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Supplementary Material

This note contains two lemmas and the proofs for Theorem 1-Theorem 5.

S1 Two lemmas

Lemma 1 Suppose that conditions C1-C3 hold. If h — 0,nh® — 0o, we have

SUZI/){ Sg,l_:ulf(u)_:ul+1f/(u)h‘ = OP(h’2+5n)7 1207172737
ue
where 0, = l‘fh", 1/ (u) is the derivative of f(u) and

l
- Kn(BTX,; —u), 1=0,1,2,3.
= . > (B u)

1=

1 ~ ﬁTXZ —Uu
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1
The details of proof can be found from Martins-Filho and Yao (2007). The following

lemma provides the uniform convergence rates for the estimators 7 and 7’ respectively.

Lemma 2 Let B, = {8 : |8 — Bol < ecn™ 2} for some positive constant c. Suppose
that conditions C1-C5 hold, we have

sup  [7(u; B) — n(u)| = Op(dn), (SL.1)
ueU,BEB,
and
sup |7 (u; B) — ' (w)| = Op(d,/h). (S1.2)
ueU,BEB,
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The proof of Lemma 2 can be found from the full version of Wang et al. (2010) on
the web arXiv.org at arXiv:0905.2042, hence we omit the details here.

S2 Proof of Theorem 1

The proof of Theorem 1 can immediately be obtained from Carroll et al. (1997), Liang
et al. (2010), or Chen, Gao and Li (2013). So we omit all the details. O

S3 Proof of Theorem 2

By (2.7) in Section 2 and some simple calculations, we have
A(u; Bo) =Y Wai(u; Bo)Yi, (S3.1)

where

Wt oy~ KB Xs = 0IST — (B X — ) /ST

nilu; Bo) = > 2 .
Siio S — (5102

By Lemma 1, we have uniformly for u € & and 8 € B,

SPy = F(u)+Op(h® +6,), SP,=O0p(h+0,),
S8 = uaf(u) + Op(h® +6,), S24=0p(h+6,). (S3.2)

Hence, we have

55,055,2 - (55,1)2 = paf?(u) + Op(h* + 8y). (S3.3)

By (S3.1), we have

f(u; Bo) —n(u) = Wi (w; Bo)Yi — n(u)
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For I, by using Taylor expansion and some calculations, and from (S3.2)—(S3.3) and
condition C1, we have

Kn(B8 X = w)[$8% — {81 Xi — w)/n} st

SN

L= [sfsfy - (2

i=1

1 5 4 . B ) ey
— 577//(U)h2[sg?085?2_ (85?1)2] [(352) Sﬁ Sﬂ ]+0P(1)

= S0 Whs + Op (2 4 5,) (83.5)

s () 7 () (B X — )+ ") (BT X: — w)? + OBE X — )}~ n(u)
1

Now we consider I3. By Theorem 1, we know that Bg is a /n—consistent estimator, that
is, By satisfies that By € By. Note that supgcy geg, [1(87x) — n(B )| = O(n~1/2).
Invoking the Lemma 2 in Zhu and Xue (2006), it is easy to show that I3 = op(n~/?).

We approximate the process I; as follows. Following the steps of Lemma A.2 in Xia
and Li (1999), we have

LS KB X — ) (83 X — w)/h)es = Op(5,). (33.6)
=1

By the proof of Lemma A.1 in Xia et al. (2004), we can obtain that

n n

Kn(B5 Xi — u)e; = Kn(BEX: —u)e; + Op(hd,).  (S3.7)

v (S3.2), (S3.6)—(S3.7) and using the same argument of (S3.5), it is easy to show that
. N N 3 35 1 n R
A SR O e > KA X we:)
152452 — (529758 (- ZKh (B X — w){(BY X —w)/h}e:)

1 n
= @ ; En(BoXi — u)zi + Op(dn(h +6,))
= Li(u) + Op(du(h+3,))
uniformly for u € U. This also implies that |[I; — I (u)]se = Op (8 (h + 62)).
Next, we will derive the asymptotic distribution of I~1(u) For convenience, let
{nhf(wo~ 2y W2Lh(u) = {nhf(w)o?n} V2D K (%)
i=1
= {nhf(u)o?vy} 2 (u). (S3.8)
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Divide the interval [by,bs] into N subintervals J, = [d,—1,d,),r = 1,2,...,N —
1,Jy = [dn-1,b2] where d, = b1 + bz;,blr. Define U; = B X; and U; = d,1(U; €

