\|x_{t} \varepsilon_{t}\right\|_{2 r}\left\|R_{t}\left(\gamma_{1}\right)-R_{t}\left(\gamma_{2}\right)\right\|_{2 r v /(r-v)} \\
& \leq C\left\|x_{t}\right\|_{4 r}\left\|\varepsilon_{t}\right\|_{4 r}\left|\gamma_{1}-\gamma_{2}\right|^{(r-v) / 2 B_{0} r v} \\
& \leq C\left|\gamma_{1}-\gamma_{2}\right|^{(r-v) / 2 B_{0} r v}
\end{aligned}
$$

for some $B_{0}>1$, where the last inequality holds since $\left\|x_{t}\right\|_{4 r}\left\|\varepsilon_{t}\right\|_{4 r}<\infty$.
Now, following the argument in Hansen (1996, p.426), we know that $G_{n}(\gamma)$ is stochastically equicontinuous. This completes the proof.

Next, we give Lemmas A.4-A.6, in which Lemma A. 4 is crucial for proving Lemma A.5, and Lemmas A. 5 and A. 6 are needed to prove Corollary 2.1 and Theorem 3.1, respectively.

Lemma A.4. Suppose that y_{t} is strictly stationary and ergodic. Then, (i) $n_{0}=$ $O_{p}(1)$; (ii) furthermore, if $E\left|y_{t}\right|^{2}<\infty$ and $E\left|\varepsilon_{t}\right|^{2}<\infty$, for any $a_{n}=o(1)$, we have

$$
\begin{equation*}
\sup _{\gamma \in \Gamma}\left|a_{n} \sum_{t=p}^{n_{0}-1} x_{t} x_{t}^{\prime} R_{t}(\gamma)\right|=O_{p}(1) \tag{A.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{\gamma \in \Gamma}\left|a_{n} \sum_{t=p}^{n_{0}-1} h_{t}(\gamma) \varepsilon_{t}\right|=O_{p}(1) . \tag{A.11}
\end{equation*}
$$

Proof. First, by the ergodic theory, we have that

$$
\frac{1}{M} \sum_{t=p}^{M} I\left(a \leq y_{t-d} \leq b\right)=P\left(a \leq y_{t-d} \leq b\right) \triangleq \kappa>0 \quad \text { a.s. }
$$

as $M \rightarrow \infty$. Thus, $\forall \eta>0$, there exists an integer $M(\eta)>0$ such that

$$
P\left(\frac{1}{M} \sum_{t=p}^{M} I\left(a \leq y_{t-d} \leq b\right)<\frac{\kappa}{2}\right)<\eta .
$$

By the definition of n_{0}, it follows that

$$
\begin{aligned}
P\left(n_{0}>M\right) & =P\left(\sum_{t=p}^{M} I\left(a \leq y_{t-d} \leq b\right)=0\right) \\
& =P\left(\frac{1}{M} \sum_{t=p}^{M} I\left(a \leq y_{t-d} \leq b\right)=0\right) \\
& \leq P\left(\frac{1}{M} \sum_{t=p}^{M} I\left(a \leq y_{t-d} \leq b\right)<\frac{\kappa}{2}\right) \\
& <\eta,
\end{aligned}
$$

i.e., (i) holds. Furthermore, by taking $\tilde{M}=M^{2}$, from (A.12) and Markov's inequality, it follows that $\forall \eta>0$,

$$
\begin{align*}
& P\left(\sup _{\gamma \in \Gamma}\left|a_{n} \sum_{t=p}^{n_{0}-1} x_{t} x_{t}^{\prime} R_{t}(\gamma)\right|>\tilde{M}\right) \\
& \quad=P\left(\sup _{\gamma \in \Gamma}\left|a_{n} \sum_{t=p}^{n_{0}-1} x_{t} x_{t}^{\prime} R_{t}(\gamma)\right|>\tilde{M}, n_{0} \leq M\right) \\
& \\
& \leq P\left(\max _{p \leq k \leq M} \sup _{\gamma \in \Gamma}\left|a_{n} \sum_{t=p}^{k-1} x_{t} x_{t}^{\prime} R_{t}(\gamma)\right|>\tilde{M}\right) \\
& \\
& \leq \sum_{k=p}^{M} P\left(a_{n} \sum_{t=p}^{k-1}\left|x_{t}\right|^{2}>\tilde{M}\right) \tag{A.13}\\
& \leq a_{n} \sum_{k=p}^{M} \sum_{t=p}^{k-1} \frac{E\left|x_{t}\right|^{2}}{\tilde{M}} \\
& =O\left(\frac{a_{n} M^{2}}{\tilde{M}}\right)=O\left(a_{n}\right)<\eta
\end{align*}
$$

