TESTING FOR THE BUFFERED AUTOREGRESSIVE PROCESSES (SUPPLEMENTARY MATERIAL)

BY KE ZHU, PHILIP L.H. YU AND WAI KEUNG LI

Chinese Academy of Sciences and University of Hong Kong

APPENDIX: PROOFS

In this appendix, we first give the proofs of Lemmas 2.1-2.2. Denote C as a generic constant which may vary from place to place in the rest of this paper. The proofs of Lemmas 2.1-2.2 rely on the following three basic lemmas:

LEMMA A.1. Suppose that y_t is strictly stationary, ergodic and absolutely regular with mixing coefficients $\beta(m) = O(m^{-A})$ for some A > v/(v-1) and r > v > 1; and there exists an $A_0 > 1$ such that $2A_0rv/(r-v) < A$. Then, for any $\gamma = (r_L, r_U) \in \Gamma$, we have

$$\sum_{j=1}^{\infty} \left\{ E \left[\prod_{i=1}^{j} I(r_L < y_{t-i} \le r_U) \right] \right\}^{(r-\nu)/2A_0 r \nu} < \infty.$$

PROOF. First, denote $\xi_i = I(r_L < y_{t-i} \leq r_U)$. Then, ξ_i is strictly stationary, ergodic and α -mixing with mixing coefficients $\alpha(m) = O(m^{-A})$. Next, take $\iota \in ([2A_0rv/(r-v)+1]/(A+1), 1)$, and let $p = \lfloor j^{\iota} \rfloor$ and $s = \lfloor j/j^{\iota} \rfloor$, where $\lfloor x \rfloor$ is the largest integer not greater than x. When $j \geq j_0$ is large enough, we can always find $\{\xi_{kp+1}\}_{k=0}^{s-1}$, a subsequence of $\{\xi_i\}_{i=1}^{j}$.

Furthermore, let $\mathcal{F}_m^n = \sigma(\xi_i, m \leq i \leq n)$. Then, $\xi_{kp+1} \in \mathcal{F}_{kp+1}^{kp+2}$. Note that $E[\xi_{kp+1}] < P(a \leq y_t \leq b) \triangleq \rho \in (0, 1)$. Hence, by Proposition 2.6 in Fan and Yao (2003, p.72), we have that for $j \geq j_0$,

$$E\left[\prod_{i=1}^{j} \xi_{i}\right] \leq E\left[\prod_{k=0}^{s-1} \xi_{kp+1}\right]$$
$$= \left\{E\left[\prod_{k=0}^{s-1} \xi_{kp+1}\right] - \prod_{k=0}^{s-1} E\left[\xi_{kp+1}\right]\right\} + \prod_{k=0}^{s-1} E\left[\xi_{kp+1}\right]$$
$$\leq 16(s-1)\alpha(p) + \rho^{s}$$
$$\leq C\lfloor j/j^{\iota} \rfloor \lfloor j^{\iota} \rfloor^{-A} + \rho^{\lfloor j/j^{\iota} \rfloor}.$$

Therefore, since $(r-v)/2A_0rv > 0$, by using the inequality $(x+y)^k \leq C(x^k+y^k)$ for any x, y, k > 0, it follows that

(A.1)

$$\sum_{j=1}^{\infty} \left\{ E\left[\prod_{i=1}^{j} \xi_{i}\right] \right\}^{(r-v)/2A_{0}rv} \leq (j_{0}-1) + \sum_{j=j_{0}}^{\infty} \left\{ E\left[\prod_{i=1}^{j} \xi_{i}\right] \right\}^{(r-v)/2A_{0}rv} \\ \leq (j_{0}-1) + C\sum_{j=j_{0}}^{\infty} \left[\lfloor j/j^{\iota} \rfloor \lfloor j^{\iota} \rfloor^{-A}\right]^{(r-v)/2A_{0}rv} \\ + C\sum_{j=j_{0}}^{\infty} \rho^{\lfloor j/j^{\iota} \rfloor (r-v)/2A_{0}rv}.$$

Since $\iota > [2A_0rv/(r-v)+1]/(A+1)$, we have $(\iota A + \iota - 1)(r-v)/2A_0rv > 1$, and hence $\sum_{j=1}^{\infty} j^{-(\iota A + \iota - 1)(r-v)/2A_0rv} < \infty$, which implies that

(A.2)
$$\sum_{j=j_0}^{\infty} \left[\frac{\lfloor j/j^{\iota} \rfloor}{\lfloor j^{\iota} \rfloor^A} \right]^{(r-\nu)/2A_0 r \nu} \le \sum_{j=1}^{\infty} \left[\frac{j}{j^{\iota} (j^{\iota}-1)^A} \right]^{(r-\nu)/2A_0 r \nu} < \infty$$

