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APPENDIX: PROOFS

In this appendix, we first give the proofs of Lemmas 2.1-2.2. Denote C' as a generic
constant which may vary from place to place in the rest of this paper. The proofs

of Lemmas 2.1-2.2 rely on the following three basic lemmas:

LEMMA A.1. Suppose that y, is strictly stationary, ergodic and absolutely reqular
with mizing coefficients B(m) = O(m=4) for some A > v/(v—1) andr > v > 1; and
there ezists an Ay > 1 such that 2Agrv/(r—v) < A. Then, for any vy = (rp,ry) € T,
we have
j (r—v)/2Aorv

M1 <y—s <rv) } < 00.

Jj=1

PROOF. First, denote & = I(rp < y—; < ry). Then, & is strictly stationary,
ergodic and a-mixing with mixing coefficients a(m) = O(m~4). Next, take ¢ €
([2A0rv/(r —v)+1]/(A+1), 1), and let p = [j*] and s = |j/j*|, where |z] is the
largest integer not greater than . When j > jj is large enough, we can always find
{&kps1}ih, a subsequence of {& ;.

Furthermore, let 7 = o(&,m < ¢ < n). Then, &1 € f,flfif Note that
El&p1] < Pla <y, <b) 2 p € (0,1). Hence, by Proposition 2.6 in Fan and
Yao (2003, p.72), we have that for j > jo,

E

J
e
i=

< E [H gk‘p-i-l

s—1

{ lH ékp+1] - ZEIZE [fkp+1]} + I E €]

k=0

< 16(s — a(p) + p°
< CLj/g gt~ + pld.
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Therefore, since (r — v)/2Agrv > 0, by using the inequality (z + y)* < C(z* + ¢*)

j (r—v)/2A0rv
I @-] }

} (r—v)/2Aorv

for any x,y,k > 0, it follows that
< (jo—1) +CZ [U/]

o j (r—v)/2Aprv oo
Z{E Hfz]} S(j0—1)+Z{E
j=1 i=1

J=jo
(A1) LS il 2o

Jj=Jjo

Since ¢ > [2A0rv/(r —v)+1]/(A+1), we have (tA+¢—1)(r —v)/2Agrv > 1, and

hence Y22, j= (AT =DIr=0)/24m < o0 which implies that
oo c . (r—v)/2A0rv oo (r—v)/2Aorv
Li/J"]
(A.2) [ 4 < < 00.
2 [ > G

. 1/j
On the other hand, since (pU/J J("“_”)/“U””) g < 1, by Cauchy’s root test, we have

(A.3) S Uil 2o S L0 A0 o

J=jo J=1

Now, the conclusion follows directly from (A.1)-(A.3). This completes the proof. [

LEMMA A.2. Suppose that the conditions in Lemma A.1 hold, and y, has a
bounded and continuous density function. Then, there exists a By > 1 such that for

any v1,%v € I', we have

HRt<’71) - Rt(ﬁ)/Z)H?Tv/(rfv) < CVlf}/l ‘ v /ZBOTU

PROOF. Let 71 = (rig,r1p) and v2 = (rap, 7oy ). Since Ry(y) = I(y—a < rp) +
Ry 1(v)I(rp < yi—q < ry), we have

Ri(m) — Re(72) = A1, 72) + L(rip < Yp—a < 11v) [Re—1(71) — Ri—1(72)],
where

Av(y1,72) = I(ror, < Yi—a < 111)
+ Ri_1(7e) [I(r1n < Yp—a < 1) — I(r2n, < ye—a < 1mov)]-
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Thus, by iteration we can show that

Ri(m1) — Re(72)
(A.4) = A¢(71,72) + i At—j(%, V2) ﬁ I(rip < Yr—ica < T107).

j=1 i=1

Next, for brevity, we assume that ro, < r1p < ropy < 71y, because the proofs for

other cases are similar. Note that for any j > 0, R,_;_1(72) < 1 and

I(rn < Yi—joa < 1mw) — L(rep < yr—j—a < Tovr)

=I(rov < Y—joa < rw) — I(rar < Yr—j—a < r11)-
Let f(x) be the density function of y;. Since sup, f(z) < oo and |A;—;(71,72)| < 2,
by Holder’s inequality and Taylor’s expansion, it follows that for any s > 1,
E|Aj(n )l < 27 B A (1, 72)]
<277 12sup f(2)|r1p = rar| + sup f(@)|r1o = raul
(A.5) <Chn =l

Let Ag > 1 be specified in Lemma A.1, and choose By such that 1/Ay + 1/By = 1.

