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4 Proofs

4.1 Preliminary approximations

Let (Xi)1≤i≤n be independent random variables. We shall approximate the
tail distribution of partial sums by the tail of the sums of truncated random
variables and a term involving the tail probabilities of individual summands.
We use the following notations:

Sn =

n
∑

i=1

Xi, S(j) =

n
∑

i 6=j

Xi

and for x > 0 and ε > 0 we set

X
(εx)
i = XiI(Xi < εx), S

(εx)

n =
n
∑

i=1

X
(εx)
i and S

(εx)

n (j) =
n
∑

i 6=j

X
(εx)
i . (26)

We shall prove the following key lemma that will be further exploited to approx-
imate the tail distribution of P(Sn ≥ x) in terms of the sum of the truncated
random variables and the tail distributions of the individual summands.

Lemma 4.1 For any 0 < η < 1, and ε > 0 such that 1 − η > ε we have

|P(Sn ≥ x) − P(S(εx)
n ≥ x) −

n
∑

j=1

P(Xj ≥ (1 − η)x)| ≤

4(
n
∑

j=1

P(Xj ≥ εx))
2

+ 3
n
∑

j=1

P(Xj ≥ εx)(P(|Sn(j)| > ηx)

+
n
∑

j=1

P((1 − η)x ≤ Xj < (1 + η)x).

Proof. We decompose the event {Sn ≥ x} according to maxi 6=j Xi < εx or
maxi 6=j Xi ≥ εx, and the last one can happen if exactly one of the variables is
larger than εx or at least two variables exceed εx. Formally,
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P(Sn ≥ x) =

n
∑

j=1

P(Sn ≥ x, Xj ≥ εx, max
i 6=j

Xi < εx)

+P(
⋃

1≤i≤n−1

⋃

i+1≤j≤n

{Sn ≥ x, Xj ≥ εx, Xi ≥ εx})

+P(Sn ≥ x, max
1≤i≤n

Xi < εx) = A + B + C =
n
∑

j=1

Aj + B + C.

The term B can be easily majorated by

B ≤
n−1
∑

i=1

n
∑

j=i+1

P(Xj ≥ εx)P(Xi ≥ εx) ≤ (

n
∑

j=1

P(Xj ≥ εx))
2
.

We analyze now the first term. We introduce a new parameter η > 0. Since for
any two events A and B we have |P (A)−P (B)| ≤ P (AB′)+P (A′B), (here the
prime stays for the complement), for each j we have

|Aj − P(Xj ≥ (1 − η)x)| ≤ P(Sn ≥ x, Xj ≥ εx, Xj < (1 − η)x)

+P(Xj ≥ (1 − η)x, Sn < x) + P(Xj ≥ (1 − η)x, Xj < εx)

+P(Xj ≥ (1 − η)x, max
i 6=j

Xi ≥ εx) = I + II + III + IV.

We treat each term separately. By independence and since Sn ≥ x and Xj <
(1 − η)x imply Sn(j) ≥ ηx, we derive

I ≤ P(Xj ≥ εx)P(Sn(j) ≥ ηx).

The second term is treated in the following way:

II ≤ P((1 − η)x ≤ Xj < (1 + η)x) + P(Xj ≥ (1 + η)x, Sn < x)

≤ P((1 − η)x ≤ Xj < (1 + η)x) + P(Xj ≥ (1 + η)x)P(−Sn(j) ≥ ηx).

Since 1 − η > ε the third term is: III = 0. By independence, the forth term is

IV = P(Xj ≥ (1 − η)x)P(max
i 6=j

Xi ≥ εx).

Overall, by the previous estimates and because 1 − η > ε, we obtain

|A −
n
∑

j=1

P(Xj ≥ (1 − η)x)| ≤ 2

n
∑

j=1

P(Xj ≥ εx)(P(|Sn(j)| > ηx)

+(

n
∑

j=1

P(Xj ≥ εx))
2

+

n
∑

j=1

P((1 − η)x ≤ Xj < (1 + η)x).
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It remains to analyze the last term, C. Notice that

|C − P(S(εx)
n ≥ x)| = P(S(εx)

n ≥ x) − P(S(εx)
n ≥ x, max

1≤i≤n
Xi < εx)

= P(S(εx)
n ≥ x, max

1≤i≤n
Xi ≥ εx).

Now we treat this term by the same arguments we have already used, by dividing
the maximum in two parts:

P(S(εx)
n ≥ x, max

1≤i≤n
Xi ≥ εx) =

n
∑

j=1

P(S(εx)
n ≥ x, Xj ≥ εx, max

i 6=j
Xi < εx)

+P(
⋃

1≤i≤n−1

⋃

i+1≤j≤n

{S(εx)
n ≥ x, Xj ≥ εx, Xni ≥ εx}) =

n
∑

j=1

Fj + G.

