SUPPLEMENTARY MATERIAL FOR THE PAPER "EXACT
MODERATE AND LARGE DEVIATIONS FOR LINEAR
PROCESSES”

Magda Peligrad, Hailin Sang, Yunda Zhong and Wei Biao Wu

This supplementary material contains proofs of the theorems of the main
paper ”Exact Moderate and Large Deviations for Linear Processes”. We refer
the main paper for references and equation numbers.

4 Proofs

4.1 Preliminary approximations

Let (X;)i<i<n be independent random variables. We shall approximate the
tail distribution of partial sums by the tail of the sums of truncated random
variables and a term involving the tail probabilities of individual summands.
We use the following notations:

n n
Su=_ Xi, S() =) X
i=1 i#j
and for £ > 0 and € > 0 we set
(e2) _ ) _ N () @ X g (en)
X =X I(X; <ex), 5, = X" and 5, (j) =D _ X, (26)
i=1 i#£j

We shall prove the following key lemma that will be further exploited to approx-
imate the tail distribution of P(S,, > z) in terms of the sum of the truncated
random variables and the tail distributions of the individual summands.

Lemma 4.1 For any 0 <n <1, and € > 0 such that 1 —n > ¢ we have

P(Sy > 2) —P(SE) > ) = > P(X; > (1 —n)z)| <

4( ZIP’(Xj > ex))” + 3ZTP’(Xj > ex)(P(1Sn(5)] > nx)
+3 P(1 -z < X; < (1+1))
j=1

Proof. We decompose the event {S,, > z} according to max;,; X; < ex or
max;-; X; > €x, and the last one can happen if exactly one of the variables is
larger than ez or at least two variables exceed ex. Formally,
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P(S, > z) = P(S, >z, X; > ex, maxX; < ex
( ) ;( J nax )
+P( U {Swza, X; 2en, X, > ex))

1<i<n—1 i+1<j<n

+P(Sp >z, max X;<ex)=A+B+C=Y» A;j+B+C.
1<i<n —
j_

The term B can be easily majorated by

n

B< § zn: P(X; > ex)P(X; > ex) < (D P(X; > ex))”.

i=1 j=i+1 j=1

We analyze now the first term. We introduce a new parameter 7 > 0. Since for
any two events A and B we have |P(A) — P(B)| < P(AB’)+ P(A’'B), (here the
prime stays for the complement), for each j we have

|[4; —P(X; > (1 —n)x)| <P(Sp, >z, X; >ex, X; <(1—-n)x)
+P(X; > (1 —n)z, Sp<z)+P(X; > (1 -n)z, X; <ex)
+P(X; > (1 —n)z, m;?xXl- >ex)=I+I1+1II+1V.
i#]

We treat each term separately. By independence and since S;, > = and X; <
(1 = n)z imply S, (j) > nx, we derive
I <P(X; > ex)P(S,(j) > nx).

The second term is treated in the following way:

IT<P((1-n)a < X; < (1+n)a) +BX; > (1+n)a, S, <)
<B((L-n)z < X; < (L4m)2) + P(X; > (L+)2)B(=S,(j) > na).

Since 1 — 7 > ¢ the third term is: I1] = 0. By independence, the forth term is

IV =P(X; > (1— n)x)P(mjxXi > ex).
i#]

Overall, by the previous estimates and because 1 —n > €, we obtain

A=Y P(X; = (1-n)z)| <2) P(X; > ex)(B(|S,(5)] > nx)
j=1 j=1

+OO P > )’ + Y P(1—n)a < X; < (L+7)).
j=1 j=1
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It remains to analyze the last term, C'. Notice that
|C —P(SE™) > 2)| = P(SE) > z) —P(SE™) > g, max X; < ex)

=P(SE > 2, max X; > ex).
1<7,<n

Now we treat this term by the same arguments we have already used, by dividing
the maximum in two parts:

P(SE® >z, max X; > ex) E P(SE® >z, X; > ex, maxX; < x)
1<i<n 1 i#]
Jj=

+P( U U {Sr(fx) >z, Xj>ex, Xy >ex}) = ipj +G.