By Hélder’s inequality and (A.5), we can show that
j 2rv/(r—v)
Arj(71572) H I(rip < Y—imca < 1)

=1
TV r—v l/B
< {E[At_j(%’%)]wo / )} ’
1/A,
X {E }
< RBore/C=OISUARIA, ()|}
1/Ao
J
(A.6) <Clm - ’YQ|1/BO E H I(rip < Yr—ica < 10)

=1

E

J
H I(rip < Ye—ica < 1v)
i=1

J
1TI(re < yimica < 7100)
i=1

}1/A0

By (A.4)-(A.6), Minkowski’s inequality, Lemma A.1 and the compactness of I, we




have
||Rt(’71) - Rt(’yQ)HZTU/(r—v)
< Ch/l . 72|(r7v)/2rv + Ch/l . 72|(r7v)/230rv
o j (r—v)/2A0rv
XY {E [T <yica <) }
=1 i=1
< Oh/l o ,72‘(r—v)/2Bo7"v'
This completes the proof. n

LEMMA A.3.  Suppose that the conditions in Lemma A.2 hold and Ey} < .
Then,

/

X X

n

— 0 a.s. asn — oo.

sup
~yerl

_27

PROOF. For brevity, we only prove the uniform convergence for n=!' "1 ¢(7),

the last component of n_lX;X , where

Pi(7) = yf—pRt('Y)'

First, for fix € > 0, we partition I" by {By, -+, Bk.}, where By, = {(rp,7v);wr <

rr < wii, Vg <y < Vgy1} N Here, {wy} and {v} are chosen such that
(A7) (Wk+1 — wk>(r—v)/2Borv < 015 and (I/k+1 — Vk)(r—v)/QBorv < 018,

where By > 1 is specified as in Lemma A.2, and C; > 0 will be selected later.

Next, we set

f11(€) = iy Re(wirr, vipr) and  fi(e) = 7, Re(we, vi).

By construction, since R;(7y) is a nondecreasing function with respect to 7, and 7y,
for any € ', there is some k such that v € By, and fl(e) < () < fi(e).
Furthermore, since rv/(2rv — r +v) < 1, we have

2 2
Q.
Hyt—p 2rv/(2rv—r+v) < Hyt_pHQ <
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Thus, by Hélder’s inequality, Lemma A.2 and (A.7), we have

E[f() - fi(e)]
2
= Hyt_p 2rv/(2rv—r+v)
<C [(Wk+1 — wk>(r7v)/230”’ + (Vk+1 _ Vk)(T*U)/2Borv:|

S 20018.

||Rt<wk+17 Vk-i-l) - Rt<wk7 Vk)||2rv/(7‘—v)

By setting C} = (2C)~!, we have E {f;“(a) — ftl(a)} < e. Thus, the conclusion holds
according to Theorem 2 in Pollard (1984, p.8). This completes the proof. ]

Proor oF LEMMA 2.1. First, since K., is positive definite by Assumption 2.1,
we know that both ¥ and X, are positive definite. By using the same argument
as for Lemma 2.1(iv) in Chan (1990), it is not hard to show that for every v € T',
X, — 272_5}; is positive definite. Second, by the ergodic theorem, it is easy to see
that

X'X
n

— > a.s.asn — o0.