The last term, G is majorated exactly as B. As for the first term, we notice

that because Xj ≥ εx the term X
(εx)
j does not appear in the sum, and by

independence we obtain

Fj = P(S(εx)
n (j) ≥ x, Xj ≥ εx, max

i 6=j
Xi < εx)

≤ P(S(εx)
n (j) ≥ x)P(Xj ≥ εx).

Now, clearly we have

P(S(εx)
n (j) ≥ x) ≤ P(max

i
Xi ≥ εx) + P(S(εx)

n (j) ≥ x, max
i

Xi < εx)

= P(max
i

Xi ≥ εx) + P(Sn(j) ≥ x, max
i

Xi < εx),

implying that

n
∑

j=1

Fj ≤
n
∑

j=1

P(Xnj ≥ εx)(P(max
i

Xi ≥ εx) + P(Sn(j) ≥ x)).

Overall,

|C − P(S(εx)
n ≥ x)| ≤ 2(

n
∑

j=1

P(Xj ≥ εx))
2

+

n
∑

j=1

P(Xj ≥ εx)P(Sn(j) ≥ x).

By gathering all the information above and taking into account that

|P(Sn ≥ x) − P(S(εx)
n ≥ x) −

n
∑

j=1

P(Xj ≥ (1 − η)x)| ≤

|A −
n
∑

j=1

P(Xj ≥ (1 − η)x)| + |C − P(S(εx)
n ≥ x)| + |B|,

the lemma is established. ♦

The following similar lemma is for the sum of infinite many terms.
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Lemma 4.2 Let 1 − η > ε > 0 and x > 0; let X1, X2, · · · , be independent
random variables. Assume that the sum S =

∑∞
i=1 Xi exists almost surely. Let

S(j) = S − Xj , X
(εx)
i = XiI(Xi < εx). Then S(εx) =

∑∞
i=1 X

(εx)
i exists almost

surely and

|P(S ≥ x) − P(S(εx) ≥ x) −
∞
∑

j=1

P(Xj ≥ (1 − η)x)| ≤

4(
∞
∑

j=1

P(Xj ≥ εx))
2

+ 3
∞
∑

j=1

P(Xj ≥ εx)(P(|S(j)| > ηx)

+
∞
∑

j=1

P((1 − η)x ≤ Xj < (1 + η)x).

Proof. By Kolmogorov’s three-series theorem, S(εx) =
∑∞

i=1 X
(εx)
i con-

verges almost surely. Let Ω0 ∈ Ω with P(Ω0) = 1 be the set that both
∑∞

i=1 Xi

and
∑∞

i=1 X
(εx)
i converge. Hence on Ω0, we understand S(ω) as just the sum

∑∞
i=1 Xi(ω). Then following the proof of Lemma 4.1, we have Lemma 4.2. ♦

If Sn is stochastically bounded, i.e., limK→∞ supn P(|Sn| > K) = 0, the
approximation in Lemma 4.1 has a simple asymptotic form.

Proposition 4.1 Assume that Sn is stochastically bounded, the variables are
centered and xn → ∞. Then for any 0 < η < 1, and ε > 0 such that 1 − η > ε,
we have

|P(Sn ≥ xn) − P(S(εxn)
n ≥ xn) −

n
∑

j=1

P(Xj ≥ (1 − η)xn)| ≤ (27)

o(1)
n
∑

j=1

P(Xj ≥ εxn) +
n
∑

j=1

P((1 − η)xn ≤ Xj < (1 + η)xn),

where o(1) depends on the sequence xn, η and ε and converges to 0 as n → ∞.

Proof. We just notice that for independent centered random variables,
if Sn is stochastically bounded, by Lévy inequality (Inequality 1.1.3 in de la
Peña and Giné 1999), we have max1≤i≤n |Xi| is stochastically bounded too. By
taking into account that |Sn(j)| ≤ |Sn|+max1≤i≤n |Xi|, and using the fact that
xn → ∞ as n → ∞ we obtain

n
∑

j=1

P(Xj ≥ εxn)P(|Sn(j)| ≥ ηxn) ≤ max
1≤j≤n

P(|Sn(j)| ≥ ηxn)
n
∑

j=1

P(Xj ≥ εxn)

≤
(

P(|Sn| ≥ ηxn/2) + P( max
1≤i≤n

|Xi| ≥ ηxn/2)

) n
∑

j=1

P(Xj ≥ εxn)

= o(1)
n
∑

j=1

P(Xj ≥ εxn) as n → ∞.
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Then, by independence

P( max
1≤j≤n

|Xj | ≥ εxn)