1<i<n—1 i+1<j<n

The last term, G is majorated exactly as B. As for the first term, we notice
that because X; > ex the term X ) does not appear in the sum, and by
independence we obtain

F; =P(SE(5) >z, X; > ex, m;ng < ex)
<SP(S()) = 2)P(X; = ex).
Now, clearly we have
P(SE2) (5) > z) < P(max X; > ex) + P(SEY(j) > =, max X < ex)
= ]P(maxX >ex)+P(S,(j) > =z, maXX < ex),

implying that

n

Zn: F; < Z (Xnj 2 ex)(P(max X; > ex) + P(Sn(j) > 2))-

Overall,

n n

IC=P(SE > 2)| <2(> P(X; > e2)* + Y P(X; > ex)P(S,(j) > 2).

j=1 j=1

By gathering all the information above and taking into account that
IP(S,, >z) —P(SED > ) — ZIP’X > (1—n)z)| <
A=) P(X; = (1 —n)a)| +|C - P(ST) > z)| +|B],
j=1

the lemma is established.

The following similar lemma is for the sum of infinite many terms.

16



Lemma 4.2 Let 1 —n > ¢ > 0 and x > 0; let X1, Xo,---, be independent
random variables. Assume that the sum S =% .o X; exists almost surely. Let
Sy =8 — Xj, XZ.(‘”) = X,I(X; < ex). Then SC¥) = 3", Xi(m) exists almost
surely and

P(S > ) — P(S¢") iﬂ” —n)z)| <
j=1
A0 P(X; > ex)) +BZ]P’ (P(|S(j)| > nzx)
j=1

+ZIP’((1 -z < X; < (1+n)z).
j=1
Proof. By Kolmogorov’s three-series theorem, S(#%) = Zfil Xi(m) con
verges almost surely. Let Qg € Q with P(€0) = 1 be the set that both Y .2, X;

and >0, Xl-(sz) converge. Hence on €y, we understand S(w) as just the sum
Yoo, Xi(w). Then following the proof of Lemma 4.1, we have Lemma 4.2. {

If S, is stochastically bounded, i.e., limg_, o sup, P(|S,| > K) = 0, the
approximation in Lemma 4.1 has a simple asymptotic form.

Proposition 4.1 Assume that S, is stochastically bounded, the variables are
centered and x, — oo. Then for any 0 <n <1, and € > 0 such that 1 —n > ¢,
we have

IP(S, > z,) — P(SE™) iIP’ X; > (1 —n)z,)| < (27)
i P(X; > exy) i]P’((l -y < X; < (1+n)zy)
=1 j=1

where o(1) depends on the sequence x,, n and € and converges to 0 as n — 0.

Proof. We just notice that for independent centered random variables,
if S,, is stochastically bounded, by Lévy inequality (Inequality 1.1.3 in de la
Pena and Giné 1999), we have maxi<;<, | X;| is stochastically bounded too. By
taking into account that | S, (5)| < |Sn|+maxi<i<, |X;|, and using the fact that
T, — 00 as n — oo we obtain

P(X; > ex,)

NE

S P(X; 2 exa)P(Su(3)] 2 a) < max PS4 ()] 2 7o)

j=1 !

<.
I

< (OS2 w0/ + P X1 2 0/2)) S2PE, 2 20
z

=o(1) Z]P’(Xj > exy) as n — oo.

=1
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Then, by independence

> P((max [X;] <ewn) ;POXJ" > ean),
which gives
n

(O _P(X;] > exn))® <

J=1

P(maxl<j<n |Xj| Z g‘xn) n
o P(|X,| > ex,
P(maxi<j<n [ X;] <Exn); (1X5] = exn)

=0(1) > P(X;| > ex,) as n — 0,

j=1
since x, — 00 as n — oo and maxi<;<n, |X;| is stochastically bounded. ¢

Remark 4.1 Based on Lemma 4.2, it is easy to verify that Proposition 4.1 is
still valid if we extend the sums up to infinity.