(A.8)

Third, by Lemma A.3 we have

X' X
Y
.y
n Y

XX

A.
(A.9) sup -

vyel

— 0 and sup — 0 a.s.

vel’

~

as n — o0o. Note that if Hy holds, we have

T —

~

(X, - X)X(X'X)"' X'} e

S-S

(- (XIX)(X'X)7 1) Ze.
Then, (i) and (ii) follow readily from (A.8)-(A.9). This completes the proof. O

PROOF OF LEMMA 2.2. Denote

Gn(v) = \/152;5 = \/1ﬁ > m(y)er.

t=p

It is straightforward to show that the finite dimensional distribution of {G,(7)}
converges to that of {cG,}. By Pollard (1990, Sec.10), we only need to verify the
stochastic equicontinuity of {G,,(v)}. To establish it, we use Theorem 1, Application
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4 in Doukhan, Massart, and Rio (1995, p.405); see also Andrews (1993) and Hansen
(1996).

First, the envelop function is sup,, |z:(7)e;| = Z¢|e¢|, where Z; = sup,, |2;(7)|. By
Holder’s inequality and Assumption 2.1, we know that the envelop function is L2
bounded. Next, for any ;1,7 € I', by Assumptions 2.1-2.3, Lemma A.2 and Holder’s

inequality, we have

ze(11)ee — ze(2)etll2o = |he(y1)ee — he(2)ed]|20

< Nlzieellzrl| Re(v1) — RBe(v2) l2rv/ (r—v)
< Cllzellarlleelar |71 — 72‘(747”)/2307“1;

S C|/71 . 72|(7‘—v)/2307’v

for some By > 1, where the last inequality holds since ||z¢]4||€t]|4r < 00.
Now, following the argument in Hansen (1996, p.426), we know that G, (v) is

stochastically equicontinuous. This completes the proof. 0

Next, we give Lemmas A.4-A.6, in which Lemma A .4 is crucial for proving Lemma
A5, and Lemmas A.5 and A.6 are needed to prove Corollary 2.1 and Theorem 3.1,

respectively.

LEMMA A.4.  Suppose that y, is strictly stationary and ergodic. Then, (i) ng =
O,(1); (i) furthermore, if Ely|* < oo and El|e|? < oo, for any a, = o(1), we have

no—1
(A.10) sup |a, >z Ry(y)| = O,(1)
el t=p
and
no—1
(A.11) sup |an, Y hi(7)e:| = O,(1).
el t=p

Proor. First, by the ergodic theory, we have that

1 M
MZI(agyt_dgb):P(agyt_dgb)én>0 a.s.
t=p

as M — oo. Thus, Vn > 0, there exists an integer M(n) > 0 such that

P 1%1( <ya<b) <)<
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By the definition of ng, it follows that
M
Png>M)=P > Ila<y_a<b)=0

=P

M K
<Pl—=) Ila<y_g<b) <=
< MZ; (@ <yia< )<2
(A.12) <,

i.e., (i) holds. Furthermore, by taking M = M?, from (A.12) and Markov’s inequality,
it follows that Vn > 0,
> M )

>M,n0§]\/[)

>M)

a, Z z 2, Ry (7y)

= P [ sup
yel’

P ( max sup

p<k<M et

no—1

an Y w7 Re()

t=p

k—1
a Y 1wy y(7)

t=p

IN

(A.13) = ( i )zO(an)<n

as n is large enough. Thus, we know that equation (A.10) holds. Next, by Holder’s
inequality and a similar argument as for (A.13), it is not hard to show that ¥Vn > 0,

P | sup
~yel'

as n is large enough, i.e., (A.11) holds. This completes the proof. ]

no—1

an Z he(7y)e

t=p

>M) <O(ay) <n



LEMMA A.5. If Assumptions 2.1-2.3 hold, then it follows that under Hy or Hy,,

() sup - (X, - %,)' %] = 0,00)
1) sup |— — =0 ,
76? o ¥ P
.. 1 ! ~ 1
(ZZ) ilé? E (X’YX’Y - 'yX’Y) = Op(1)>
(iii) sup|T, = Ty| = o,(1),
vyel

where X} and ﬂ are defined in the same way as X., and T, respectively, with R.(7y)
being replaced by Ry(7).
PROOF. (i) Note that

1 1 el

n (Xv - Xv),X = \/15 [\/ﬁ ; zey [y ()

n

Hence, we know that (i) holds by taking a, = n~'/2 in equation (A.10).
(ii) By a similar argument as for (i), we can show that (ii) holds.
(iii) Note that when \g = (¢, ' /y/n)’, we have

T, - T, = \/15 (x, - X)) e~ \/15 (x, - X)) X(X'X)"X
- ; (x, - X)) X(X'X)"'X'X,
- le XX (XX)TIXT (X = Xy )
+ i (X5, — XI X0 )

= Iin(7) = Lon(7) = Lsn(7) = Ln(7) + Isn(7) say.