On the other hand, since $\left(\rho^{\lfloor j/j^{\iota} \rfloor (r-v)/2A_0 rv}\right)^{1/j} < 1$, by Cauchy's root test, we have

(A.3)
$$\sum_{j=j_0}^{\infty} \rho^{\lfloor j/j^{\iota} \rfloor (r-v)/2A_0 rv} < \sum_{j=1}^{\infty} \rho^{\lfloor j/j^{\iota} \rfloor (r-v)/2A_0 rv} < \infty.$$

Now, the conclusion follows directly from (A.1)-(A.3). This completes the proof. \Box

LEMMA A.2. Suppose that the conditions in Lemma A.1 hold, and y_t has a bounded and continuous density function. Then, there exists a $B_0 > 1$ such that for any $\gamma_1, \gamma_2 \in \Gamma$, we have

$$||R_t(\gamma_1) - R_t(\gamma_2)||_{2rv/(r-v)} \le C|\gamma_1 - \gamma_2|^{(r-v)/2B_0rv}.$$

PROOF. Let $\gamma_1 = (r_{1L}, r_{1U})$ and $\gamma_2 = (r_{2L}, r_{2U})$. Since $R_t(\gamma) = I(y_{t-d} \leq r_L) + R_{t-1}(\gamma)I(r_L < y_{t-d} \leq r_U)$, we have

$$R_t(\gamma_1) - R_t(\gamma_2) = \Delta_t(\gamma_1, \gamma_2) + I(r_{1L} < y_{t-d} \le r_{1U}) \left[R_{t-1}(\gamma_1) - R_{t-1}(\gamma_2) \right],$$

where

$$\Delta_t(\gamma_1, \gamma_2) = I(r_{2L} < y_{t-d} \le r_{1L}) + R_{t-1}(\gamma_2) \left[I(r_{1L} < y_{t-d} \le r_{1U}) - I(r_{2L} < y_{t-d} \le r_{2U}) \right].$$

Thus, by iteration we can show that

(A.4)
$$R_t(\gamma_1) - R_t(\gamma_2) = \Delta_t(\gamma_1, \gamma_2) + \sum_{j=1}^{\infty} \Delta_{t-j}(\gamma_1, \gamma_2) \prod_{i=1}^j I(r_{1L} < y_{t-i-d} \le r_{1U}).$$

Next, for brevity, we assume that $r_{2L} \leq r_{1L} \leq r_{2U} \leq r_{1U}$, because the proofs for other cases are similar. Note that for any $j \geq 0$, $R_{t-j-1}(\gamma_2) \leq 1$ and

$$I(r_{1L} < y_{t-j-d} \le r_{1U}) - I(r_{2L} < y_{t-j-d} \le r_{2U})$$

= $I(r_{2U} < y_{t-j-d} \le r_{1U}) - I(r_{2L} < y_{t-j-d} \le r_{1L}).$

Let f(x) be the density function of y_t . Since $\sup_x f(x) < \infty$ and $|\Delta_{t-j}(\gamma_1, \gamma_2)| \le 2$, by Hölder's inequality and Taylor's expansion, it follows that for any $s \ge 1$,

(A.5)

$$E|\Delta_{t-j}(\gamma_1,\gamma_2)|^s \leq 2^{s-1}E|\Delta_{t-j}(\gamma_1,\gamma_2)|$$

$$\leq 2^{s-1}\left[2\sup_x f(x)|r_{1L} - r_{2L}| + \sup_x f(x)|r_{1U} - r_{2U}|\right]$$

$$\leq C|\gamma_1 - \gamma_2|.$$

Let $A_0 > 1$ be specified in Lemma A.1, and choose B_0 such that $1/A_0 + 1/B_0 = 1$. By Hölder's inequality and (A.5), we can show that

$$E \left| \Delta_{t-j}(\gamma_{1}, \gamma_{2}) \prod_{i=1}^{j} I(r_{1L} < y_{t-i-d} \le r_{1U}) \right|^{2rv/(r-v)} \\ \leq \left\{ E[\Delta_{t-j}(\gamma_{1}, \gamma_{2})]^{2B_{0}rv/(r-v)} \right\}^{1/B_{0}} \\ \times \left\{ E\left[\prod_{i=1}^{j} I(r_{1L} < y_{t-i-d} \le r_{1U})\right] \right\}^{1/A_{0}} \\ \leq 2^{[2B_{0}rv/(r-v)]-1} \left\{ E|\Delta_{t-j}(\gamma_{1}, \gamma_{2})| \right\}^{1/B_{0}} \\ \times \left\{ E\left[\prod_{i=1}^{j} I(r_{1L} < y_{t-i-d} \le r_{1U})\right] \right\}^{1/A_{0}} \\ \times \left\{ E\left[\prod_{i=1}^{j} I(r_{1L} < y_{t-i-d} \le r_{1U})\right] \right\}^{1/A_{0}} \\ \leq C|\gamma_{1} - \gamma_{2}|^{1/B_{0}} \left\{ E\left[\prod_{i=1}^{j} I(r_{1L} < y_{t-i-d} \le r_{1U})\right] \right\}^{1/A_{0}}.$$
(A.6)