4.2 Proof of Theorem 2.2

It is convenient to normalize by the variance of partial sum and we shall consider
without restricting the generality that

1<i<k,

kn
E& =1, Zcii =1land max ¢, — 0. (28)
i=1

Then we have Zfﬁl b, < maxj<icy, ¢t-? — 0 implying that D,;! — co. More-
over, the sequence Zf;l cni&; is stochastically bounded and we analyze the two
terms of the right side and the last term of the left side in Proposition 4.1. Let
T, — 00 as n — oo. In order to ease the notation we shall denote x = x,,, but
we keep in mind that x depends on n and tends to infinite with n. By taking
into account that x/c,; > © — oo and h is a slowly varying function we notice
first that for any a > 0

Jim | ma (5 1) 0.
We derive for any |y| < 1 fixed
kn
[SOTEIRTINEE
i=1 ni i
Fn LT R((1 + )z /cni) kn, o
;C”ih(cji)'l - W\ =o(1) ;cmh(c—m), as n — 0o,
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implying that

2121 P(Cnifi > (1 + 77)33) Ez 1 th((l + n)x/cni) -
S Plenit > 7) (L)t cyh(a/en)
when n — oo followed by n — 0.

Then, we also have

Z " P(( Nz < cnifi < (1+n)x)
Z?:l P(cni&i > )

Similarly, for every € > 0 fixed we have that

S Plcnibs > ex) _ SEn et h(ex)cns) 1

— 0 asn — oo and n — 0.

— as n — 09,
Zfﬁl P(cni&i > ) et Zz Lt h(z)en) €
and then,
K .
ZP(CM& > ex) < ZP(CM‘& > 1x) as n — oo.
=1 i=1

So far, for any € > 0 fixed, by letting n — oo first and after that, passing with n
to 0, we deduce by the above consideration combined with Proposition 4.1 that

kn
P(S, > x) = ZP(CM‘& > z)(1+0(1)) +P(SEY) > z) asn —oco.  (29)

i=1

It remains to study the term IP’(S’,SEI) > x). We shall base this part of the proof
on Corollary 1.7 in S. Nagaev (1979), given in the Appendix, which we apply
with m > ¢, that will be selected later. Because we assume E(¢2) = 1 and
Zf"l c2, = 1, we have for all y, B2(—o00,y) < 1, and therefore, Theorem 5.1
implies:

P(S(%) > 2) < exp(—a’2?/2e™) + (An(m; 0,ex)/(Be™La™))P/e .

with @« = 1 — 8 = 2/(m + 2). Then, obviously, it is enough to show that for
T = x, as in Theorem 2.2 we can select € > 0 such that

2.2 A . B/e n ¢
exp(— E )+< n(m,O,sx)) Z@hi. Yasn — oo, (30)

2em ﬁgm—lxm

Let = 2, > C[In(D,)]*/? where C > ¢™/?(m + 2)/v/2. As we mentioned at
the beginning of the proof we clearly have x,, — oc.

We shall estimate each term in the left hand side of (30) separately. Because,
by the definition of o we have C' > em/2a*1\/§, we can select 0 < n < 1 such
that C%2a?/2e™ = (1 —n)~2
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Taking into account the fact that for any ¢ > 0 and d > 0 we have y? exp(—cy)
= o(exp(—c(1 — n)y) as y — oo, by the definition on z and 7, we obtain:

2,2 2,2

a~r
= 1 —
) = o1 exp(— 5

kn
C2a2(1— e -1
=o(1)(D el )T I — o) (D et )T
) =1

=20/ (=) g

(1—=mn))

Applying now the Holder inequality we clearly have,

kn kn
Z Zcm;ﬁ"<z Z /A=y, (31)

Taking into account that E =1, we obtain overall

zlnz

2.2

kn
exp(~ 5 2) = o(1)a 120/ 0o 32 (2 (1
=1

Since ¢t > 2, (t —2n)/(1 —n) > t. Then, by combining this observation with the
properties of slowly varying functions we have

2 2 ’fn t
«o c
n7,
exp = —h
( Zem T
i—

We select ¢ by analyzing the second term in the left hand side of (30). Notice
that by integration by parts formula, for every z > y > 0,

E%”I(O < f(] < Z) S
—2mP(& > 2) + m/ u™ TP (& > w)du < y™ + m/ u™ P (& > u)du.
0 Y

Replacing z = ex/¢p;, taking into account condition (4), the properties of slowly
varying functions, and the facts that x/c,; — oo and m > t, we have

W () du = O((—=)™ (=)

Cni Cni

Egé"[(() < anfO < €$) <

for y sufficiently large. It follows that

Ap(m;0,ex) Zc 'EET (0 < cpiép < ex)

<<Zcm ; Y (—=) = 2™ thmh

an
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Choose € with 0 < ¢ < 8. Then the second term has the order

