SIMULTANEOUS CONFIDENCE BANDS AND HYPOTHESIS TESTING FOR SINGLE-INDEX MODELS

Gaorong Li^a , Heng $Peng^{b1}$, Kai $Dong^b$ and $Tiejun Tong^b$

^a College of Applied Sciences, Beijing University of Technology, Beijing 100124, P. R. China
 ^b Department of Mathematics, Hong Kong Baptist University, Hong Kong, P. R. China

Supplementary Material

This note contains two lemmas and the proofs for Theorem 1–Theorem 5.

S1 Two lemmas

Lemma 1 Suppose that conditions C1–C3 hold. If $h \to 0$, $nh^3 \to \infty$, we have

$$\sup_{u \in \mathcal{U}} \left| S_{n,l}^{\beta} - \mu_l f(u) - \mu_{l+1} f'(u) h \right| = O_P(h^2 + \delta_n), \quad l = 0, 1, 2, 3,$$

where $\delta_n = \sqrt{\frac{\log n}{nh}}$, f'(u) is the derivative of f(u) and

$$S_{n,l}^{\beta} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\boldsymbol{\beta}^{T} \boldsymbol{X}_{i} - u}{h} \right)^{l} K_{h}(\boldsymbol{\beta}^{T} \boldsymbol{X}_{i} - u), \qquad l = 0, 1, 2, 3.$$

The details of proof can be found from Martins-Filho and Yao (2007). The following lemma provides the uniform convergence rates for the estimators $\hat{\eta}$ and $\hat{\eta}'$ respectively.

Lemma 2 Let $\mathcal{B}_n = \{\beta : \|\beta - \beta_0\| \le cn^{-1/2}\}$ for some positive constant c. Suppose that conditions C1–C5 hold, we have

$$\sup_{u \in \mathcal{U}, \boldsymbol{\beta} \in \mathcal{B}_n} |\hat{\eta}(u; \boldsymbol{\beta}) - \eta(u)| = O_P(\delta_n),$$
 (S1.1)

and

$$\sup_{u \in \mathcal{U}, \boldsymbol{\beta} \in \mathcal{B}_n} |\hat{\eta}'(u; \boldsymbol{\beta}) - \eta'(u)| = O_P(\delta_n/h).$$
 (S1.2)

 $^{^1\}mathrm{Heng}$ Peng is the corresponding author. E-mail: hpeng@math.hkbu.edu.hk.

The proof of Lemma 2 can be found from the full version of Wang et al. (2010) on the web arXiv.org at arXiv:0905.2042, hence we omit the details here.

S2 Proof of Theorem 1

The proof of Theorem 1 can immediately be obtained from Carroll *et al.* (1997), Liang *et al.* (2010), or Chen, Gao and Li (2013). So we omit all the details. \Box

S3 Proof of Theorem 2

By (2.7) in Section 2 and some simple calculations, we have

$$\hat{\eta}(u; \hat{\beta}_0) = \sum_{i=1}^n W_{ni}(u; \hat{\beta}_0) Y_i, \tag{S3.1}$$

where

$$W_{ni}(u; \hat{\boldsymbol{\beta}}_0) = \frac{n^{-1} K_h(\hat{\boldsymbol{\beta}}_0^T \boldsymbol{X}_i - u) [S_{n,2}^{\hat{\boldsymbol{\beta}}_0} - \{(\hat{\boldsymbol{\beta}}_0^T \boldsymbol{X}_i - u)/h\} S_{n,1}^{\hat{\boldsymbol{\beta}}_0}]}{S_{n,0}^{\hat{\boldsymbol{\beta}}_0} S_{n,2}^{\hat{\boldsymbol{\beta}}_0} - (S_{n,1}^{\hat{\boldsymbol{\beta}}_0})^2}.$$