By (A.4)-(A.6), Minkowski's inequality, Lemma A.1 and the compactness of Γ , we

have

$$\begin{aligned} \|R_t(\gamma_1) - R_t(\gamma_2)\|_{2rv/(r-v)} \\ &\leq C|\gamma_1 - \gamma_2|^{(r-v)/2rv} + C|\gamma_1 - \gamma_2|^{(r-v)/2B_0rv} \\ &\times \sum_{j=1}^{\infty} \left\{ E\left[\prod_{i=1}^j I(r_{1L} < y_{t-i-d} \le r_{1U})\right] \right\}^{(r-v)/2A_0rv} \\ &\leq C|\gamma_1 - \gamma_2|^{(r-v)/2B_0rv}. \end{aligned}$$

This completes the proof.

LEMMA A.3. Suppose that the conditions in Lemma A.2 hold and $Ey_t^4 < \infty$. Then,

$$\sup_{\gamma \in \Gamma} \left| \frac{X'_{\gamma} X}{n} - \Sigma_{\gamma} \right| \to 0 \quad a.s. \ as \ n \to \infty.$$

PROOF. For brevity, we only prove the uniform convergence for $n^{-1} \sum_{t=1}^{n} \phi_t(\gamma)$, the last component of $n^{-1}X'_{\gamma}X$, where

$$\phi_t(\gamma) = y_{t-p}^2 R_t(\gamma).$$

First, for fix $\varepsilon > 0$, we partition Γ by $\{B_1, \dots, B_{K_{\varepsilon}}\}$, where $B_k = \{(r_L, r_U); \omega_k < r_L \le \omega_{k+1}, \nu_k < r_U \le \nu_{k+1}\} \cap \Gamma$. Here, $\{\omega_k\}$ and $\{\nu_k\}$ are chosen such that

(A.7)
$$(\omega_{k+1} - \omega_k)^{(r-v)/2B_0rv} < C_1\varepsilon \text{ and } (\nu_{k+1} - \nu_k)^{(r-v)/2B_0rv} < C_1\varepsilon,$$

where $B_0 > 1$ is specified as in Lemma A.2, and $C_1 > 0$ will be selected later.

Next, we set

$$f_t^u(\varepsilon) = y_{t-p}^2 R_t(\omega_{k+1}, \nu_{k+1})$$
 and $f_t^l(\varepsilon) = y_{t-p}^2 R_t(\omega_k, \nu_k).$

By construction, since $R_t(\gamma)$ is a nondecreasing function with respect to r_L and r_U , for any $\gamma \in \Gamma$, there is some k such that $\gamma \in B_k$ and $f_t^l(\varepsilon) \leq \phi_t(\gamma) \leq f_t^u(\varepsilon)$.

Furthermore, since rv/(2rv - r + v) < 1, we have

$$\left\|y_{t-p}^2\right\|_{2rv/(2rv-r+v)} < \left\|y_{t-p}^2\right\|_2 < \infty.$$

4

Thus, by Hölder's inequality, Lemma A.2 and (A.7), we have

$$E\left[f_{t}^{u}(\varepsilon) - f_{t}^{l}(\varepsilon)\right] \\\leq \left\|y_{t-p}^{2}\right\|_{2rv/(2rv-r+v)} \left\|R_{t}(\omega_{k+1}, \nu_{k+1}) - R_{t}(\omega_{k}, \nu_{k})\right\|_{2rv/(r-v)} \\\leq C\left[(\omega_{k+1} - \omega_{k})^{(r-v)/2B_{0}rv} + (\nu_{k+1} - \nu_{k})^{(r-v)/2B_{0}rv}\right] \\\leq 2CC_{1}\varepsilon.$$

By setting $C_1 = (2C)^{-1}$, we have $E\left[f_t^u(\varepsilon) - f_t^l(\varepsilon)\right] \leq \varepsilon$. Thus, the conclusion holds according to Theorem 2 in Pollard (1984, p.8). This completes the proof.