= P(|X1| ≥ εxn) +

n
∑

k=2

P( max
1≤j≤k−1

|Xj | < εxn)P(|Xk| ≥ εxn)

≥ P( max
1≤j≤n

|Xj | < εxn)
n
∑

k=1

P(|Xj | ≥ εxn),

which gives

(

n
∑

j=1

P(|Xj | ≥ εxn))
2 ≤ P(max1≤j≤n |Xj | ≥ εxn)

P(max1≤j≤n |Xj | < εxn)

n
∑

j=1

P(|Xj | ≥ εxn)

= o(1)
n
∑

j=1

P(|Xj | ≥ εxn) as n → ∞,

since xn → ∞ as n → ∞ and max1≤j≤n |Xj | is stochastically bounded. ♦
Remark 4.1 Based on Lemma 4.2, it is easy to verify that Proposition 4.1 is
still valid if we extend the sums up to infinity.

4.2 Proof of Theorem 2.2

It is convenient to normalize by the variance of partial sum and we shall consider
without restricting the generality that

Eξ2
0 = 1,

kn
∑

i=1

c2
ni = 1 and max

1≤i≤kn

c2
ni → 0. (28)

Then we have
∑kn

i=1 ct
ni ≤ max1≤i≤kn

ct−2
ni → 0 implying that D−1

nt → ∞. More-

over, the sequence
∑kn

i=1 cniξi is stochastically bounded and we analyze the two
terms of the right side and the last term of the left side in Proposition 4.1. Let
xn → ∞ as n → ∞. In order to ease the notation we shall denote x = xn, but
we keep in mind that x depends on n and tends to infinite with n. By taking
into account that x/cni ≥ x → ∞ and h is a slowly varying function we notice
first that for any a > 0

lim
x→∞

max
1≤i≤kn

|h(ax/cni)

h(x/cni)
− 1| = 0.

We derive for any |γ| < 1 fixed

|
kn
∑

i=1

ct
ni(h(

x

cni
) − h((1 + γ)

x

cni
))| ≤

kn
∑

i=1

ct
nih(

x

cni
)|1 − h((1 + γ)x/cni)

h(x/cni)
| = o(1)

kn
∑

i=1

ct
nih(

x

cni
), as n → ∞,
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implying that

∑kn

i=1 P(cniξi ≥ (1 ± η)x)
∑kn

i=1 P(cniξi ≥ x)
=

∑kn

i=1 ct
nih((1 ± η)x/cni)

(1 ± η)t
∑kn

i=1 ct
nih(x/cni)

→ 1

when n → ∞ followed by η → 0.

Then, we also have

∑kn

i=1 P((1 − η)x ≤ cniξi < (1 + η)x)
∑kn

i=1 P(cniξi ≥ x)
→ 0 as n → ∞ and η → 0.

Similarly, for every ε > 0 fixed we have that

∑kn

i=1 P(cniξi ≥ εx)
∑kn

i=1 P(cniξi ≥ x)
=

∑kn

i=1 ct
nih(εx/cni)

εt
∑kn

i=1 ct
nih(x/cni)

→ 1

εt
as n → ∞,

and then,
kn
∑

i=1

P(cniξi ≥ εx) �
kn
∑

i=1

P(cniξi ≥ x) as n → ∞.

So far, for any ε > 0 fixed, by letting n → ∞ first and after that, passing with η
to 0, we deduce by the above consideration combined with Proposition 4.1 that

P(Sn ≥ x) =

kn
∑

i=1

P(cniξi ≥ x)(1 + o(1)) + P(S(εx)
n ≥ x) as n → ∞. (29)

It remains to study the term P(S
(εx)
n ≥ x). We shall base this part of the proof

on Corollary 1.7 in S. Nagaev (1979), given in the Appendix, which we apply
with m > t, that will be selected later. Because we assume E(ξ2

0) = 1 and
∑kn

i=1 c2
ni = 1, we have for all y, B2

n(−∞, y) ≤ 1, and therefore, Theorem 5.1
implies:

P(S(εx)
n ≥ x) ≤ exp(−α2x2/2em) + (An(m; 0, εx)/(βεm−1xm))β/ε .

with α = 1 − β = 2/(m + 2). Then, obviously, it is enough to show that for
x = xn as in Theorem 2.2 we can select ε > 0 such that

exp(−α2x2

2em
) +

(

An(m; 0, εx)

βεm−1xm

)β/ε

= o(1)

kn
∑

i=1

ct
ni

xt
h(

x

cni
) as n → ∞. (30)

Let x = xn ≥ C[ln(D−1
nt )]1/2 where C > em/2(m + 2)/

√
2. As we mentioned at

the beginning of the proof, we clearly have xn → ∞.
We shall estimate each term in the left hand side of (30) separately. Because,

by the definition of α we have C > em/2α−1
√

2, we can select 0 < η < 1 such
that C2α2/2em = (1 − η)−2.
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Taking into account the fact that for any c > 0 and d > 0 we have yd exp(−cy)
= o(exp(−c(1 − η)y) as y → ∞, by the definition on x and η, we obtain:

x(t−2η)/(1−η) exp(−α2x2

2em
) = o(1) exp(−α2x2

2em
(1 − η))

= o(1)(

kn
∑

i=1

ct
ni)

C2α2(1−η)/2em

= o(1)(

kn
∑

i=1

ct
ni)

(1−η)−1

.