By Lemma 1, we have uniformly for $u \in \mathcal{U}$ and $\beta \in \mathcal{B}_n$,

$$S_{n,0}^{\beta} = f(u) + O_P(h^2 + \delta_n), \quad S_{n,1}^{\beta} = O_P(h + \delta_n),$$

$$S_{n,2}^{\beta} = \mu_2 f(u) + O_P(h^2 + \delta_n), \quad S_{n,3}^{\beta} = O_P(h + \delta_n).$$
 (S3.2)

Hence, we have

$$S_{n,0}^{\beta} S_{n,2}^{\beta} - (S_{n,1}^{\beta})^2 = \mu_2 f^2(u) + O_P(h^2 + \delta_n).$$
 (S3.3)

By (S3.1), we have

$$\hat{\eta}(u; \hat{\boldsymbol{\beta}}_{0}) - \eta(u) = \sum_{i=1}^{n} W_{ni}(u; \hat{\boldsymbol{\beta}}_{0}) Y_{i} - \eta(u)$$

$$= \sum_{i=1}^{n} W_{ni}(u; \hat{\boldsymbol{\beta}}_{0}) \varepsilon_{i} + \left[\sum_{i=1}^{n} W_{ni}(u; \hat{\boldsymbol{\beta}}_{0}) \eta(\hat{\boldsymbol{\beta}}_{0}^{T} \boldsymbol{X}_{i}) - \eta(u) \right]$$

$$- \sum_{i=1}^{n} W_{ni}(u; \hat{\boldsymbol{\beta}}_{0}) [\eta(\hat{\boldsymbol{\beta}}_{0}^{T} \boldsymbol{X}_{i}) - \eta(\boldsymbol{\beta}_{0}^{T} \boldsymbol{X}_{i})]$$

$$=: I_{1} + I_{2} - I_{3}.$$
 (S3.4)

For I_2 , by using Taylor expansion and some calculations, and from (S3.2)–(S3.3) and condition C1, we have

$$I_{2} = \left[S_{n,0}^{\hat{\beta}_{0}}S_{n,2}^{\hat{\beta}_{0}} - (S_{n,1}^{\hat{\beta}_{0}})^{2}\right]^{-1} \left\{ \frac{1}{n} \sum_{i=1}^{n} K_{h} (\hat{\beta}_{0}^{T} \boldsymbol{X}_{i} - u) \left[S_{n,2}^{\hat{\beta}_{0}} - \{ (\hat{\beta}_{0}^{T} \boldsymbol{X}_{i} - u) / h \} S_{n,1}^{\hat{\beta}_{0}} \right] \right.$$

$$\times \left(\eta(u) + \eta'(u) (\hat{\beta}_{0}^{T} \boldsymbol{X}_{i} - u) + \frac{1}{2} \eta''(u) (\hat{\beta}_{0}^{T} \boldsymbol{X}_{i} - u)^{2} + O(|\hat{\beta}_{0}^{T} \boldsymbol{X}_{i} - u|^{3}) \right) \right\} - \eta(u)$$

$$= \frac{1}{2} \eta''(u) h^{2} \left[S_{n,0}^{\hat{\beta}_{0}} S_{n,2}^{\hat{\beta}_{0}} - (S_{n,1}^{\hat{\beta}_{0}})^{2} \right]^{-1} \left[(S_{n,2}^{\hat{\beta}_{0}})^{2} - S_{n,1}^{\hat{\beta}_{0}} S_{n,3}^{\hat{\beta}_{0}} \right] + o_{P}(1)$$

$$= \frac{1}{2} \eta''(u) h^{2} \mu_{2} + O_{P}(h^{2} + \delta_{n}). \tag{S3.5}$$

Now we consider I_3 . By Theorem 1, we know that $\hat{\beta}_0$ is a \sqrt{n} -consistent estimator, that is, $\hat{\beta}_0$ satisfies that $\hat{\beta}_0 \in \mathcal{B}_n$. Note that $\sup_{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{\beta} \in \mathcal{B}_n} |\eta(\boldsymbol{\beta}^T \boldsymbol{x}) - \eta(\boldsymbol{\beta}_0^T \boldsymbol{x})| = O(n^{-1/2})$. Invoking the Lemma 2 in Zhu and Xue (2006), it is easy to show that $I_3 = o_P(n^{-1/2})$.