B/e k
A, (m;0,ex) Ble gm—t Fn . x el x
AnT; 7, ET) (- - Snip Ly
( ﬁgm—lzm ) < xrm ;C”Z (an) 0 Z l‘t ( )

c
i=1 e

Overall we obtain for any x > C(ln(zk” ct )*1)1/2 with C' > em/z(m +

2)/\/5’ i=1"ni

kn
P(S, > z) = (14 0o(1)) ZIP’(CM&J > x) as n — oo,
i=1
where m > t. Since Cy > e¥/?(t +2)/+/2 we can select and fix m > t such that
Cy > e™?(m+2)/v2. O

4.3 Proof of Theorem 2.3

For simplicity we normalize by the variance of S,, and assume (28). This result
easily follows from Theorem 1.1 in Frolov (2005) when moments strictly larger
than 2 are available. This theorem is given for convenience in the Appendix
(Theorem 5.2). Because we assume the existence of moments of order p > 2, we
have

kn
Ay (u,s,€) < chijEfgIﬂcnjfo\ > ¢/s) < 2 PusPT2D,,, E|&|P.
j=1

where Dy, = Zjﬁl |cn;|P. Then, for 2% < 21n(1/Dy,),
An(z* 2% €) < P2 502D B¢ [P < €77 Dy (210(1/ D)) PO/ 2B P,

which converges to 0 since D, < maxj<j<, |cnj|P~ — 0 by (10). Notice also
that the L, in Theorem 5.2 satisfies L, < D,,E|&|P — 0. The latter implies
2* —2In(L;}) — (p — 1) InIn(L,}) — —oo provided z* < 2In(D,}). Then the
result is immediate from Theorem 5.2. ¢

4.4 Proof of Theorem 2.1

Again for simplicity we normalize by the variance and assume (28). Without
loss of generality we may assume 2 < p < t. This is so because if p > t with
E(|&]|P) < oo then we can find a p’ such that 2 < p’ <t and E(]£)|P) < co. We
shall consider a sequence x,, which converges to co. So, let x = z,, — o0.
Starting from the relation (29) and applying Proposition 5.1 to the second
term in the right hand side we obtain for any ¢ > 0 and 22 < c. ln(D;pl) with
¢e < 1/e and for all n sufficiently large ]P’(S,(fx) >z)=(1-o(z))(1+0(1)). We
notice now that by (31) applied with n = (t—p)/(t—2) and simple considerations,

Dnt < an < (Dnt)(p_Q)/(t_2)' (32)
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So far, by using this last relation, we showed by (29) and the above consider-
ations that (11) holds for 0 < z < C[In(D;;})]'/? with C an arbitrary positive
number. On the other hand, because 1 — ®(x) < (2)~ Y2z~ exp(—x2/2), by
Theorem 2.2 and by the arguments leading to the proof of relation (30), there
is a constant ¢; > 0 such that for z > ¢;[In(D;;')]'/?, we simultaneously have

kn
P(S, >z)=(14+0(1)) ZIP’(cm{o > )
i=1
and
kn
1—®(x) = o> P(cni&o > 7))
i=1
Then (11) holds for all z > 0 since C' is arbitrarily large and can be selected
such that ¢; < C.

Now if the sequence x,, is bounded we apply first Theorem 2.3 and obtain
the moderate deviation result in (13). Then, because x,, > ¢ > 0 we notice that,
by the arguments leading to the proof of relation (30), the second part in the
right hand side of (11) is dominant, so the first part is negligible as n — oco. ¢

4.5 Proof of Corollary 2.1

Again without loss of generality we normalize by the variance and assume (28).
The ideas involved in the proof of this corollary already appeared in the previous
proofs, so we shall mention only the changes. We start from (11). To prove (12)
we have to show that

kn

1= ®(z) = o) Plcnibo > 1))

i=1
for x > a(In D;;})'/? with a > 2'/2. First we shall use the relation 1 — ®(z) <
(2m)~ 1227  exp(—22/2). Then, we adapt the proof we used to establish the
first part of (30), when we compared exp(—a?x?/2e™) to Zfﬁl P(cnio > x).
The main difference is that now we take m =0 and a = 1.

For the proof of (13), we use the inequality 1 — ®(x) > (2m)~/2(1 +

x)~texp(—2?/2). By (4) and (32) we have for every 0 < e <t — 2,

k’n kn t—e
c, . 1
. ni (t—2—¢)/(t—2)
§_1 P(cnibo > x) < 2—1 prr S (Dnt) e .