Applying now the Hölder inequality we clearly have,

kn
∑

i=1

ct
ni =

kn
∑

i=1

c2η
nic

t−2η
ni ≤ (

kn
∑

i=1

c2
ni)

η(

kn
∑

i=1

c
(t−2η)/(1−η)
ni )1−η. (31)

Taking into account that
∑kn

i=1 c2
ni = 1, we obtain overall

exp(−α2x2

2em
) = o(1)x−(t−2η)/(1−η)

kn
∑

i=1

c
(t−2η)/(1−η)
ni .

Since t > 2, (t− 2η)/(1− η) > t. Then, by combining this observation with the
properties of slowly varying functions we have

exp(−α2x2

2em
) = o(1)

kn
∑

i=1

ct
ni

xt
h(

x

cni
).

We select ε by analyzing the second term in the left hand side of (30). Notice
that by integration by parts formula, for every z > y > 0,

Eξm
0 I(0 ≤ ξ0 < z) =

−zm
P(ξ0 ≥ z) + m

∫ z

0

um−1
P(ξ0 ≥ u)du ≤ ym + m

∫ z

y

um−1
P(ξ0 ≥ u)du.

Replacing z = εx/cni, taking into account condition (4), the properties of slowly
varying functions, and the facts that x/cni → ∞ and m > t, we have

Eξm
0 I(0 ≤ cniξ0 < εx) ≤ ym + 2m

∫ εx

cni

y

um−t−1h(u)du = O((
x

cni
)m−th(

x

cni
))

for y sufficiently large. It follows that

An(m; 0, εx) =

kn
∑

i=1

cm
niEξm

0 I(0 ≤ cniξ0 < εx)

�
kn
∑

i=1

cm
ni(

x

cni
)m−th(

x

cni
) = xm−t

kn
∑

i=1

ct
nih(

x

cni
).
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Choose ε with 0 < ε < β. Then the second term has the order

(

An(m; 0, εx)

βεm−1xm

)β/ε

�
(

xm−t

xm

kn
∑

i=1

ct
nih(

x

cni
)

)β/ε

= o

(

kn
∑

i=1

ct
ni

xt
h(

x

cni
)

)

.

Overall we obtain for any x ≥ C(ln(
∑kn

i=1 ct
ni)

−1)1/2 with C > em/2(m +

2)/
√

2,

P(Sn ≥ x) = (1 + o(1))

kn
∑

i=1

P(cniξ0 ≥ x) as n → ∞,

where m > t. Since Ct > et/2(t + 2)/
√

2 we can select and fix m > t such that
Ct > em/2(m + 2)/

√
2. ♦

4.3 Proof of Theorem 2.3

For simplicity we normalize by the variance of Sn and assume (28). This result
easily follows from Theorem 1.1 in Frolov (2005) when moments strictly larger
than 2 are available. This theorem is given for convenience in the Appendix
(Theorem 5.2). Because we assume the existence of moments of order p > 2, we
have

Λn(u, s, ε) ≤ u

kn
∑

j=1

c2
njEξ2

0I(|cnjξ0| > ε/s) ≤ ε2−pusp−2DnpE|ξ0|p.

where Dnp =
∑kn

j=1 |cnj |p. Then, for x2 ≤ 2 ln(1/Dnp),

Λn(x4, x5, ε) ≤ ε2−px4+5(p−2)DnpE|ξ0|p ≤ ε2−pDnp(2 ln(1/Dnp))
(5p−6)/2

E|ξ0|p,

which converges to 0 since Dnp ≤ max1≤j≤kn
|cnj |p−2 → 0 by (10). Notice also

that the Lnp in Theorem 5.2 satisfies Lnp ≤ DnpE|ξ0|p → 0. The latter implies
x2 − 2 ln(L−1

np ) − (p − 1) ln ln(L−1
np ) → −∞ provided x2 ≤ 2 ln(D−1

np ). Then the
result is immediate from Theorem 5.2. ♦

4.4 Proof of Theorem 2.1

Again for simplicity we normalize by the variance and assume (28). Without
loss of generality we may assume 2 < p < t. This is so because if p ≥ t with
E(|ξ0|p) < ∞ then we can find a p′ such that 2 < p′ < t and E(|ξ′0|p) < ∞. We
shall consider a sequence xn which converges to ∞. So, let x = xn → ∞.