Jr),r = 1,...,N, and it is obvious that U; — U, = O(N~1). Then, by law of large
numbers for the random sequence {¢;},i =1,...,n, we have
u)
€

fu) = zn: K(Ul “)-K(ﬁi;“ﬂaﬁiK(ah

=1
u
9

" ~
—1 L 1
= Op(h )—Fi:El K ( h
uniformly for u € [by, bo]. By the definition of ZNJZ-, we have that

— Op(h ) +Ew)
u) i](ﬁl (S JT)E
=1

(93.9)

N

d,
_;K( -

Let & = S\ S I(Ui € J)ei = S0 I(by < Ui < dy)ei,& = 0. Then, by
Lemma 2 in Zhang, Fan and Sun (2009), for any ¢ = 1,..., N and u € [by, ba], we have

& — NY2W(G(dy))| = O(NY*log N) a.s.,

Jy, 0°f(v)dv. By Abel’s transform, we have

o (5)a B w(557) n (52

T

where W () is a Wiener process and G(c) =

and

o0

Bl () (2 e

1

dr —u
. 1/2 r+1 — . T
< || max, & — NY2W(G |§1K< ) K( - >H|
= Op(NY*log N).

Hence, we have

fw = N (2 wiGHn)

—Nl/QN 1 K< ’““‘“) —K(drgu>]W(G(dr))—i-Op(Nl/‘llogN)

r=1

(S3.10)



SIMULTANEOUS CONFIDENCE BANDS S5

uniformly for u € [by, ba].
For a Wiener process, it is known that (Csorgo and Révész 1981, Page 44)

o IW(G(t + ) = W(G(1)| = O({clog(1/<)}'?)  a.s.

when ¢ is any small number. Using this property and the boundness of K (-), we obtain
that

£ [ () - () wiea
= :2 W(G(v))dK (

v—1u

) + Op({N " og N}1/2)

uniformly for u € [by, ba]. Together with (S3.9) and (S3.10), it is easy to show that

() 2e() % | "k () dW<G<v>>H

by

= Op((nh®)~2 4 (nh)"/2N"41og N). (S3.11)

Note that the order is Op ((nh®)~1/2 + (nh?)~1/*logn) if N is taken as N = O(n). Let

Zin(u) = k™12 /b2 K (” , “) AW (G(v)),

b1
Zon(u) = h~1/2 /bb K (” , “) (02 (0)]Y2dW (v — by),
Zgn(u) = h=1/? /bb K (” , “) dW (v — by).

For a Gaussian process, invoking Lemma 2.1-Lemma 2.5 in Claeskens and Van Keilegom
(2003), we have

HZln(u) - Z2n(u)||oo = OP(h1/2)=
(02 f () ™2 Zan(u) — Zzn(u)||sc = Op(h/?). (S3.12)

By (S3.11) and (S3.12), we have
|(nho? £ (w) " 2E(u) — Zan(u)|| , = Op((nh?*) ™/ + (nh?) " /*logn + h'/?).

This, together with (S3.8), and invoking Theorem 1 and Theorem 3.1 in Bickel and
Rosenblatt (1973), when h = O(n="),1/5 < p < 1/3, we have

P{(=2log{h/(bs = b)) (v5"%||nho® F () 2ew)]| _ —do) <}
— exp ( — 2671).

Summarizing the above results, we complete the proof of Theorem 2. O
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S4 Proof of Theorem 3

We also can finish the proof of Theorem 3 along the same lines as the proof of Theorem
2, here we omit the details of proof. 0

S5 Proof of Theorem 4

To prove the theorem, we need to derive the rate of convergence for the bias and variance
estimators. We first consider the difference between bias(7(u; Bo)|D) and 27 h?uan” (u).
By using the standards as in the proof of Lemma 2, we have

Ibias(i(u; Bo)|D) — 2 h2puan" (w)l|loe = Op(h?*{+/logn/nhZ})
= Op(h*(n"""log"?n)),  (S5.1)

1/7

where h, = n~'/" comes from the pilot estimation of n ().