We approximate the process I_1 as follows. Following the steps of Lemma A.2 in Xia and Li (1999), we have

$$\frac{1}{n} \sum_{i=1}^{n} K_h(\boldsymbol{\beta}_0^T \boldsymbol{X}_i - u) \{ (\boldsymbol{\beta}_0^T \boldsymbol{X}_i - u)/h \} \varepsilon_i = O_P(\delta_n).$$
 (S3.6)

By the proof of Lemma A.1 in Xia et al. (2004), we can obtain that

$$\frac{1}{nf(u)} \sum_{i=1}^{n} K_h(\hat{\boldsymbol{\beta}}_0^T \boldsymbol{X}_i - u) \varepsilon_i = \frac{1}{nf(u)} \sum_{i=1}^{n} K_h(\boldsymbol{\beta}_0^T \boldsymbol{X}_i - u) \varepsilon_i + O_P(h\delta_n).$$
 (S3.7)

By (S3.2), (S3.6)–(S3.7) and using the same argument of (S3.5), it is easy to show that

$$I_{1} = \left[S_{n,0}^{\hat{\beta}_{0}} S_{n,2}^{\hat{\beta}_{0}} - (S_{n,1}^{\hat{\beta}_{0}})^{2} \right]^{-1} S_{n,2}^{\hat{\beta}_{0}} \left(\frac{1}{n} \sum_{i=1}^{n} K_{h} (\hat{\beta}_{0}^{T} \boldsymbol{X}_{i} - u) \varepsilon_{i} \right)$$

$$- \left[S_{n,0}^{\hat{\beta}_{0}} S_{n,2}^{\hat{\beta}_{0}} - (S_{n,1}^{\hat{\beta}_{0}})^{2} \right]^{-1} S_{n,1}^{\hat{\beta}_{0}} \left(\frac{1}{n} \sum_{i=1}^{n} K_{h} (\hat{\beta}_{0}^{T} \boldsymbol{X}_{i} - u) \{ (\hat{\beta}_{0}^{T} \boldsymbol{X}_{i} - u) / h \} \varepsilon_{i} \right)$$

$$= \frac{1}{n f(u)} \sum_{i=1}^{n} K_{h} (\beta_{0} \boldsymbol{X}_{i} - u) \varepsilon_{i} + O_{P} (\delta_{n} (h + \delta_{n}))$$

$$=: \widetilde{I}_{1}(u) + O_{P} (\delta_{n} (h + \delta_{n}))$$

uniformly for $u \in \mathcal{U}$. This also implies that $||I_1 - \widetilde{I}_1(u)||_{\infty} = O_P(\delta_n(h + \delta_n))$.

Next, we will derive the asymptotic distribution of $\widetilde{I}_1(u)$. For convenience, let

$$\{nhf(u)\sigma^{-2}\nu_0^{-1}\}^{1/2}\widetilde{I}_1(u) = \{nhf(u)\sigma^2\nu_0\}^{-1/2}\sum_{i=1}^n K\left(\frac{\beta_0 X_i - u}{h}\right)\varepsilon_i$$

$$=: \{nhf(u)\sigma^2\nu_0\}^{-1/2}\xi(u).$$
 (S3.8)