Starting from the relation (29) and applying Proposition 5.1 to the second
term in the right hand side we obtain for any ε > 0 and x2 ≤ cε ln(D−1

np ) with

cε < 1/ε and for all n sufficiently large P(S
(εx)
n ≥ x) = (1−Φ(x))(1 + o(1)). We

notice now that by (31) applied with η = (t−p)/(t−2) and simple considerations,

Dnt � Dnp � (Dnt)
(p−2)/(t−2). (32)

21



So far, by using this last relation, we showed by (29) and the above consider-
ations that (11) holds for 0 < x ≤ C[ln(D−1

nt )]1/2 with C an arbitrary positive
number. On the other hand, because 1 − Φ(x) ≤ (2π)−1/2x−1 exp(−x2/2), by
Theorem 2.2 and by the arguments leading to the proof of relation (30), there
is a constant c1 > 0 such that for x > c1[ln(D−1

nt )]1/2, we simultaneously have

P (Sn ≥ x) = (1 + o(1))

kn
∑

i=1

P(cniξ0 ≥ x)

and

1 − Φ(x) = o(

kn
∑

i=1

P(cniξ0 ≥ x)).

Then (11) holds for all x > 0 since C is arbitrarily large and can be selected
such that c1 < C.

Now if the sequence xn is bounded we apply first Theorem 2.3 and obtain
the moderate deviation result in (13). Then, because xn ≥ c > 0 we notice that,
by the arguments leading to the proof of relation (30), the second part in the
right hand side of (11) is dominant, so the first part is negligible as n → ∞. ♦

4.5 Proof of Corollary 2.1

Again without loss of generality we normalize by the variance and assume (28).
The ideas involved in the proof of this corollary already appeared in the previous
proofs, so we shall mention only the changes. We start from (11). To prove (12)
we have to show that

1 − Φ(x) = o(

kn
∑

i=1

P(cniξ0 ≥ x))

for x ≥ a(lnD−1
nt )1/2 with a > 21/2. First we shall use the relation 1 − Φ(x) ≤

(2π)−1/2x−1 exp(−x2/2). Then, we adapt the proof we used to establish the

first part of (30), when we compared exp(−α2x2/2em) to
∑kn

i=1 P(cniξ0 ≥ x).
The main difference is that now we take m = 0 and α = 1.

For the proof of (13), we use the inequality 1 − Φ(x) ≥ (2π)−1/2(1 +
x)−1 exp(−x2/2). By (4) and (32) we have for every 0 < ε < t − 2,

kn
∑

i=1

P(cniξ0 ≥ x) �
kn
∑

i=1

ct−ε
ni

xt−ε
� 1

xt−ε
(Dnt)

(t−2−ε)/(t−2).

Then, it is easy to see that, because ε can be made arbitrarily small, for 1 <
x ≤ b(lnD−1

nt )1/2 with b < 21/2 we have

kn
∑

i=1

P(cniξ0 ≥ x) = o(1 − Φ(x)).

When 0 < x ≤ 1 we apply Theorem 2.3. ♦
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4.6 Proof of Corollary 2.3

As in the other proofs, for simplicity we assume Eξ2
0 = 1.

Proof of part (ii). Because the Fuk-Nagaev inequality (Theorem 5.1) and the
inequalities in Lemma 4.1 and Proposition 4.1 are still valid for the case kn = ∞
(see Remark 5.1 in the Appendix, Lemma 4.2 and Remark 4.1 in Subsection 4.1),
all the arguments in the proof of Theorem 2.2 hold under the conditions of this
corollary.

Proof of part (iii). The result (iii) in this corollary is obtained on the same
lines as of Theorem 2.3. The modification of the proof is rather standard but
computationally intensive. There are several ideas behind this proof. The infi-
nite series is decomposed as a sum up to kn and the rest Rn. The sequence kn

is selected independently of xn such that the rest of the series Rn is negligible
for the moderate deviation result. This is possible because the coefficients bni,
defined as bni = a1−i + ... + an−i with

∑

i∈Z
a2

i < ∞, have some regularity
properties. For instance by the Hölder’s inequality,

b2
ni ≤ n(a2

1−i + ... + a2
n−i)

and so, for any k > n
∑

|i|≥k
b2
ni ≤ n2

∑

|i|≥k−n−1
a2
1−i. (33)

We then note that the existence of moments of order p > 2 for ξ0 and
∑

i∈Z
a2

i < ∞ imply that X0 also has finite moments of order p. Indeed, by
Rosenthal inequality (see for instance Theorem 1.5.13 in de la Peña and Giné,
1999), there is a constant Cp such that