PROOF OF LEMMA 2.1. First, since $K_{\gamma\gamma}$ is positive definite by Assumption 2.1, we know that both Σ and Σ_{γ} are positive definite. By using the same argument as for Lemma 2.1(iv) in Chan (1990), it is not hard to show that for every $\gamma \in \Gamma$, $\Sigma_{\gamma} - \Sigma_{\gamma} \Sigma^{-1} \Sigma'_{\gamma}$ is positive definite. Second, by the ergodic theorem, it is easy to see that

(A.8)
$$\frac{X'X}{n} \to \Sigma \text{ a.s. as } n \to \infty.$$

Third, by Lemma A.3 we have

(A.9)
$$\sup_{\gamma \in \Gamma} \left| \frac{X'_{\gamma} X}{n} - \Sigma_{\gamma} \right| \to 0 \text{ and } \sup_{\gamma \in \Gamma} \left| \frac{X'_{\gamma} X_{\gamma}}{n} - \Sigma_{\gamma} \right| \to 0 \text{ a.s.}$$

as $n \to \infty$. Note that if H_0 holds, we have

$$T_{\gamma} = \frac{1}{\sqrt{n}} \left\{ X'_{\gamma} - X'_{\gamma} X (X'X)^{-1} X' \right\} \varepsilon$$
$$= \frac{1}{\sqrt{n}} \left(- (X'_{\gamma} X) (X'X)^{-1}, I \right) Z'_{\gamma} \varepsilon.$$

Then, (i) and (ii) follow readily from (A.8)-(A.9). This completes the proof. \Box

PROOF OF LEMMA 2.2. Denote

$$G_n(\gamma) \equiv \frac{1}{\sqrt{n}} Z'_{\gamma} \varepsilon = \frac{1}{\sqrt{n}} \sum_{t=p}^N x_t(\gamma) \varepsilon_t.$$

It is straightforward to show that the finite dimensional distribution of $\{G_n(\gamma)\}\$ converges to that of $\{\sigma G_{\gamma}\}$. By Pollard (1990, Sec.10), we only need to verify the stochastic equicontinuity of $\{G_n(\gamma)\}$. To establish it, we use Theorem 1, Application

4 in Doukhan, Massart, and Rio (1995, p.405); see also Andrews (1993) and Hansen (1996).

First, the envelop function is $\sup_{\gamma} |x_t(\gamma)\varepsilon_t| = \bar{x}_t |\varepsilon_t|$, where $\bar{x}_t = \sup_{\gamma} |x_t(\gamma)|$. By Hölder's inequality and Assumption 2.1, we know that the envelop function is L^{2v} bounded. Next, for any $\gamma_1, \gamma_2 \in \Gamma$, by Assumptions 2.1-2.3, Lemma A.2 and Hölder's inequality, we have

$$\begin{aligned} \|x_t(\gamma_1)\varepsilon_t - x_t(\gamma_2)\varepsilon_t\|_{2v} &= \|h_t(\gamma_1)\varepsilon_t - h_t(\gamma_2)\varepsilon_t\|_{2v} \\ &\leq \|x_t\varepsilon_t\|_{2r}\|R_t(\gamma_1) - R_t(\gamma_2)\|_{2rv/(r-v)} \\ &\leq C\|x_t\|_{4r}\|\varepsilon_t\|_{4r} |\gamma_1 - \gamma_2|^{(r-v)/2B_0rv} \\ &\leq C|\gamma_1 - \gamma_2|^{(r-v)/2B_0rv} \end{aligned}$$

for some $B_0 > 1$, where the last inequality holds since $||x_t||_{4r} ||\varepsilon_t||_{4r} < \infty$.

Now, following the argument in Hansen (1996, p.426), we know that $G_n(\gamma)$ is stochastically equicontinuous. This completes the proof.

Next, we give Lemmas A.4-A.6, in which Lemma A.4 is crucial for proving Lemma A.5, and Lemmas A.5 and A.6 are needed to prove Corollary 2.1 and Theorem 3.1, respectively.

LEMMA A.4. Suppose that y_t is strictly stationary and ergodic. Then, (i) $n_0 = O_p(1)$; (ii) furthermore, if $E|y_t|^2 < \infty$ and $E|\varepsilon_t|^2 < \infty$, for any $a_n = o(1)$, we have

(A.10)
$$\sup_{\gamma \in \Gamma} \left| a_n \sum_{t=p}^{n_0 - 1} x_t x_t' R_t(\gamma) \right| = O_p(1)$$

and

(A.11)
$$\sup_{\gamma \in \Gamma} \left| a_n \sum_{t=p}^{n_0 - 1} h_t(\gamma) \varepsilon_t \right| = O_p(1).$$

PROOF. First, by the ergodic theory, we have that

$$\frac{1}{M}\sum_{t=p}^{M}I(a \le y_{t-d} \le b) = P(a \le y_{t-d} \le b) \triangleq \kappa > 0 \quad \text{a.s.}$$

as $M \to \infty$. Thus, $\forall \eta > 0$, there exists an integer $M(\eta) > 0$ such that

$$P\left(\frac{1}{M}\sum_{t=p}^{M}I(a\leq y_{t-d}\leq b)<\frac{\kappa}{2}\right)<\eta.$$