Furthermore, by Lemma 1, we have

H%x%v?x - f(u)§(u)H = op(1),

o0

Yo

where S(u) = ( 0

Tong and Wang (2005) showed that 62 is a consistent estimator of o2 and bias(6?) =
O(n_3+37) by taking m = cn” with the constant ¢ > 0 and 0 < 7 < %

B ) . For the estimator of variance o2 defined in Section 2.3,
2

These results, together with Theorem 1, by some simple calculations, it is easy to
show that

Vo

thv\ar{ﬁ(u;éo)m} - UQH = op(1). (95.2)
flu) Nloo

By (S5.1) and (S5.2), and invoking the result of Theorem 2, we finish the proof of

Theorem 4. O

S6 Proof of Theorem 5

Under the null hypothesis, model (1.1) reduces to
Yi=y+mBXi) e, i=1....n

For the convenience, we use the matrix and vector notations in the following. Let e,, be
an n x 1 vector with all elements being ones, and X* = I'X be an n X p matrix. By
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Theorem 1, it is known that 3y is a \/n—consistent estimator of By. By the definitions
of €* and least squares estimators of 79 and ;, we have

€ = Te— (5 —10)Ten +1(TXBo) — 41 (TXBo)
= Te— (o —r0)len — (11 —71)(X*Bo)
—(1 —71)X*(Bo — Bo) — 11X (Bo — Bo)
= J1—Ja—J3—Jy—Js,

and J; ~ N(0,0%I,). Let Jy; denote the ith components of the vectors J, k= 1,...,5,
respectively. Then we have

S e = (Ju— Jai — Jsi — Jai — Jsi). (S6.1)
=1 =1

We first consider the orders of JZ,k =1,...,5. By the Cauchy-Schwarz inequality, we
have

= [ZXUM (31 = 1)218oll szg% (S6.2)

where (y; is the jth component of the vector By. Note that ||Bo|| = 1 and |§1 — 71| =
Op(n~"?), and from the condition (C6), we have

p n/(loglogn)*

Z J2 < (1 —m) Z Z ijz = Op{(loglogn)~*}. (56.3)

1=no 1=no

From ||Bo — Bol| = Op(n~/2), condition (C6) and the same argument, it is easy to show
that

> T3 = Op{n '(loglogn)~*}, Z J3; = Op{(loglogn)~*}.

1=no 1=no

By |40 — 70| = Op(n~/2) and the definition of T, it is easy to check that 1" J2, =
Op(n~') = op(1). Note that

m

1o g2 2 1 2 2
— E Ji <ot + | Dax 2(% o) = op(loglogn) (56.4)
Next we will consider the order of cross-terms in (S6.1). Since Jy; controls the conver-
gence rate of the other terms, we only need to consider the orders of Jy;Jx;, k = 2, 3,4, 5.

By the Cauchy-Schwarz inequality, (56.3) and (S6.4), we have

Lo Y2 ¢ m 1/2
S{a ZJ@} {ZJ;} ~ Op{(loglogn) %), (36.)

i:’n,[) i:’n,[)

|\/— Z J1iJ3

’Lno
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Similarly, we have

m 1/2 ¢ 1/2
1
\/— Z Jridai| < {E Z J121} {Z J221} = Op{(loglogn/n)l/Q},
i=no i=ngp i=no
m 1/2 ¢ 1/2
1 2 2 —1/2 —3/2
Z Jidui| <4 — > T SN U3 =O0p{n~2(loglogn)~¥/?)
z no i=ngp i=no

and

| 1/2 ¢ 1/2
_{E ZJIQZ} {ZJ?} = Op{(loglogn)~*/?}.

1=ng i=ng

|\/— Z J11J5z

’Lno

Summarizing the above results, we have

. 1 & _
\/_ Z 2 = -7 > Ji + Op{(loglogn)~/2}. (S6.6)
i=ng i=ng
Let
T =
1<m<n

Invoking Theorem 1 in Darling and Erdds (1956), we obtain that
P(\/MT,;k —{2loglogn + 0.5logloglogn — 0.5log(4m)} < x)
— exp(— exp(—x)). (56.7)
By (S6.7), it is easy to check that
T = {2loglogn}*/?{1 + op(1)}

and
Titen = {2logloglogn}/2{1 + op(1)},

which implies that the maximum of TF can not be achieved at m < logn. By (3.5) in
Section 3, we have

Tin = max
AN 1§m§n/(loglogn)4

o 26— %) or{(oglogn) ).

Again invoking the result of |62 — 0% = O(n™3%37) in Tong and Wang (2005), and by
(S6.6), it is easy to obtain that
Thin =T 4+ Op{(loglogn)~3/2}.

Summarizing the above results, we complete the proof of Theorem 5. O
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