E|
m
∑

j=n

ajξj |p ≤ Cp[(
m
∑

j=n

a2
j )

p/2 + E|ξ0|p
m
∑

j=n

|aj |p]

which implies that E|∑m
j=n ajξj |p → 0 as m ≥ n → ∞, and therefore X0 exists

in Lp.
For kn a sequence of integers, denote Rn =

∑

|i|>kn
bniξi and note that Rn

is also well defined in Lp. Again by Rosenthal inequality we obtain

E|Rn|p ≤ Cp[(
∑

|i|>kn

b2
ni)

p/2 + E|ξ0|p
∑

|i|>kn

|bni|p]. (34)

We select now kn large enough such that
∑

|i|>kn

b2
ni ≤ ||ξ0||2p(

∑

j

|bnj |p)2/p.

This is possible by relation (33) and the fact that
∑

i a2
i < ∞. With this

selection we obtain
E|Rn|p ≤ 2CpE|ξ0|p

∑

i

|bni|p. (35)

23



Write now
Sn =

∑

|i|≤kn

bniξi + Rn.

We view Sn as the sum of kn + 1 independent random variables and then apply
Theorem 5.2 as in the proof of Theorem 2.3. By taking into account (35), the
term Lnp from Theorem 5.2 is

Lnp =
1

σp
n
[
∑

|i|≤kn

|bni|pE(ξp
0I(ξ0 > 0) + E(Rp

nI(Rn > 0)]

≤ 2Cp + 1

σp
n

∑

i

|bni|pE|ξ0|p = (2Cp + 1)UnpE|ξ0|p = L′
np.

Because we assume the existence of moments of order p, by (35) we have

Λn(u, s, ε) ≤ u

σ2
n

[
∑

|j|≤kn

b2
njEξ2

0I(|bnjξ0| > εσn/s) + ER2
nI(|Rn| > εσn/s)]

≤ usp−2

σp
nεp−2

[
∑

|j|≤kn

|bnj |pE|ξ0|p + E|Rn|p] ≤
usp−2

εp−2
L′

np.

Therefore, for x2 ≤ 2 ln(1/L′
np) ≤ 2 ln(1/Lnp),

Λn(x4, x5, ε) ≤ ε2−px4+5(p−2)L′
np ≤ ε2−p(2 ln(1/L′

np))
(5p−6)/2L′

np.

Finally note that by (20) we obtain

Unp ≤
supj |bnj |p−2

(
∑

b2
nj)

(p−2)/2
→ 0,

and consequently L′
np → 0. Therefore, Λn(x4, x5, ε) → 0. Note also that the

quantity Lnp in Theorem 5.2 satisfies Lnp ≤ L′
np → 0. Therefore if x2 −

2 ln(L′
np)

−1 − (p − 1) ln ln(L′
np)

−1 → −∞ we have that x2 − 2 ln(L−1
np ) − (p −

1) ln ln(L−1
np ) → −∞ and the result holds for such a positive x.

It remains to show that x2 ≤ 2 ln(U−1
np ) implies x2 − 2 ln(L′

np)
−1 − (p −

1) ln ln(L′
np)

−1 → −∞, which holds provided that

2 ln((U−1
np )L′

np[ln(L′
np)

−1](1−p)/2) → −∞.

This last divergence is equivalent to

(U−1
np )L′

np[ln(L′
np)

−1](1−p)/2 → 0.

Clearly, because L′
np = (2Cp + 1)UnpE|ξ0|p and the fact that we have shown

that L′
np → 0 the result follows.

Proof of part (i). The proof is similar to the proof of Theorem 2.1 and
Corollary 2.1. We have only to show that Proposition 5.1 is still valid in this

24



context if we let kn = ∞. The proof is similar to the proof of (iii) but more
involved, since the sequence of truncated variables is not centered. Denote

X ′
ni = bniξiI(bniξi ≤ εxσn) = bniξ

′
i.

For kn a sequence of integers, denote R′
n =

∑

|i|>kn
bniξ

′
i and note that R′

n is
also well defined in Lp. By Rosenthal inequality, after centering we obtain

E|R′
n|p ≤ C ′

p[(
∑

|i|>kn

b2
ni)

p/2 + E|ξ0|p
∑

|i|>kn

|bni|p + |E(R′
n)|p].

Because x ≥ c > 0 and the fact that E(X ′
ni) = −E(bniξiI(bniξi > εxσn)) we

obtain

|E(R′
n)| ≤ 1

εxσn

∑

|i|>kn

b2
ni ≤

1

εcσn

∑

|i|>kn

b2
ni.