By the definition of n_0 , it follows that

(A.12)

$$P(n_0 > M) = P\left(\sum_{t=p}^M I(a \le y_{t-d} \le b) = 0\right)$$
$$= P\left(\frac{1}{M}\sum_{t=p}^M I(a \le y_{t-d} \le b) = 0\right)$$
$$\le P\left(\frac{1}{M}\sum_{t=p}^M I(a \le y_{t-d} \le b) < \frac{\kappa}{2}\right)$$
$$< \eta,$$

i.e., (i) holds. Furthermore, by taking $\tilde{M} = M^2$, from (A.12) and Markov's inequality, it follows that $\forall \eta > 0$,

$$P\left(\sup_{\gamma\in\Gamma}\left|a_{n}\sum_{t=p}^{n_{0}-1}x_{t}x_{t}'R_{t}(\gamma)\right| > \tilde{M}\right)$$

$$= P\left(\sup_{\gamma\in\Gamma}\left|a_{n}\sum_{t=p}^{n_{0}-1}x_{t}x_{t}'R_{t}(\gamma)\right| > \tilde{M}, n_{0} \leq M\right)$$

$$\leq P\left(\max_{p\leq k\leq M}\sup_{\gamma\in\Gamma}\left|a_{n}\sum_{t=p}^{k-1}x_{t}x_{t}'R_{t}(\gamma)\right| > \tilde{M}\right)$$

$$\leq \sum_{k=p}^{M}P\left(a_{n}\sum_{t=p}^{k-1}|x_{t}|^{2} > \tilde{M}\right)$$

$$\leq a_{n}\sum_{k=p}^{M}\sum_{t=p}^{k-1}\frac{E|x_{t}|^{2}}{\tilde{M}}$$

$$= O\left(\frac{a_{n}M^{2}}{\tilde{M}}\right) = O\left(a_{n}\right) < \eta$$
(A.13)

as n is large enough. Thus, we know that equation (A.10) holds. Next, by Hölder's inequality and a similar argument as for (A.13), it is not hard to show that $\forall \eta > 0$,

$$P\left(\sup_{\gamma\in\Gamma}\left|a_n\sum_{t=p}^{n_0-1}h_t(\gamma)\varepsilon_t\right|>\tilde{M}\right)\leq O\left(a_n\right)<\eta$$

as n is large enough, i.e., (A.11) holds. This completes the proof.

LEMMA A.5. If Assumptions 2.1-2.3 hold, then it follows that under H_0 or H_{1n} ,

(i)
$$\sup_{\gamma \in \Gamma} \left| \frac{1}{n} \left(X_{\gamma} - \tilde{X}_{\gamma} \right)' X \right| = o_p(1),$$

(ii)
$$\sup_{\gamma \in \Gamma} \left| \frac{1}{n} \left(X_{\gamma}' X_{\gamma} - \tilde{X}_{\gamma}' \tilde{X}_{\gamma} \right) \right| = o_p(1),$$

(iii)
$$\sup_{\gamma \in \Gamma} \left| T_{\gamma} - \tilde{T}_{\gamma} \right| = o_p(1),$$

where \tilde{X}_{γ} and \tilde{T}_{γ} are defined in the same way as X_{γ} and T_{γ} , respectively, with $R_t(\gamma)$ being replaced by $\tilde{R}_t(\gamma)$.

PROOF. (i) Note that

$$\frac{1}{n}\left(X_{\gamma} - \tilde{X}_{\gamma}\right)' X = \frac{1}{\sqrt{n}} \left[\frac{1}{\sqrt{n}} \sum_{t=p}^{n_0 - 1} x_t x_t' R_t(\gamma)\right].$$

Hence, we know that (i) holds by taking $a_n = n^{-1/2}$ in equation (A.10).

(ii) By a similar argument as for (i), we can show that (ii) holds.

(iii) Note that when $\lambda_0 = (\phi_0', h'/\sqrt{n})'$, we have

$$T_{\gamma} - \tilde{T}_{\gamma} = \frac{1}{\sqrt{n}} \left(X_{\gamma} - \tilde{X}_{\gamma} \right)' \varepsilon - \frac{1}{\sqrt{n}} \left(X_{\gamma} - \tilde{X}_{\gamma} \right)' X(X'X)^{-1} X' \varepsilon$$
$$- \frac{1}{n} \left(X_{\gamma} - \tilde{X}_{\gamma} \right)' X(X'X)^{-1} X' X_{\gamma_0} h$$
$$- \frac{1}{n} \tilde{X}'_{\gamma} X(X'X)^{-1} X' \left(X_{\gamma_0} - \tilde{X}_{\gamma_0} \right) h$$
$$+ \frac{1}{n} \left(X'_{\gamma} X_{\gamma_0} - \tilde{X}'_{\gamma} \tilde{X}_{\gamma_0} \right) h$$
$$\triangleq I_{1n}(\gamma) - I_{2n}(\gamma) - I_{3n}(\gamma) - I_{4n}(\gamma) + I_{5n}(\gamma) \text{ say.}$$