Then, it is easy to see that, because € can be made arbitrarily small, for 1 <
x < b(ln D;;)V/? with b < 2'/2 we have

kn,

> P(enibo > x) = o(1 — ®(x)).

i=1

When 0 < z < 1 we apply Theorem 2.3.

22



4.6 Proof of Corollary 2.3

As in the other proofs, for simplicity we assume E&2 = 1.

Proof of part (ii). Because the Fuk-Nagaev inequality (Theorem 5.1) and the
inequalities in Lemma 4.1 and Proposition 4.1 are still valid for the case k,, = oo
(see Remark 5.1 in the Appendix, Lemma 4.2 and Remark 4.1 in Subsection 4.1),
all the arguments in the proof of Theorem 2.2 hold under the conditions of this
corollary.

Proof of part (iii). The result (iii) in this corollary is obtained on the same
lines as of Theorem 2.3. The modification of the proof is rather standard but
computationally intensive. There are several ideas behind this proof. The infi-
nite series is decomposed as a sum up to k, and the rest R,,. The sequence k,
is selected independently of x, such that the rest of the series R, is negligible
for the moderate deviation result. This is possible because the coefficients b,,;,
defined as b,; = a1_; + ... + a,_; with ZieZ a? < oo, have some regularity
properties. For instance by the Holder’s inequality,

by, <nlal_; +..+ap_;)

and so, for any k > n

2 2 2
Zmzkbm <n ZMZkfnflal_i' (33)

We then note that the existence of moments of order p > 2 for & and
Y ez a? < oo imply that Xy also has finite moments of order p. Indeed, by
Rosenthal inequality (see for instance Theorem 1.5.13 in de la Penia and Giné,

1999), there is a constant C), such that

E[Ya;i&lP < Cl(Q ad)P? +Eléol” D lagl]
j=n

j=n j=n

which implies that E[ 377" a;;|P — 0 as m > n — oo, and therefore X exists
in L.

For k, a sequence of integers, denote R, = Z‘ i| >k bni&; and note that R,
is also well defined in L,. Again by Rosenthal inequality we obtain

E[Rul” < Cyl( D 07)"2 +Elol” 3 [bnil”]. (34)
[i|>Fkn [i|>kn
We select now k,, large enough such that
D bni < Noll3 (D bns[P)>/P.
[i[>kn J

This is possible by relation (33) and the fact that Y, a? < oo. With this
selection we obtain
E|Rp [P < 2C,E|&[” > [bil. (35)
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Write now

[i|<kn

We view S, as the sum of k,, + 1 independent random variables and then apply
Theorem 5.2 as in the proof of Theorem 2.3. By taking into account (35), the
term Ly, from Theorem 5.2 is

1
Lnp = —5[ > 1buil BT (§0 > 0) + E(RLI(Ry > 0)]
" lil<kn
20, +1
O.P

> builPEl&o [P = (2C, + 1)UnpEléo|” = L

Because we assume the existence of moments of order p, by (35) we have

An(u, 5,€) g% [ 02EEI(|baséo| > con/s) + ERZI(|Ra| > co/5)]
\J|<k

usP™ p=2
Z |an|pE|§0|p+E|R ‘ ] ) an'

[71<kn

obep—2

Therefore, for 22 < 2In(1/L},,) < 2In(1/Ly,),

Ap(a*, 2% e) < 7P P02 - < 7P(21n(1/L),,))PP~O2L)

np —

Finally note that by (20) we obtain

sup; by |P—2
np = P 7( ~2)/2 - 0,
and consequently L — 0. Therefore, An(x47m5,e) — 0. Note also that the
quantity an in Theorem 5.2 satisfies Ly, < L’ — 0. Therefore if 22 —
2In(L;,,)"" = (p— 1) Inln(L],,)~" — —oo we have that 22 — 2In(L;,) — (p —
1)ln ln(L 1) — —o0 and the result holds for such a positive x.

np

It remains to show that z* < 2In(U,,}) implies 2> — 2In(L,,)~" — (p —

1)Inln(L},,)~" — —oo, which holds provided that
21n((U,,,) )L, (L)~ 7P72) — —oc.
This last divergence is equivalent to
-1 —11(1—p)/2
Uy ) LipIn(L7,,) 107772 — 0.