as n is large enough. Thus, we know that equation (A.10) holds. Next, by Hölder's inequality and a similar argument as for (A.13), it is not hard to show that $\forall \eta>0$,

$$
P\left(\sup _{\gamma \in \Gamma}\left|a_{n} \sum_{t=p}^{n_{0}-1} h_{t}(\gamma) \varepsilon_{t}\right|>\tilde{M}\right) \leq O\left(a_{n}\right)<\eta
$$

as n is large enough, i.e., (A.11) holds. This completes the proof.

Lemma A.5. If Assumptions 2.1-2.3 hold, then it follows that under H_{0} or $H_{1 n}$,

$$
\begin{aligned}
& \text { (i) } \sup _{\gamma \in \Gamma}\left|\frac{1}{n}\left(X_{\gamma}-\tilde{X}_{\gamma}\right)^{\prime} X\right|=o_{p}(1), \\
& \text { (ii) } \sup _{\gamma \in \Gamma}\left|\frac{1}{n}\left(X_{\gamma}^{\prime} X_{\gamma}-\tilde{X}_{\gamma}^{\prime} \tilde{X}_{\gamma}\right)\right|=o_{p}(1), \\
& \text { (iii) } \sup _{\gamma \in \Gamma}\left|T_{\gamma}-\tilde{T}_{\gamma}\right|=o_{p}(1),
\end{aligned}
$$

where \tilde{X}_{γ} and \tilde{T}_{γ} are defined in the same way as X_{γ} and T_{γ}, respectively, with $R_{t}(\gamma)$ being replaced by $\tilde{R}_{t}(\gamma)$.

Proof. (i) Note that

$$
\frac{1}{n}\left(X_{\gamma}-\tilde{X}_{\gamma}\right)^{\prime} X=\frac{1}{\sqrt{n}}\left[\frac{1}{\sqrt{n}} \sum_{t=p}^{n_{0}-1} x_{t} x_{t}^{\prime} R_{t}(\gamma)\right] .
$$

Hence, we know that (i) holds by taking $a_{n}=n^{-1 / 2}$ in equation (A.10).
(ii) By a similar argument as for (i), we can show that (ii) holds.
(iii) Note that when $\lambda_{0}=\left(\phi_{0}^{\prime}, h^{\prime} / \sqrt{n}\right)^{\prime}$, we have

$$
\begin{aligned}
T_{\gamma}-\tilde{T}_{\gamma}= & \frac{1}{\sqrt{n}}\left(X_{\gamma}-\tilde{X}_{\gamma}\right)^{\prime} \varepsilon-\frac{1}{\sqrt{n}}\left(X_{\gamma}-\tilde{X}_{\gamma}\right)^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon \\
& -\frac{1}{n}\left(X_{\gamma}-\tilde{X}_{\gamma}\right)^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} X_{\gamma_{0}} h \\
& -\frac{1}{n} \tilde{X}_{\gamma}^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime}\left(X_{\gamma_{0}}-\tilde{X}_{\gamma_{0}}\right) h \\
& +\frac{1}{n}\left(X_{\gamma}^{\prime} X_{\gamma_{0}}-\tilde{X}_{\gamma}^{\prime} \tilde{X}_{\gamma_{0}}\right) h \\
\triangleq & I_{1 n}(\gamma)-I_{2 n}(\gamma)-I_{3 n}(\gamma)-I_{4 n}(\gamma)+I_{5 n}(\gamma) \text { say. }
\end{aligned}
$$