First, since

$$I_{1n}(\gamma) = \frac{1}{n^{1/4}} \left[\frac{1}{n^{1/4}} \sum_{t=p}^{n_0-1} h_t(\gamma) \varepsilon_t \right],$$

it follows that $\sup_{\gamma} |I_{1n}(\gamma)| = o_p(1)$ by taking $a_n = n^{-1/4}$ in equation (A.11). Next, since

$$I_{2n}(\gamma) = \left[\frac{1}{n} \sum_{t=p}^{n_0-1} x_t x_t' R_t(\gamma)\right] \left(\frac{X'X}{n}\right)^{-1} \frac{X'\varepsilon}{\sqrt{n}},$$

we have that $\sup_{\gamma} |I_{2n}(\gamma)| = o_p(1)$ from (i). Similarly, we can show that $\sup_{\gamma} |I_{in}(\gamma)| = o_p(1)$ for i = 3, 4, 5. Hence, under H_0 (i.e., $h \equiv 0$) or H_{1n} , we know that (iii) holds. This completes the proof. LEMMA A.6. If Assumptions 2.1-2.3 hold, then it follows that under H_0 or H_{1n} ,

$$\sup_{\gamma \in \Gamma} \sqrt{n} |\lambda_n(\gamma) - \lambda_0| = O_p(1).$$

PROOF. First, for any $\gamma \in \Gamma$, by Taylor's expansion we have

(A.14)

$$\sum_{t=p}^{N} \left[\varepsilon_t^2(\lambda_n(\gamma), \gamma) - \varepsilon_t^2(\lambda_0, \gamma) \right]$$

$$= -(\lambda_n(\gamma) - \lambda_0)' \left(\sum_{t=p}^{N} 2\varepsilon_t(\lambda_0, \gamma) x_t(\gamma) \right)$$

$$+ (\lambda_n(\gamma) - \lambda_0)' \left(\sum_{t=p}^{N} x_t(\gamma) x_t(\gamma)' \right) (\lambda_n(\gamma) - \lambda_0).$$

Next, when $\lambda_0 = (\phi'_0, h'/\sqrt{n})'$, we can show that

$$\frac{1}{\sqrt{n}} \sum_{t=p}^{N} \varepsilon_t(\lambda_0, \gamma) x_t(\gamma) = \frac{1}{\sqrt{n}} Z'_{\gamma} \varepsilon + \frac{1}{\sqrt{n}} \sum_{t=p}^{N} x_t(\gamma) [x_t(\gamma_0) - x_t(\gamma)]' \lambda_0$$
$$= \frac{1}{\sqrt{n}} Z'_{\gamma} \varepsilon + \frac{1}{n} \sum_{t=p}^{N} \left(\begin{array}{c} x_t x'_t [R_t(\gamma_0) - R_t(\gamma)] \\ x_t x'_t [R_t(\gamma) R_t(\gamma_0) - R_t(\gamma)] \end{array} \right) h$$
(A.15)
$$\triangleq G_n^*(\gamma).$$

Let $\lambda_{min}(\gamma) > 0$ be the minimum eigenvalue of $K_{\gamma\gamma}$. Then, by equations (A.14)-(A.15), $\forall \eta > 0$, there exists a $M(\eta) > 0$ such that

$$\begin{split} P\left(\sup_{\gamma\in\Gamma}\sqrt{n}|\lambda_{n}(\gamma)-\lambda_{0}|>M\right)\\ &=P\left(\sqrt{n}|\lambda_{n}(\gamma)-\lambda_{0}|>M,\ \sum_{t=p}^{N}\left[\varepsilon_{t}^{2}(\lambda_{n}(\gamma),\gamma)-\varepsilon_{t}^{2}(\lambda_{0},\gamma)\right]\leq0\\ &\text{for some }\gamma\in\Gamma\right)\\ &\leq P\left(\sqrt{n}|\lambda_{n}(\gamma)-\lambda_{0}|>M,\ -2\sqrt{n}|\lambda_{n}(\gamma)-\lambda_{0}||G_{n}^{*}(\gamma)|\\ &+n|\lambda_{n}(\gamma)-\lambda_{0}|^{2}[\lambda_{min}(\gamma)+o_{p}(1)]\leq0\text{ for some }\gamma\in\Gamma\right)\\ &\leq P\left(M<\sqrt{n}|\lambda_{n}(\gamma)-\lambda_{0}|\leq2[\lambda_{min}(\gamma)+o_{p}(1)]^{-1}|G_{n}^{*}(\gamma)|\\ &\text{for some }\gamma\in\Gamma\right)\\ &\leq P\left(|G_{n}^{*}(\gamma)|>M[\lambda_{min}(\gamma)+o_{p}(1)]/2\text{ for some }\gamma\in\Gamma\right)\\ &\leq\eta, \end{split}$$

where the last inequality holds because $G_n^*(\gamma) = O_p(1)$ by Lemma 2.2 and Lemma A.3. Hence, under H_0 (i.e., $h \equiv 0$) or H_{1n} , our conclusion holds. This completes the proof.