First, since

it follows that sup,, |I1,(v)| = 0,(1) by taking a, = n="/* in equation (A.11). Next,

since

T

we have that sup., [12,(7)| = 0,(1) from (i). Similarly, we can show that sup., [;(7)| =
0p(1) for i = 3,4,5. Hence, under Hy (i.e., h = 0) or Hy,, we know that (iii) holds.
This completes the proof. n

n

(X’X) '

1 no—1
f2n(7) = [n Z %ﬂngt(V)
t=p
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LEMMA A.6. If Assumptions 2.1-2.3 hold, then it follows that under Hy or Hy,,

sup \/m)‘n<7) - )\0‘ = Op(l)-

vel

Proor. First, for any v € I', by Taylor’s expansion we have

> 2 (n(),7) — €7 (R0, 7))
= —(An(v) — )\0), (; 2575()\07’7)51715(7))
(A.14) + (Au(7) = Ao)’ (tz 9375(7)%:(7),) (An(7) = o).

Next, when \g = (&), h'/+/n)’, we can show that

\/_ Zet Ao, V) (y) = \/_Z;eS +— Z:l?t [z:(70) — (7)) Xo

1, 13 wallRi) - Ri(a)
- 7 +n§(xtx;mtwmt(%)—m(w] )h

(A.15) 2 @i y).

Let Amin(7) > 0 be the minimum eigenvalue of K.,. Then, by equations (A.14)-
(A.15), Vn > 0, there exists a M (n) > 0 such that

P (sup Vil () = Xl > )

—p (mxm — ol > M, i (20 (3),7) — 20, 7)] <0
for some v € T)
P (Vilda(3) = Xl > M, —2v/n[Aa(7) = XolIG (7))
+1IAn(7) = Aol [Amin(7) + 05(1)] < 0 for some € T)
P (M < v/lAa(3) = dol < 2min(7) + 0,(1)] |G ()]
for some v € I)
PG> M[Amin(7y) 4 0p(1)]/2 for some v € T')

IN
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where the last inequality holds because G} (v) = O,(1) by Lemma 2.2 and Lemma
A.3. Hence, under Hy (i.e., h = 0) or Hy,, our conclusion holds. This completes the
proof. O]

PrROOF OF COROLLARY 2.1. The conclusion follows directly from Theorems 2.1-
2.2 and Lemma A.5. 0

PrROOF OF THEOREM 3.1. We use the method in the proof of Theorem 2 in
Hansen (1996). Let W denote the set of samples w for which

(A.16) lim — Zsup lz:(7)]e? < o0 as.,

n—oon t= p’YGF

(A.17) lim sup Zazt §)er —o’Kys| — 0 as.

=

Since sup.cr |2:(7)| < V2| and Elayle} < oo due to Assumption 2.1, by the

ergodic theorem we have

2 Y )
glggon %igpm 7let < JLHgOnglxt\at < 00 as,

i.e., (A.16) holds. Furthermore, by Assumptions 2.1-2.3 and a similar argument as
for Lemma A.3, it is not hard to see that

lim sup th —UQKW; — 0 a.s.,
N0 N 5eT | 1= =p

i.e., (A.17) holds. Thus, P(W) = 1. Take any w € W. For the remainder of the proof,
all operations are conditionally on w, and hence all of the randomness appears in
the i.i.d. N(0, 1) variables {uv;}.

Define

Zi(y) = jﬁ S m)em

By using the same argument as in Hansen (1996, p.426-427), we have

(A.18) Zr(y) = oG, as.asn — oo.

Note that
su Zn <su x "v| su .
sup |2,(7) = Z3(7)| < sup n; ()00 [V (1) = o)
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Using the same argument as for (A.18) (see, e.g., Hansen (1996, p.427)), we have
1 N
(A.19) - > zi(v)xe(7) vy = 0 as. as n — oo.
=p

Now, by Lemma A.6 and (A.19), it follows that under Hy or Hy,,

A

(A.20) Zn(v) — Z%(y) = 0 in probability as n — oc.