Clearly, because L), = (2C, + 1)U,,E|{ | and the fact that we have shown

np
that L, — 0 the result follows.

Proof of part (i). The proof is similar to the proof of Theorem 2.1 and
Corollary 2.1. We have only to show that Proposition 5.1 is still valid in this
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context if we let k, = oo. The proof is similar to the proof of (iii) but more
involved, since the sequence of truncated variables is not centered. Denote

X7/7/L = bnzgzl(bnzgz < ELL'O'n) = bnzgé

For k;, a sequence of integers, denote Rj, = ;- bni§; and note that Rj, is
also well defined in L,,. By Rosenthal inequality, after centering we obtain

E[R, P < Col( Y 0h)" +El&ol” D [busl” + [E(R})I)-
li|>kn i[>k
Because x > ¢ > 0 and the fact that E(X];) = —E(bn:i&1(bni&i > exoy,)) we

obtain 1 1
E(R)| < B2, < b2 ..
[5|> ko, [é]>kn

We select now k,,, depending on ¢, € and the distribution of £y and the coefficients
(ak), large enough such that

1
(> b+ (5? Do bh)P <ElGolP Y bl

. n .
|| >kn |i]>kn

and so
E|R,[? < 2CE|&|" > [bnil”.

Write now Sj, = 3~; < bni&i+ Rj, and view S}, as the sum of k;, +1 indepen-
dent random variables and then apply Proposition 5.1. Similar computations
as in the proof of the point (iii) show that L,,, in Proposition 5.1 is bounded by

20! +1
P E 2 : _ U.. E
an < oP |§0‘p - |bm"p - (261/; 1) np ‘§0|p~

n

Then, by Proposition 5.1 if 22 < ¢In((2C}, + 1)Uy, E[&|?) ! for ¢ < 1/e, we
have 22 < ¢In(L,}) for ¢ < 1/e and

P (legj > m0n> = (1 - ®(x))(1+o(1)).

It remains to notice that because U,, — 0, we also have the result for 2% <
cln(Upy,) ™! for any ¢ < 1/e, for all n sufficiently large. ¢

4.7 Proof of Corollary 2.4

This Corollary follows from Corollary 2.3 via Lemma 5.1 in the Appendix. It
remains to give an explicit form of the intervals moderate deviation and large
deviation boundaries. Without loss of generality, we assume that E&2 = 1.
For proving the large deviation part of this corollary we have to analyze the
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condition on x from part (i) of Corollary 2.3, namely = > a(InU,,")/? with
a= \/5 By Lemma 5.1

B,o = Z b2, ~ c,n®> 22 (n)

and
Cllt( (1 7“ t+1 < Zb < C lt 1 ’r’)t+1.

Then, for certain constants K; and Ky and because U, t/ 2 5 /Bnt, we have
for n sufficiently large

K1 +Inn®2/2 <InU;' < Ky + Innl=272,

So, the asymptotic result (12) holds for = > ¢;(Inn)'/? where ¢; > (t — 2)'/2.
Furthermore, (13) holds for 0 < z < ca(Inn)'/? where ¢y < (t —2)Y/2. ¢

4.8 Proof of Theorem 2.4

Without restricting the generality we assume k > 0, since similar computations
can be done when x < 0. Let 4,, = Y_>° a?. Using the argument of Theorem

=N Z

5 in Wu (2006), under Condition B, we have
[Po(K(Xn) — £Xn)llq = O(6r), where 0, = |an [P/ + |a,|A}/>.

Let 0; =01if i <0 and ©,, =) ., 6;. Then by Theorem 1 in Wu (2007), there
exists a constant B, > 1 such that

Shn,
H 1||q < Z i — < 2n@ Z nti — 7, . (36)

i€Z i=n+1

By Karamata’s theorem, A,, ~ (2r —1)"'n!=?"[(n)2, and if i > n, O, 1; — O; =
O(nb;) and Y272 07 = O(nf?). Let £(-) be a slowly varying function and
8 e ]R Again by Karamata’s theorem, there exists another slowly varying
function £o(+) such that > i7P4(i) = O(1+n'=#)fy(n). Hence by (36), there
exists a slowly varying function ¢;(-) such that

1Snlly = O(Vn)(1 + nl=rr/a 4 nl_r+(1_2r)/2)€1(n). (37)
For n > 3 let g, = (Inn)~!. Then
P(S, > (x + gn)on) — P(H,, > kxoy,) <P(|Sh1| > Kgnow). (38)