Divide the interval $[b_1, b_2]$ into N subintervals $J_r = [d_{r-1}, d_r), r = 1, 2, ..., N - 1, J_N = [d_{N-1}, b_2]$ where $d_r = b_1 + \frac{b_2 - b_1}{N}r$. Define $U_i = \boldsymbol{\beta}_0^T \boldsymbol{X}_i$ and $\widetilde{U}_i = d_r I(U_i \in J_r), r = 1, ..., N$, and it is obvious that $U_i - \widetilde{U}_i = O(N^{-1})$. Then, by law of large numbers for the random sequence $\{\varepsilon_i\}, i = 1, ..., n$, we have

$$\xi(u) = \sum_{i=1}^{n} \left[K\left(\frac{U_{i} - u}{h}\right) - K\left(\frac{\widetilde{U}_{i} - u}{h}\right) \right] \varepsilon_{i} + \sum_{i=1}^{n} K\left(\frac{\widetilde{U}_{i} - u}{h}\right) \varepsilon_{i}$$

$$= O_{P}(h^{-1}) + \sum_{i=1}^{n} K\left(\frac{\widetilde{U}_{i} - u}{h}\right) \varepsilon_{i}$$

$$=: O_{P}(h^{-1}) + \widetilde{\xi}(u)$$
(S3.9)

uniformly for $u \in [b_1, b_2]$. By the definition of \widetilde{U}_i , we have that

$$\widetilde{\xi}(u) = \sum_{r=1}^{N} K\left(\frac{d_r - u}{h}\right) \sum_{i=1}^{n} I(\widetilde{U}_i \in J_r)\varepsilon_i.$$

Let $\widetilde{\xi}_t = \sum_{r=1}^t \sum_{i=1}^n I(U_i \in J_r) \varepsilon_i = \sum_{i=1}^n I(b_1 \leq U_i \leq d_t) \varepsilon_i, \widetilde{\xi}_0 = 0$. Then, by Lemma 2 in Zhang, Fan and Sun (2009), for any $t = 1, \ldots, N$ and $u \in [b_1, b_2]$, we have

$$|\widetilde{\xi}_t - N^{1/2}W(G(d_t))| = O(N^{1/4}\log N)$$
 a.s.,

where $W(\cdot)$ is a Wiener process and $G(c) = \int_{b_1}^c \sigma^2 f(v) dv$. By Abel's transform, we have

$$\widetilde{\xi}(u) = K\left(\frac{b_2 - u}{n}\right)\widetilde{\xi}_N - \sum_{r=1}^{N-1} \left[K\left(\frac{d_{r+1} - u}{h}\right) - K\left(\frac{d_r - u}{h}\right)\right]\widetilde{\xi}_r$$

and

$$\left\| \sum_{r=1}^{N-1} \left[K\left(\frac{d_{r+1} - u}{h}\right) - K\left(\frac{d_r - u}{h}\right) \right] \left[\widetilde{\xi}_r - N^{1/2} W(G(d_r)) \right] \right\|_{\infty}$$

$$\leq \left\| \max_{1 \leq r \leq N} \left| \widetilde{\xi}_r - N^{1/2} W(G(d_r)) \right| \sum_{r=1}^{N-1} \left| K\left(\frac{d_{r+1} - u}{h}\right) - K\left(\frac{d_r - u}{h}\right) \right| \right\|$$

$$= O_P(N^{1/4} \log N).$$

Hence, we have

$$\widetilde{\xi}(u) = N^{1/2} K\left(\frac{b_2 - u}{h}\right) W(G(b_2))
-N^{1/2} \sum_{r=1}^{N-1} \left[K\left(\frac{d_{r+1} - u}{h}\right) - K\left(\frac{d_r - u}{h}\right) \right] W(G(d_r)) + O_P(N^{1/4} \log N)$$
(S3.10)

uniformly for $u \in [b_1, b_2]$.