First, since

$$
I_{1 n}(\gamma)=\frac{1}{n^{1 / 4}}\left[\frac{1}{n^{1 / 4}} \sum_{t=p}^{n_{0}-1} h_{t}(\gamma) \varepsilon_{t}\right],
$$

it follows that $\sup _{\gamma}\left|I_{1 n}(\gamma)\right|=o_{p}(1)$ by taking $a_{n}=n^{-1 / 4}$ in equation (A.11). Next, since

$$
I_{2 n}(\gamma)=\left[\frac{1}{n} \sum_{t=p}^{n_{0}-1} x_{t} x_{t}^{\prime} R_{t}(\gamma)\right]\left(\frac{X^{\prime} X}{n}\right)^{-1} \frac{X^{\prime} \varepsilon}{\sqrt{n}},
$$

we have that $\sup _{\gamma}\left|I_{2 n}(\gamma)\right|=o_{p}(1)$ from (i). Similarly, we can show that $\sup _{\gamma}\left|I_{i n}(\gamma)\right|=$ $o_{p}(1)$ for $i=3,4,5$. Hence, under H_{0} (i.e., $h \equiv 0$) or $H_{1 n}$, we know that (iii) holds. This completes the proof.

Lemma A.6. If Assumptions 2.1-2.3 hold, then it follows that under H_{0} or $H_{1 n}$,

$$
\sup _{\gamma \in \Gamma} \sqrt{n}\left|\lambda_{n}(\gamma)-\lambda_{0}\right|=O_{p}(1)
$$

Proof. First, for any $\gamma \in \Gamma$, by Taylor's expansion we have

$$
\begin{aligned}
\sum_{t=p}^{N} & {\left[\varepsilon_{t}^{2}\left(\lambda_{n}(\gamma), \gamma\right)-\varepsilon_{t}^{2}\left(\lambda_{0}, \gamma\right)\right] } \\
= & -\left(\lambda_{n}(\gamma)-\lambda_{0}\right)^{\prime}\left(\sum_{t=p}^{N} 2 \varepsilon_{t}\left(\lambda_{0}, \gamma\right) x_{t}(\gamma)\right) \\
& +\left(\lambda_{n}(\gamma)-\lambda_{0}\right)^{\prime}\left(\sum_{t=p}^{N} x_{t}(\gamma) x_{t}(\gamma)^{\prime}\right)\left(\lambda_{n}(\gamma)-\lambda_{0}\right) .
\end{aligned}
$$

Next, when $\lambda_{0}=\left(\phi_{0}^{\prime}, h^{\prime} / \sqrt{n}\right)^{\prime}$, we can show that

$$
\begin{align*}
\frac{1}{\sqrt{n}} \sum_{t=p}^{N} \varepsilon_{t}\left(\lambda_{0}, \gamma\right) x_{t}(\gamma) & =\frac{1}{\sqrt{n}} Z_{\gamma}^{\prime} \varepsilon+\frac{1}{\sqrt{n}} \sum_{t=p}^{N} x_{t}(\gamma)\left[x_{t}\left(\gamma_{0}\right)-x_{t}(\gamma)\right]^{\prime} \lambda_{0} \\
& =\frac{1}{\sqrt{n}} Z_{\gamma}^{\prime} \varepsilon+\frac{1}{n} \sum_{t=p}^{N}\binom{x_{t} x_{t}^{\prime}\left[R_{t}\left(\gamma_{0}\right)-R_{t}(\gamma)\right]}{x_{t} x_{t}^{\prime}\left[R_{t}(\gamma) R_{t}\left(\gamma_{0}\right)-R_{t}(\gamma)\right]} h \\
& \triangleq G_{n}^{*}(\gamma) . \tag{A.15}
\end{align*}
$$