We select now kn, depending on c, ε and the distribution of ξ0 and the coefficients
(ak), large enough such that

(
∑

|i|>kn

b2
ni)

p/2 + (
1

εcσn

∑

|i|>kn

b2
ni)

p ≤ E|ξ0|p
∑

i

|bni|p,

and so
E|R′

n|p ≤ 2C ′
pE|ξ0|p

∑

i

|bni|p.

Write now S′
n =

∑

|i|≤kn
bniξ

′
i+R′

n and view S′
n as the sum of kn+1 indepen-

dent random variables and then apply Proposition 5.1. Similar computations
as in the proof of the point (iii) show that Lnp in Proposition 5.1 is bounded by

Lnp ≤
2C ′

p + 1

σp
n

E|ξ0|p
∑

i

|bni|p = (2C ′
p + 1)UnpE|ξ0|p.

Then, by Proposition 5.1 if x2 ≤ c ln((2C ′
p + 1)UnpE|ξ0|p)−1 for c < 1/ε, we

have x2 ≤ c ln(L−1
np ) for c < 1/ε and

P

(

∑

i
X ′

nj ≥ xσn

)

= (1 − Φ(x))(1 + o(1)).

It remains to notice that because Unp → 0, we also have the result for x2 ≤
c ln(Unp)

−1 for any c < 1/ε, for all n sufficiently large. ♦

4.7 Proof of Corollary 2.4

This Corollary follows from Corollary 2.3 via Lemma 5.1 in the Appendix. It
remains to give an explicit form of the intervals moderate deviation and large
deviation boundaries. Without loss of generality, we assume that Eξ2

0 = 1.
For proving the large deviation part of this corollary we have to analyze the
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condition on x from part (i) of Corollary 2.3, namely x > a(lnU−1
nt )1/2 with

a =
√

2. By Lemma 5.1

Bn2 =
∑

i

b2
ni ∼ crn

3−2rl2(n)

and

C1l
t(n)n(1−r)t+1 ≤

∞
∑

j=1

bt
nj ≤ C2l

t(n)n(1−r)t+1.

Then, for certain constants K1 and K2 and because U−1
nt = B

t/2
n2 /Bnt, we have

for n sufficiently large

K1 + lnn(t−2)/2 ≤ lnU−1
nt ≤ K2 + lnn(t−2)/2.

So, the asymptotic result (12) holds for x ≥ c1(lnn)1/2 where c1 > (t − 2)1/2.
Furthermore, (13) holds for 0 < x ≤ c2(lnn)1/2 where c2 < (t − 2)1/2. ♦

4.8 Proof of Theorem 2.4

Without restricting the generality we assume κ > 0, since similar computations
can be done when κ < 0. Let An =

∑∞
i=n a2

i . Using the argument of Theorem
5 in Wu (2006), under Condition B, we have

‖P0(K(Xn) − κXn)‖q = O(θn), where θn = |an|p/q + |an|A1/2
n .

Let θi = 0 if i ≤ 0 and Θn =
∑n

i=1 θi. Then by Theorem 1 in Wu (2007), there
exists a constant Bq ≥ 1 such that

‖Sn,1‖2
q

B2
q

≤
∑

i∈Z

(Θn+i − Θi)
2 ≤ 2nΘ2

2n +
∞
∑

i=n+1

(Θn+i − Θi)
2. (36)

By Karamata’s theorem, An ∼ (2r− 1)−1n1−2rl(n)2, and if i > n, Θn+i −Θi =
O(nθi) and

∑∞
i=n+1 θ2

i = O(nθ2
n). Let `(·) be a slowly varying function and

β ∈ R. Again by Karamata’s theorem, there exists another slowly varying
function `0(·) such that

∑n
i=1 i−β`(i) = O(1+n1−β)`0(n). Hence by (36), there

exists a slowly varying function `1(·) such that

‖Sn,1‖q = O(
√

n)(1 + n1−rp/q + n1−r+(1−2r)/2)`1(n). (37)

For n ≥ 3 let gn = (lnn)−1. Then

P(Sn ≥ (x + gn)σn) − P(Hn ≥ κxσn) ≤ P(|Sn,1| ≥ κgnσn). (38)

Since x2 ≤ c lnn and gn = (lnn)−1, we have that 1 − Φ(x ± gn) ∼ 1 − Φ(x).
Hence by Corollary 2.5, (23) follows from (38) in view of

P(|Sn,1| ≥ κgnσn) ≤
‖Sn,1‖q

q

|κ|qgq
nσq

n
=

O(
√

n
q
)(1 + nq−rp + n(3/2−2r)q)`q

1(n)

gq
n(n3/2−rl(n))q

(39)

= n−pρ(r) `q
1(n)

gq
nl

q
(n)