For a Wiener process, it is known that (Csörgö and Révész 1981, Page 44)

$$\sup_{t \in [b_1, b_2]} |W(G(t+\varsigma)) - W(G(t))| = O(\{\varsigma \log(1/\varsigma)\}^{1/2}) \quad a.s.$$

when ς is any small number. Using this property and the boundness of $K(\cdot)$, we obtain that

$$\sum_{r=1}^{N-1} \left[K \left(\frac{d_{r+1} - u}{h} \right) - K \left(\frac{d_r - u}{h} \right) \right] W(G(d_r))$$

$$= \int_{b_1}^{b_2} W(G(v)) dK \left(\frac{v - u}{h} \right) + O_P(\{N^{-1} \log N\}^{1/2})$$

uniformly for $u \in [b_1, b_2]$. Together with (S3.9) and (S3.10), it is easy to show that

$$\left\| (nh)^{-1/2} \xi(u) - h^{-1/2} \int_{b_1}^{b_2} K\left(\frac{v - u}{h}\right) dW(G(v)) \right\|_{\infty}$$

$$= O_P\left((nh^3)^{-1/2} + (nh)^{-1/2} N^{1/4} \log N \right). \tag{S3.11}$$

Note that the order is $O_P((nh^3)^{-1/2} + (nh^2)^{-1/4} \log n)$ if N is taken as N = O(n). Let

$$Z_{1n}(u) = h^{-1/2} \int_{b_1}^{b_2} K\left(\frac{v-u}{h}\right) dW(G(v)),$$

$$Z_{2n}(u) = h^{-1/2} \int_{b_1}^{b_2} K\left(\frac{v-u}{h}\right) \left[\sigma^2 f(v)\right]^{1/2} dW(v-b_1),$$

$$Z_{3n}(u) = h^{-1/2} \int_{b_1}^{b_2} K\left(\frac{v-u}{h}\right) dW(v-b_1).$$

For a Gaussian process, invoking Lemma 2.1–Lemma 2.5 in Claeskens and Van Keilegom (2003), we have

$$||Z_{1n}(u) - Z_{2n}(u)||_{\infty} = O_P(h^{1/2}),$$

$$||(\sigma^2 f(u))^{-1/2} Z_{2n}(u) - Z_{3n}(u)||_{\infty} = O_P(h^{1/2}).$$
 (S3.12)

By (S3.11) and (S3.12), we have

$$\|(nh\sigma^2 f(u))^{-1/2}\xi(u) - Z_{3n}(u)\|_{\infty} = O_P((nh^3)^{-1/2} + (nh^2)^{-1/4}\log n + h^{1/2}).$$

This, together with (S3.8), and invoking Theorem 1 and Theorem 3.1 in Bickel and Rosenblatt (1973), when $h = O(n^{-\rho}), 1/5 < \rho < 1/3$, we have

$$P\Big\{ (-2\log\{h/(b_2 - b_1)\})^{1/2} \Big(\nu_0^{-1/2} \| (nh\sigma^2 f(u))^{-1/2} \xi(u) \|_{\infty} - d_{n0} \Big) < x \Big\}$$

$$\longrightarrow \exp(-2e^{-x}).$$

Summarizing the above results, we complete the proof of Theorem 2.

S4 Proof of Theorem 3

We also can finish the proof of Theorem 3 along the same lines as the proof of Theorem 2, here we omit the details of proof.

S5 Proof of Theorem 4

To prove the theorem, we need to derive the rate of convergence for the bias and variance estimators. We first consider the difference between $\widehat{\text{bias}}(\hat{\eta}(u; \hat{\beta}_0)|\mathcal{D})$ and $2^{-1}h^2\mu_2\eta''(u)$. By using the standards as in the proof of Lemma 2, we have

$$\|\widehat{\text{bias}}(\hat{\eta}(u; \hat{\boldsymbol{\beta}}_0)|\mathcal{D}) - 2^{-1}h^2\mu_2\eta''(u)\|_{\infty} = O_P(h^2\{\sqrt{\log n/nh_*^5}\})$$

$$= O_P(h^2(n^{-1/7}\log^{1/2}n)), \quad (S5.1)$$

where $h_* = n^{-1/7}$ comes from the pilot estimation of $\eta''(\cdot)$.