Let $\lambda_{\min }(\gamma)>0$ be the minimum eigenvalue of $K_{\gamma \gamma}$. Then, by equations (A.14)(A.15), $\forall \eta>0$, there exists a $M(\eta)>0$ such that

$$
\begin{aligned}
& P\left(\sup _{\gamma \in \Gamma} \sqrt{n}\left|\lambda_{n}(\gamma)-\lambda_{0}\right|>M\right) \\
& \quad=P\left(\sqrt{n}\left|\lambda_{n}(\gamma)-\lambda_{0}\right|>M, \sum_{t=p}^{N}\left[\varepsilon_{t}^{2}\left(\lambda_{n}(\gamma), \gamma\right)-\varepsilon_{t}^{2}\left(\lambda_{0}, \gamma\right)\right] \leq 0\right. \\
& \quad \text { for some } \gamma \in \Gamma) \\
& \leq P\left(\sqrt{n}\left|\lambda_{n}(\gamma)-\lambda_{0}\right|>M,-2 \sqrt{n}\left|\lambda_{n}(\gamma)-\lambda_{0}\right|\left|G_{n}^{*}(\gamma)\right|\right. \\
& \left.\quad \quad+n\left|\lambda_{n}(\gamma)-\lambda_{0}\right|^{2}\left[\lambda_{\min }(\gamma)+o_{p}(1)\right] \leq 0 \text { for some } \gamma \in \Gamma\right) \\
& \leq P\left(M<\sqrt{n}\left|\lambda_{n}(\gamma)-\lambda_{0}\right| \leq 2\left[\lambda_{\min }(\gamma)+o_{p}(1)\right]^{-1}\left|G_{n}^{*}(\gamma)\right|\right. \\
& \quad \quad \text { for some } \gamma \in \Gamma) \\
& \leq P\left(\left|G_{n}^{*}(\gamma)\right|>M\left[\lambda_{\min }(\gamma)+o_{p}(1)\right] / 2 \text { for some } \gamma \in \Gamma\right) \\
& \leq \eta,
\end{aligned}
$$

where the last inequality holds because $G_{n}^{*}(\gamma)=O_{p}(1)$ by Lemma 2.2 and Lemma A.3. Hence, under $H_{0}($ i.e., $h \equiv 0)$ or $H_{1 n}$, our conclusion holds. This completes the proof.

Proof of Corollary 2.1. The conclusion follows directly from Theorems 2.12.2 and Lemma A.5.

Proof of Theorem 3.1. We use the method in the proof of Theorem 2 in Hansen (1996). Let W denote the set of samples ω for which

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=p}^{N} \sup _{\gamma \in \Gamma}\left|x_{t}(\gamma)\right| \varepsilon_{t}^{2}<\infty \text { a.s., } \tag{A.16}\\
& \lim _{n \rightarrow \infty} \sup _{\gamma, \delta \in \Gamma}\left|\frac{1}{n} \sum_{t=p}^{N} x_{t}(\gamma) x_{t}(\delta)^{\prime} \varepsilon_{t}^{2}-\sigma^{2} K_{\gamma \delta}\right| \rightarrow 0 \text { a.s. } \tag{A.17}
\end{align*}
$$

Since $\sup _{\gamma \in \Gamma}\left|x_{t}(\gamma)\right| \leq \sqrt{2}\left|x_{t}\right|$ and $E\left|x_{t}\right| \varepsilon_{t}^{2}<\infty$ due to Assumption 2.1, by the ergodic theorem we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=p}^{N} \sup _{\gamma \in \Gamma}\left|x_{t}(\gamma)\right| \varepsilon_{t}^{2} \leq \lim _{n \rightarrow \infty} \frac{\sqrt{2}}{n} \sum_{t=p}^{N}\left|x_{t}\right| \varepsilon_{t}^{2}<\infty \text { a.s. }
$$

i.e., (A.16) holds. Furthermore, by Assumptions 2.1-2.3 and a similar argument as for Lemma A.3, it is not hard to see that

$$
\lim _{n \rightarrow \infty} \sup _{\gamma, \delta \in \Gamma}\left|\frac{1}{n} \sum_{t=p}^{N} x_{t}(\gamma) x_{t}(\delta)^{\prime} \varepsilon_{t}^{2}-\sigma^{2} K_{\gamma \delta}\right| \rightarrow 0 \text { a.s. }
$$

i.e., (A.17) holds. Thus, $P(W)=1$. Take any $\omega \in W$. For the remainder of the proof, all operations are conditionally on ω, and hence all of the randomness appears in the i.i.d. $\mathrm{N}(0,1)$ variables $\left\{v_{t}\right\}$.