=
o(n−c/2)

lnn
= o(xe−x/2) = o[1 − Φ(x)],
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since c/2 < pρ(r). Here we note that `1(n)/(gnl(n)) is also slowly varying in n
and x ≤ c lnn. By (37) and (39), it is easily seen that the normalizing constant
κσn can be replaced by

√

var(Hn). The proof of the upper bound is similar
and it is left to the reader. ♦

5 Appendix

The following Theorem is a slight reformulation of Fuk–Nagaev inequality (see
Corollary 1.7, S. Nagaev, 1979):

Theorem 5.1 Let X1, · · · , Xkn
be independent random variables. Assume m ≥

2. Suppose EXi = 0, i = 1, · · · , kn, β = m/(m+2), and α = 1−β = 2/(m+2).

For y > 0, define X
(y)
i = XiI(Xi ≤ y), An(m; 0, y) :=

∑kn

i=1 E[Xm
i I(0 < Xi <

y)] and B2
n(−∞, y) :=

∑kn

i=1 E[X2
i I(Xi < y)]. Then for any x > 0 and y > 0

P(

kn
∑

i=1

X
(y)
i ≥ x) ≤ exp(− α2x2

2emB2
n(−∞, y)

) + (
An(m; 0, y)

βxym−1
)
βx/y

. (40)

Remark 5.1 Let X1, X2, · · · , be independent random variables. Assume that
the sum S =

∑∞
i=1 Xi exists almost surely. By the same argument as in Lemma

4.2,
∑∞

i=1 X
(y)
i converges almost surely for all y > 0. By passing to the limit

in (40) we note that this version of Fuk-Nagaev inequality is still valid for

P(
∑∞

i=1 X
(y)
i ≥ x).

We shall also use the following result which is an immediate consequence of
Theorem 1.1 in Frolov (2005).

Theorem 5.2 Let (Xnj)1≤j≤kn
be an array of row-wise independent centered

random variables. Let p > 2 and denote Sn =
∑kn

j=1 Xnj, σ2
n =

∑kn

j=1 EX2
nj,

Mnp =
∑kn

j=1 EXp
njI(Xnj ≥ 0) < ∞, Lnp = σ−p

n Mnp and denote

Λn(u, s, ε) =
u

σ2
n

kn
∑

j=1

EX2
njI(Xnj ≤ −εσn/s).

Furthermore, assume Lnp → 0 and Λn(x4, x5, ε) → 0 for any ε > 0. Then if
x ≥ 0 and x2 − 2 ln(L−1

np ) − (p − 1) ln ln(L−1
np ) → −∞, we have

P (Sn ≥ xσn) = (1 − Φ(x))(1 + o(1)).

For truncated random variables by following the proof of Theorem 1.1 in
Frolov (2005) we can present his relation (3.17) as a proposition.

Proposition 5.1 Assume the conditions in Theorem 5.2 are satisfied. Fix ε >
0. Define

X
(εxσn)
nj = XnjI(Xnj ≤ εxσn) and S(εxσn)

n =

kn
∑

j=1

X
(εxσn)
nj .
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Then if x2 ≤ c ln(L−1
np ) with c < 1/ε, for all n sufficiently large we have

P

(

S(εxσn)
n ≥ xσn

)

= (1 − Φ(x))(1 + o(1)).

The following facts about the series are going to be used to analyze a class
of linear processes:

Lemma 5.1 Assume ai = l(i)i−r with 1/2 < r < 1. Let bj := bnj :=
∑j

i=1 ai

if 1 ≤ j ≤ n and bnj :=
∑j

i=j−n+1 ai if j > n. Then, for two positive constants
C1 and C2, we have

C1(l
t(n)n(1−r)t+1) ≤

∞
∑

j=1

bt
nj ≤ C2(l

t(n)n(1−r)t+1),

for any t ≥ 2. In the case t = 2,
∑∞

j=1 b2
nj = crn

3−2rl2(n) with

cr = {
∫ ∞

0

[x1−r − max(x − 1, 0)1−r]2dx}/(1 − r)2.

Proof. It is easy to see that bnj � j1−rl(j) for j ≤ 2n and bnj � n(j −
n)−rl(j) for j > 2n from the Karamata theorem (see part 1 of Lemma 5.4 in
Peligrad and Sang (2012)). Therefore,

∞
∑

j=1

bt
nj =

2n
∑

j=1

bt
nj +

∞
∑

j=2n+1

bt
nj

�
2n
∑

j=1

j(1−r)tlt(j) +

∞
∑

j=2n+1

nt(j − n)−rtlt(j) = O(lt(n)n(1−r)t+1).

The proof in the other direction is similar. The result of case t = 2 is well
known. See for instance Theorem 2 in Wu and Min (2005). ♦
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