Furthermore, by Lemma 1, we have

$$\left\| \frac{h}{n} \mathbf{X}^T \mathbf{W}^2 \mathbf{X} - f(u) \widetilde{S}(u) \right\|_{\infty} = o_P(1),$$

where $\widetilde{S}(u) = \begin{pmatrix} \nu_0 & 0 \\ 0 & \nu_2 \end{pmatrix}$. For the estimator of variance σ^2 defined in Section 2.3, Tong and Wang (2005) showed that $\hat{\sigma}^2$ is a consistent estimator of σ^2 and $\operatorname{bias}(\hat{\sigma}^2) = O(n^{-3+3\tau})$ by taking $m = cn^{\tau}$ with the constant c > 0 and $0 \le \tau \le \frac{1}{3}$.

These results, together with Theorem 1, by some simple calculations, it is easy to show that

$$\left\| nh\widehat{\operatorname{Var}}\{\hat{\eta}(u;\hat{\boldsymbol{\beta}}_0)|\mathcal{D}\} - \frac{\nu_0}{f(u)}\sigma^2 \right\|_{\infty} = o_P(1).$$
 (S5.2)

By (S5.1) and (S5.2), and invoking the result of Theorem 2, we finish the proof of Theorem 4. $\hfill\Box$

S6 Proof of Theorem 5

Under the null hypothesis, model (1.1) reduces to

$$Y_i = \gamma_0 + \gamma_1(\boldsymbol{\beta}_0^T \boldsymbol{X}_i) + \varepsilon_i, \quad i = 1, \dots, n.$$

For the convenience, we use the matrix and vector notations in the following. Let e_n be an $n \times 1$ vector with all elements being ones, and $\mathbf{X}^* = \Gamma \mathbf{X}$ be an $n \times p$ matrix. By

Theorem 1, it is known that $\hat{\beta}_0$ is a \sqrt{n} -consistent estimator of β_0 . By the definitions of $\hat{\varepsilon}^*$ and least squares estimators of γ_0 and γ_1 , we have

$$\hat{\boldsymbol{\varepsilon}}^* = \Gamma \boldsymbol{\varepsilon} - (\hat{\gamma}_0 - \gamma_0) \Gamma e_n + \gamma_1 (\Gamma \mathbf{X} \boldsymbol{\beta}_0) - \hat{\gamma}_1 (\Gamma \mathbf{X} \hat{\boldsymbol{\beta}}_0)
= \Gamma \boldsymbol{\varepsilon} - (\hat{\gamma}_0 - \gamma_0) \Gamma e_n - (\hat{\gamma}_1 - \gamma_1) (\mathbf{X}^* \boldsymbol{\beta}_0)
- (\hat{\gamma}_1 - \gamma_1) \mathbf{X}^* (\hat{\boldsymbol{\beta}}_0 - \boldsymbol{\beta}_0) - \gamma_1 \mathbf{X}^* (\hat{\boldsymbol{\beta}}_0 - \boldsymbol{\beta}_0)
=: J_1 - J_2 - J_3 - J_4 - J_5,$$

and $J_1 \sim N(0, \sigma^2 I_n)$. Let J_{ki} denote the *i*th components of the vectors $J_k, k = 1, \dots, 5$, respectively. Then we have

$$\sum_{i=1}^{m} \hat{\varepsilon}_{i}^{*2} = \sum_{i=1}^{m} (J_{1i} - J_{2i} - J_{3i} - J_{4i} - J_{5i})^{2}.$$
 (S6.1)