PROOF OF COROLLARY 2.1. The conclusion follows directly from Theorems 2.1-2.2 and Lemma A.5. $\hfill \Box$

PROOF OF THEOREM 3.1. We use the method in the proof of Theorem 2 in Hansen (1996). Let W denote the set of samples ω for which

(A.16)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{t=p}^{N} \sup_{\gamma \in \Gamma} |x_t(\gamma)| \varepsilon_t^2 < \infty \text{ a.s.},$$

(A.17)
$$\lim_{n \to \infty} \sup_{\gamma, \delta \in \Gamma} \left| \frac{1}{n} \sum_{t=p}^{N} x_t(\gamma) x_t(\delta)' \varepsilon_t^2 - \sigma^2 K_{\gamma \delta} \right| \to 0 \quad \text{a.s}$$

Since $\sup_{\gamma \in \Gamma} |x_t(\gamma)| \leq \sqrt{2}|x_t|$ and $E|x_t|\varepsilon_t^2 < \infty$ due to Assumption 2.1, by the ergodic theorem we have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{t=p}^{N} \sup_{\gamma \in \Gamma} |x_t(\gamma)| \varepsilon_t^2 \le \lim_{n \to \infty} \frac{\sqrt{2}}{n} \sum_{t=p}^{N} |x_t| \varepsilon_t^2 < \infty \text{ a.s.},$$

i.e., (A.16) holds. Furthermore, by Assumptions 2.1-2.3 and a similar argument as for Lemma A.3, it is not hard to see that

$$\lim_{n \to \infty} \sup_{\gamma, \delta \in \Gamma} \left| \frac{1}{n} \sum_{t=p}^{N} x_t(\gamma) x_t(\delta)' \varepsilon_t^2 - \sigma^2 K_{\gamma \delta} \right| \to 0 \quad \text{a.s.},$$

i.e., (A.17) holds. Thus, P(W) = 1. Take any $\omega \in W$. For the remainder of the proof, all operations are conditionally on ω , and hence all of the randomness appears in the i.i.d. N(0, 1) variables $\{v_t\}$.

Define

$$Z_n^*(\gamma) = \frac{1}{\sqrt{n}} \sum_{t=p}^N x_t(\gamma) \varepsilon_t v_t.$$

By using the same argument as in Hansen (1996, p.426-427), we have

(A.18)
$$Z_n^*(\gamma) \Rightarrow \sigma G_\gamma \text{ a.s. as } n \to \infty.$$

Note that

$$\sup_{\gamma \in \Gamma} |\hat{Z}_n(\gamma) - Z_n^*(\gamma)| \le \sup_{\gamma \in \Gamma} \left| \frac{1}{n} \sum_{t=p}^N x_t(\gamma) x_t(\gamma)' v_t \right| \sup_{\gamma \in \Gamma} \left| \sqrt{n} (\lambda_n(\gamma) - \lambda_0) \right|.$$

Using the same argument as for (A.18) (see, e.g., Hansen (1996, p.427)), we have

(A.19)
$$\frac{1}{n} \sum_{t=p}^{N} x_t(\gamma) x_t(\gamma)' v_t \Rightarrow 0 \text{ a.s. as } n \to \infty.$$

Now, by Lemma A.6 and (A.19), it follows that under H_0 or H_{1n} ,

(A.20)
$$\hat{Z}_n(\gamma) - Z_n^*(\gamma) \Rightarrow 0$$
 in probability as $n \to \infty$.

Thus, by (A.18) and (A.20), we know that under H_0 or H_{1n} ,

(A.21)
$$\hat{Z}_n(\gamma) \Rightarrow \sigma G_\gamma \text{ in probability as } n \to \infty.$$

Next, we consider the functional

$$L: x(\cdot) \in D_{2p+2}(\Gamma) \to \frac{1}{\sigma^2} \sup_{\gamma \in \Gamma} x(\gamma)' \Omega_{\gamma} x(\gamma),$$

where $D_{2p+2}(\Gamma)$ denotes the function spaces of all functions, mapping $\mathcal{R}^2(\Gamma)$ into \mathcal{R}^{2p+2} , that are right continuous and have right-hand limits. Clearly, $L(\cdot)$ is a continuous functional; see e.g., Chan (1990, p.1891). By the continuous mapping theory and (A.21), it follows that under H_0 or H_{1n} ,