Thus, by (A.18) and (A.20), we know that under Hy or Hy,,

A

(A.21) Zn(v) = oG, in probability as n — oo.

Next, we consider the functional

1
L:2() € Dapea(T) — — supa(r) (1),
0% ~el

where Ds,,»(T") denotes the function spaces of all functions, mapping R*(T) into
R*T2 that are right continuous and have right-hand limits. Clearly, L(-) is a con-
tinuous functional; see e.g., Chan (1990, p.1891). By the continuous mapping theory
and (A.21), it follows that under Hy or Hy,,

(A.22) L(Zn(7)) = L(cG,) in probability as n — co.

Furthermore, since 02 — 02 a.s. and (X1,(7), [) [Xan(7)] ' (X1n(7), 1) — €, uni-
formly in v by Lemma A.3, we have that

(A.23) sup LRy (7) = L(Za(7)) + 0,(1).

~yel'

Finally, the conclusion follows from (A.22)-(A.23). This completes the proof. O

PROOF OF COROLLARY 3.1. Conditional on the sample {yo,- - ,yn}, let ij
and F), be the conditional empirical c.d.f. and c.d.f. of LR,, respectively. Then,
P(LR,>c],)
=E {P (LRn > Ci,a|y0a e 7yN)}
= E[P(F, (LR, > 1~ alyo, - ,yn)|-
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By the Glivenko-Cantelli Theorem and Theorem 3.1, it follows that under Hj or
Hlna

lim lim P (LR, >¢],)

n—oo J—oo

— lim E [P (Fn(LRn) >1—alyo,- - yw)}

n—oo

= lim B[P (Fy(LR,) > 1—alyo, - ,yn)]

(A.24) = lim P(Fy(LR,) >1—a),

n—oo

where [y is the c.d.f. of sup,cp G' €2, G,. Thus, by (A.24) and Theorem 2.1, under

H, we have

ie.,

n—oo J—oo ’YEF

lim lim P (LRn > cia) =P (sup G’WQA,G7 > Fo_l(l — 04)) =q,
(i) holds. Furthermore, by (A.24) and Theorem 2.2, under H;,, we have

lim lim lim P (LR, >c],) = lim P (Br>Fy'(1—a)) =1,

h—o00 N—00 J—o00

where B), £ SUp, e {G;Qva +n vaoh} and the last equation holds since B, — oo

in probability as h — oo. Thus, (ii) holds. This completes the proof. O
REFERENCES
[1] ANDREWS, D.W.K. (1993) An introduction to econometric applications of functional limit

theory for dependent random variables. Econometric Reviews 12, 183-216.

[2] CHAN, K.S. (1990) Testing for threshold autoregression. Annals of Statistics 18, 1886-1894.

[3] DOUKHAN, P., MASSART, P., and R10, E. (1995) Invariance principles for absolutely regular
empirical processes. Annales de I’Institut H. Poincare 31 393-427.

[4] FAN, J. and YAO, Q. (2003) Nonlinear time series: Nonparametric and parametric methods.
Springer, New York.

[5] HANSEN, B.E. (1996) Inference when a nuisance parameter is not indentified under the null
hypothesis. Econometrica 64, 413-430.

[6] POLLARD, D. (1984) Convergence of Stochastic Processes. New York: Springer.

[7] POLLARD, D. (1990) Empirical processes: Theory and applications. NSF-CMBS Regional
Conference Series in Probability and Statistics, Vol 2. Hayward, CA: Institute of Mathematical
Statistics.

CHINESE ACADEMY OF SCIENCES DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE
INSTITUTE OF APPLIED MATHEMATICS UNIVERSITY OF HONG KoONG

HAIDIAN DISTRICT, ZHONGGUANCUN PokrurLaM RoAD, HoONG KoONG

BEI JING, CHINA E-MAIL: plhyu@hku.hk

E-MAIL: zkxaa@ust.hk hrntlwk@hku.hk