We first consider the orders of J_{ki}^2 , $k=1,\ldots,5$. By the Cauchy-Schwarz inequality, we have

$$J_{3i}^{2} = (\hat{\gamma}_{1} - \gamma_{1})^{2} \left[\sum_{j=1}^{p} X_{ij}^{*} \beta_{0j} \right]^{2} \le (\hat{\gamma}_{1} - \gamma_{1})^{2} \|\beta_{0}\|^{2} \sum_{j=1}^{p} X_{ij}^{*2}, \tag{S6.2}$$

where β_{0j} is the jth component of the vector $\boldsymbol{\beta}_0$. Note that $\|\boldsymbol{\beta}_0\| = 1$ and $|\hat{\gamma}_1 - \gamma_1| = O_P(n^{-1/2})$, and from the condition (C6), we have

$$\sum_{i=n_0}^{m} J_{3i}^2 \le (\hat{\gamma}_1 - \gamma_1)^2 \sum_{j=1}^{p} \sum_{i=n_0}^{n/(\log \log n)^4} X_{ij}^{*2} = O_P\{(\log \log n)^{-4}\}.$$
 (S6.3)

From $\|\hat{\beta}_0 - \beta_0\| = O_P(n^{-1/2})$, condition (C6) and the same argument, it is easy to show that

$$\sum_{i=n_0}^m J_{4i}^2 = O_P\{n^{-1}(\log\log n)^{-4}\}, \quad \sum_{i=n_0}^m J_{5i}^2 = O_P\{(\log\log n)^{-4}\}.$$

By $|\hat{\gamma}_0 - \gamma_0| = O_P(n^{-1/2})$ and the definition of Γ , it is easy to check that $\sum_{i=1}^m J_{2i}^2 = O_P(n^{-1}) = o_P(1)$. Note that

$$\frac{1}{m} \sum_{i=1}^{m} J_{1i}^{2} \le \sigma^{2} + \max_{1 \le m \le n} \frac{1}{m} \sum_{i=1}^{m} (J_{1i}^{2} - \sigma^{2}) = o_{P}(\log \log n).$$
 (S6.4)

Next we will consider the order of cross-terms in (S6.1). Since J_{1i} controls the convergence rate of the other terms, we only need to consider the orders of $J_{1i}J_{ki}$, k = 2, 3, 4, 5. By the Cauchy-Schwarz inequality, (S6.3) and (S6.4), we have

$$\left| \frac{1}{\sqrt{m}} \sum_{i=n_0}^m J_{1i} J_{3i} \right| \le \left\{ \frac{1}{m} \sum_{i=n_0}^m J_{1i}^2 \right\}^{1/2} \left\{ \sum_{i=n_0}^m J_{3i}^2 \right\}^{1/2} = O_P\{(\log \log n)^{-3/2}\}. \quad (S6.5)$$

Similarly, we have

$$\left| \frac{1}{\sqrt{m}} \sum_{i=n_0}^m J_{1i} J_{2i} \right| \le \left\{ \frac{1}{m} \sum_{i=n_0}^m J_{1i}^2 \right\}^{1/2} \left\{ \sum_{i=n_0}^m J_{2i}^2 \right\}^{1/2} = O_P \{ (\log \log n/n)^{1/2} \},$$

$$\left| \frac{1}{\sqrt{m}} \sum_{i=n_0}^m J_{1i} J_{4i} \right| \le \left\{ \frac{1}{m} \sum_{i=n_0}^m J_{1i}^2 \right\}^{1/2} \left\{ \sum_{i=n_0}^m J_{4i}^2 \right\}^{1/2} = O_P \{ n^{-1/2} (\log \log n)^{-3/2} \}$$

and

$$\left| \frac{1}{\sqrt{m}} \sum_{i=n_0}^m J_{1i} J_{5i} \right| \le \left\{ \frac{1}{m} \sum_{i=n_0}^m J_{1i}^2 \right\}^{1/2} \left\{ \sum_{i=n_0}^m J_{5i}^2 \right\}^{1/2} = O_P\{(\log \log n)^{-3/2}\}.$$

Summarizing the above results, we have

$$\frac{1}{\sqrt{m}} \sum_{i=n_0}^{m} \hat{\varepsilon}_i^{*2} = \frac{1}{\sqrt{m}} \sum_{i=n_0}^{m} J_{1i}^2 + O_P\{(\log \log n)^{-3/2}\}.$$
 (S6.6)