(A.22)
$$L(\hat{Z}_n(\gamma)) \Rightarrow L(\sigma G_{\gamma}) \text{ in probability as } n \to \infty.$$

Furthermore, since $\sigma_n^2 \to \sigma^2$ a.s. and $(X_{1n}(\gamma), I)'[X_{2n}(\gamma)]^{-1}(X_{1n}(\gamma), I) \to \Omega_{\gamma}$ uniformly in γ by Lemma A.3, we have that

(A.23)
$$\sup_{\gamma \in \Gamma} \hat{LR}_n(\gamma) = L(\hat{Z}_n(\gamma)) + o_p(1).$$

Finally, the conclusion follows from (A.22)-(A.23). This completes the proof. \Box

PROOF OF COROLLARY 3.1. Conditional on the sample $\{y_0, \dots, y_N\}$, let $\hat{F}_{n,J}$ and \hat{F}_n be the conditional empirical c.d.f. and c.d.f. of \hat{LR}_n , respectively. Then,

$$P\left(LR_n \ge c_{n,\alpha}^J\right)$$

= $E\left[P\left(LR_n \ge c_{n,\alpha}^J | y_0, \cdots, y_N\right)\right]$
= $E\left[P\left(\hat{F}_{n,J}(LR_n) \ge 1 - \alpha | y_0, \cdots, y_N\right)\right].$

By the Glivenko-Cantelli Theorem and Theorem 3.1, it follows that under H_0 or H_{1n} ,

(A.24)

$$\lim_{n \to \infty} \lim_{J \to \infty} P\left(LR_n \ge c_{n,\alpha}^J\right)$$

$$= \lim_{n \to \infty} E\left[P\left(\hat{F}_n(LR_n) \ge 1 - \alpha | y_0, \cdots, y_N\right)\right]$$

$$= \lim_{n \to \infty} E\left[P\left(F_0(LR_n) \ge 1 - \alpha | y_0, \cdots, y_N\right)\right]$$

$$= \lim_{n \to \infty} P\left(F_0(LR_n) \ge 1 - \alpha\right),$$

where F_0 is the c.d.f. of $\sup_{\gamma \in \Gamma} G'_{\gamma} \Omega_{\gamma} G_{\gamma}$. Thus, by (A.24) and Theorem 2.1, under H_0 we have

$$\lim_{n \to \infty} \lim_{J \to \infty} P\left(LR_n \ge c_{n,\alpha}^J\right) = P\left(\sup_{\gamma \in \Gamma} G'_{\gamma} \Omega_{\gamma} G_{\gamma} \ge F_0^{-1}(1-\alpha)\right) = \alpha$$

i.e., (i) holds. Furthermore, by (A.24) and Theorem 2.2, under H_{1n} we have

$$\lim_{h \to \infty} \lim_{n \to \infty} \lim_{J \to \infty} P\left(LR_n \ge c_{n,\alpha}^J\right) = \lim_{h \to \infty} P\left(B_h \ge F_0^{-1}(1-\alpha)\right) = 1$$

where $B_h \triangleq \sup_{\gamma \in \Gamma} \left\{ G'_{\gamma} \Omega_{\gamma} G_{\gamma} + h' \mu_{\gamma\gamma_0} h \right\}$ and the last equation holds since $B_h \to \infty$ in probability as $h \to \infty$. Thus, (ii) holds. This completes the proof.

REFERENCES

- ANDREWS, D.W.K. (1993) An introduction to econometric applications of functional limit theory for dependent random variables. *Econometric Reviews* 12, 183-216.
- [2] CHAN, K.S. (1990) Testing for threshold autoregression. Annals of Statistics 18, 1886-1894.
- [3] DOUKHAN, P., MASSART, P., and RIO, E. (1995) Invariance principles for absolutely regular empirical processes. Annales de l'Institut H. Poincare 31 393-427.
- [4] FAN, J. and YAO, Q. (2003) Nonlinear time series: Nonparametric and parametric methods. Springer, New York.
- [5] HANSEN, B.E. (1996) Inference when a nuisance parameter is not indentified under the null hypothesis. *Econometrica* 64, 413-430.
- [6] POLLARD, D. (1984) Convergence of Stochastic Processes. New York: Springer.
- [7] POLLARD, D. (1990) Empirical processes: Theory and applications. NSF-CMBS Regional Conference Series in Probability and Statistics, Vol 2. Hayward, CA: Institute of Mathematical Statistics.

Chinese Academy of Sciences Institute of Applied Mathematics HaiDian District, Zhongguancun Bei Jing, China E-Mail: zkxaa@ust.hk Department of Statistics and Actuarial Science University of Hong Kong Pokfulam Road, Hong Kong E-mail: plhyu@hku.hk hrntlwk@hku.hk