Define

$$
Z_{n}^{*}(\gamma)=\frac{1}{\sqrt{n}} \sum_{t=p}^{N} x_{t}(\gamma) \varepsilon_{t} v_{t}
$$

By using the same argument as in Hansen (1996, p.426-427), we have

$$
\begin{equation*}
Z_{n}^{*}(\gamma) \Rightarrow \sigma G_{\gamma} \text { a.s. as } n \rightarrow \infty \tag{A.18}
\end{equation*}
$$

Note that

$$
\sup _{\gamma \in \Gamma}\left|\hat{Z}_{n}(\gamma)-Z_{n}^{*}(\gamma)\right| \leq \sup _{\gamma \in \Gamma}\left|\frac{1}{n} \sum_{t=p}^{N} x_{t}(\gamma) x_{t}(\gamma)^{\prime} v_{t}\right| \sup _{\gamma \in \Gamma}\left|\sqrt{n}\left(\lambda_{n}(\gamma)-\lambda_{0}\right)\right| .
$$

Using the same argument as for (A.18) (see, e.g., Hansen (1996, p.427)), we have

$$
\begin{equation*}
\frac{1}{n} \sum_{t=p}^{N} x_{t}(\gamma) x_{t}(\gamma)^{\prime} v_{t} \Rightarrow 0 \text { a.s. as } n \rightarrow \infty \tag{A.19}
\end{equation*}
$$

Now, by Lemma A. 6 and (A.19), it follows that under H_{0} or $H_{1 n}$,

$$
\begin{equation*}
\hat{Z}_{n}(\gamma)-Z_{n}^{*}(\gamma) \Rightarrow 0 \text { in probability as } n \rightarrow \infty \tag{A.20}
\end{equation*}
$$

Thus, by (A.18) and (A.20), we know that under H_{0} or $H_{1 n}$,

$$
\begin{equation*}
\hat{Z}_{n}(\gamma) \Rightarrow \sigma G_{\gamma} \text { in probability as } n \rightarrow \infty \tag{A.21}
\end{equation*}
$$

Next, we consider the functional

$$
L: x(\cdot) \in D_{2 p+2}(\Gamma) \rightarrow \frac{1}{\sigma^{2}} \sup _{\gamma \in \Gamma} x(\gamma)^{\prime} \Omega_{\gamma} x(\gamma)
$$

where $D_{2 p+2}(\Gamma)$ denotes the function spaces of all functions, mapping $\mathcal{R}^{2}(\Gamma)$ into $\mathcal{R}^{2 p+2}$, that are right continuous and have right-hand limits. Clearly, $L(\cdot)$ is a continuous functional; see e.g., Chan (1990, p.1891). By the continuous mapping theory and (A.21), it follows that under H_{0} or $H_{1 n}$,

$$
\begin{equation*}
L\left(\hat{Z}_{n}(\gamma)\right) \Rightarrow L\left(\sigma G_{\gamma}\right) \text { in probability as } n \rightarrow \infty \tag{A.22}
\end{equation*}
$$

Furthermore, since $\sigma_{n}^{2} \rightarrow \sigma^{2}$ a.s. and $\left(X_{1 n}(\gamma), I\right)^{\prime}\left[X_{2 n}(\gamma)\right]^{-1}\left(X_{1 n}(\gamma), I\right) \rightarrow \Omega_{\gamma}$ uniformly in γ by Lemma A.3, we have that

$$
\begin{equation*}
\sup _{\gamma \in \Gamma} \hat{L R_{n}}(\gamma)=L\left(\hat{Z}_{n}(\gamma)\right)+o_{p}(1) . \tag{A.23}
\end{equation*}
$$

Finally, the conclusion follows from (A.22)-(A.23). This completes the proof.
Proof of Corollary 3.1. Conditional on the sample $\left\{y_{0}, \cdots, y_{N}\right\}$, let $\hat{F}_{n, J}$ and \hat{F}_{n} be the conditional empirical c.d.f. and c.d.f. of $\hat{L R_{n}}$, respectively. Then,

$$
\begin{aligned}
& P\left(L R_{n} \geq c_{n, \alpha}^{J}\right) \\
& =E\left[P\left(L R_{n} \geq c_{n, \alpha}^{J} \mid y_{0}, \cdots, y_{N}\right)\right] \\
& =E\left[P\left(\hat{F}_{n, J}\left(L R_{n}\right) \geq 1-\alpha \mid y_{0}, \cdots, y_{N}\right)\right]
\end{aligned}
$$