Since 22 < clnn and g, = (Inn)~!, we have that 1 — ®(x + g,) ~ 1 — &(x).
Hence by Corollary 2.5, (23) follows from (38) in view of
[Sn1lld  O(Vn")(1 4+ nt=P + n/2=219)¢d (n)

(Sl 2 860 70) = 1, fagon L) )

o(n—¢/?
— () 515()) = (1nn ) _ o(xe™/?) = o[l — ®(x)],
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since ¢/2 < pp(r). Here we note that ¢1(n)/(gnl(n)) is also slowly varying in n
and x < clnn. By (37) and (39), it is easily seen that the normalizing constant
ko, can be replaced by \/var(H,). The proof of the upper bound is similar
and it is left to the reader. ¢

5 Appendix

The following Theorem is a slight reformulation of Fuk—Nagaev inequality (see
Corollary 1.7, S. Nagaev, 1979):

Theorem 5.1 Let X1,---, X}, be independent random variables. Assume m >
2. Suppose EX; =0,i=1,--+ ,k,, B=m/(m+2), anda=1-03=2/(m+2).
Fory >0, define XY = X;I1(X; < y), An(m;0,y) := Yk E[Xm1(0 < X; <
y)] and B2(—o00,y) = Zf;l E[X2I(X; <y)]. Then for any x >0 and y > 0

P( < X(y) > ) < ( o*z? )+ (An(m§07y) )Ba:/y (40)
E . xp(— .

= Y= e B2 (—o0y) Baym=1

Remark 5.1 Let Xy, Xo, -, be independent random variables. Assume that

the sum S =2, X; exists almost surely. By the same argument as in Lemma

4.2, 302, Xi(y) converges almost surely for all y > 0. By passing to the limit
in (40) we note that this version of Fuk-Nagaev inequality is still valid for

P(YX, XY > ).

We shall also use the following result which is an immediate consequence of
Theorem 1.1 in Frolov (2005).

Theorem 5.2 Let (X,;)1<j<k, be an array of row-wise independent centered
random variables. Let p > 2 and denote S, = Zfil Xpj, 02 = Z " EX7,
My = S5 EXP I(Xpj > 0) < 00, Ly = 0,7 My, and denote

kn,
A (u, s, €) —QZ I(X,; < —eoyn/s).
Furthermore, assume Ly, — 0 and An(2*,2°%,€) — 0 for any € > 0. Then if
x>0 and 2* —2In(L,}) — (p— 1) Inln(L,,}) — —oo, we have
P (S, > zo,) = (1 —@(z))(1+0(1)).

For truncated random variables by following the proof of Theorem 1.1 in
Frolov (2005) we can present his relation (3.17) as a proposition.

Proposition 5.1 Assume the conditions in Theorem 5.2 are satisfied. Fix e >
0. Define

X5 = X, 1(X,; < ewoy) and S = Z xteren),
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Then if 2 < cIn(L with ¢ < 1/e, for all n sufficiently large we have

np)
P (S,(f”n) > xon) = (1-®(x))(1+o(1)).

The following facts about the series are going to be used to analyze a class
of linear processes:

Lemma 5.1 Assume a; = (i)i™" with 1/2 <r < 1. Let b; := b,; := Zgzl a;
if1<j<nandby; =]

izj—nt1@i if j >n. Then, for two positive constants
C1 and Cy, we have

oo

Cl(lt( (1 r)t+1 Z ) (l—r)t-&-l)’

for any t > 2. In the case t =2, > 20 = c,n>"?"12(n) with

e = {/Ooo[xl_r —max(z — 1,0)'7"]%dx} /(1 — )2

Proof. It is easy to see that b,; < j'~"I(j) for j < 2n and b,; < n(j —
n)~"l(j) for 7 > 2n from the Karamata theorem (see part 1 of Lemma 5.4 in
Peligrad and Sang (2012)). Therefore,

00 2n oo
DU =D bt D by
j=1 j=1

Jj=2n-+1
2n s
< Zj(l—r)tlt(j) + Z nt(j _ n)—rtlt(j) _ O(lt(n)n(l_r)t+1).
j=1 j=2n+1

The proof in the other direction is similar. The result of case t = 2 is well
known. See for instance Theorem 2 in Wu and Min (2005). ¢
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