Let

$$T_n^* = \max_{1 \le m \le n} \frac{1}{\sqrt{2m\sigma^4}} \sum_{i=1}^m (J_{1i}^2 - \sigma^2).$$

Invoking Theorem 1 in Darling and Erdös (1956), we obtain that

$$P\left(\sqrt{2\log\log n}T_n^* - \{2\log\log n + 0.5\log\log\log n - 0.5\log(4\pi)\} \le x\right)$$

$$\longrightarrow \exp(-\exp(-x)). \tag{S6.7}$$

By (S6.7), it is easy to check that

$$T_n^* = \{2 \log \log n\}^{1/2} \{1 + o_P(1)\}$$

and

$$T_{\log n}^* = \{2 \log \log \log n\}^{1/2} \{1 + o_P(1)\},\$$

which implies that the maximum of T_n^* can not be achieved at $m < \log n$. By (3.5) in Section 3, we have

$$T_{AN}^* = \max_{1 \le m \le n/(\log\log n)^4} \frac{1}{\sqrt{2m\sigma^4}} \sum_{i=1}^m (\hat{\varepsilon}_i^{*2} - \sigma^2) + o_P\{(\log\log n)^{-3/2}\}.$$

Again invoking the result of $|\hat{\sigma}^2 - \sigma^2| = O(n^{-3+3\tau})$ in Tong and Wang (2005), and by (S6.6), it is easy to obtain that

$$T_{AN}^* = T_n^* + O_P\{(\log \log n)^{-3/2}\}.$$

Summarizing the above results, we complete the proof of Theorem 5.

References

- Bickel, P. L. and Rosenblatt, M. (1973). On some global measures of the derivations of density function estimates. *Ann. Statist.* 1, 1071–1095.
- Carroll, R. J., Fan, J., Gijbels, I. and Wand, M. P. (1997). Generalized partially linear single-index models. *Journal of American Statistical Association* **92**, 477–489.
- Chen, J., Gao, J. and Li, D. (2013). Estimation in a single-index panel data model with heterogeneous link functions. *Econometric Reviews* **33**, 928–955.
- Claeskens, G. and Van Keilegom, I. (2003). Bootstrap confidence bands for regression curves and their derivatives. *Ann. Statist.* **31**, 1852–1884.
- Csörgö, M. and Révész, P. (1981). Strong Approximations in Probability and Statistics. Academic Press, New York.
- Darling, D. A. and Erdös, P. (1956). A limit theorem for the maximum of normalized sums of independent random variables. *Duke Mathematical Journal* **23**, 143–155.
- Liang, H., Liu, X., Li, R. and Tsai, C. L. (2010). Estimation and testing for partially linear single-index models. *Ann. Statist.* **38**, 3811–3836.
- Martins-Filho, C. and Yao, F. (2007). Nonparametric frontier estimation via local linear regression. *Journal of Econometrics* **141**, 283–319.
- Wang, J. L., Xue, L. G., Zhu, L. X. and Chong, Y. (2010). Estimation for a partial-linear single-index model. *Ann. Statist.* **38**, 246–274.
- Xia, Y. and Li, W. K. (1999). On single-index coefficient regression models. *Journal of the American Statistical Association* **94**, 1275–1285.
- Xia, Y., Li, W. K., Tong, H. and Zhang, D. (2004). A goodness-of-fit test for single-index models. Statistica Sinica 14, 1–39.
- Zhang, W. Y., Fan, J. Q. and Sun, Y. (2009). A semiparametric model for cluster data. *Ann. Statist.* **37**, 2377–2408.
- Zhu, L. X. and Xue, L. G. (2006). Empirical likelihood confidence regions in a partially linear single-index model. J. R. Statist. Soc. B 68, 549–570.