By the Glivenko-Cantelli Theorem and Theorem 3.1, it follows that under H_{0} or $H_{1 n}$,

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \lim _{J \rightarrow \infty} P\left(L R_{n} \geq c_{n, \alpha}^{J}\right) \\
& =\lim _{n \rightarrow \infty} E\left[P\left(\hat{F}_{n}\left(L R_{n}\right) \geq 1-\alpha \mid y_{0}, \cdots, y_{N}\right)\right] \\
& =\lim _{n \rightarrow \infty} E\left[P\left(F_{0}\left(L R_{n}\right) \geq 1-\alpha \mid y_{0}, \cdots, y_{N}\right)\right] \\
& =\lim _{n \rightarrow \infty} P\left(F_{0}\left(L R_{n}\right) \geq 1-\alpha\right), \tag{A.24}
\end{align*}
$$

where F_{0} is the c.d.f. of $\sup _{\gamma \in \Gamma} G_{\gamma}^{\prime} \Omega_{\gamma} G_{\gamma}$. Thus, by (A.24) and Theorem 2.1, under H_{0} we have

$$
\lim _{n \rightarrow \infty} \lim _{J \rightarrow \infty} P\left(L R_{n} \geq c_{n, \alpha}^{J}\right)=P\left(\sup _{\gamma \in \Gamma} G_{\gamma}^{\prime} \Omega_{\gamma} G_{\gamma} \geq F_{0}^{-1}(1-\alpha)\right)=\alpha
$$

i.e., (i) holds. Furthermore, by (A.24) and Theorem 2.2, under $H_{1 n}$ we have

$$
\lim _{h \rightarrow \infty} \lim _{n \rightarrow \infty} \lim _{J \rightarrow \infty} P\left(L R_{n} \geq c_{n, \alpha}^{J}\right)=\lim _{h \rightarrow \infty} P\left(B_{h} \geq F_{0}^{-1}(1-\alpha)\right)=1,
$$

where $B_{h} \triangleq \sup _{\gamma \in \Gamma}\left\{G_{\gamma}^{\prime} \Omega_{\gamma} G_{\gamma}+h^{\prime} \mu_{\gamma \gamma_{0}} h\right\}$ and the last equation holds since $B_{h} \rightarrow \infty$ in probability as $h \rightarrow \infty$. Thus, (ii) holds. This completes the proof.

REFERENCES

[1] Andrews, D.W.K. (1993) An introduction to econometric applications of functional limit theory for dependent random variables. Econometric Reviews 12, 183-216.
[2] Chan, K.S. (1990) Testing for threshold autoregression. Annals of Statistics 18, 1886-1894.
[3] Doukhan, P., Massart, P., and Rio, E. (1995) Invariance principles for absolutely regular empirical processes. Annales de I'Institut H. Poincare 31 393-427.
[4] FAn, J. and Yao, Q. (2003) Nonlinear time series: Nonparametric and parametric methods. Springer, New York.
[5] Hansen, B.E. (1996) Inference when a nuisance parameter is not indentified under the null hypothesis. Econometrica 64, 413-430.
[6] Pollard, D. (1984) Convergence of Stochastic Processes. New York: Springer.
[7] Pollard, D. (1990) Empirical processes: Theory and applications. NSF-CMBS Regional Conference Series in Probability and Statistics, Vol 2. Hayward, CA: Institute of Mathematical Statistics.

Chinese Academy of Sciences
Institute of Applied Mathematics
HaiDian District, Zhongguancun
Bei Jing, China
E-mail: zkxaa@ust.hk

Department of Statistics and Actuarial Science University of Hong Kong Pokfulam Road, Hong Kong
E-mail: plhyu@hku.hk
hrntlwk@hku.hk

