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S1 Sketch of proofs

Following Johnson, Lin, and Zeng (2008), we employ a zero-crossing estimator θ̂ to the
penalized estimating equation if, for j = 1, . . . , s,

lim
ε→0+

1

m
Uj(θ̂ + εej)Uj(θ̂ − εej) ≤ 0,

where Uj is the jth component of U(·) and ej is the jth canonical unit vector. Further-

more, an approximate zero-crossing estimator θ̂ is defined if

lim
m→∞

lim
ε→0+

1

m
Uj(θ̂ + εej)Uj(θ̂ − εej) ≤ 0.

It is obvious that when U is continuous, the zero-crossing estimator is the same as
an exact solution to the penalized estimating equation. Different from only the mean
penalized estimating equation in Johnson , Lin, and Zeng (2008), the proposed approx-
imate zero-crossing estimator is for both the mean and the covariance robust penalized
estimating equations.

Denote
UR(θ) = ([UR1 (β)]T , [UR2 (γ)]T , [UR3 (λ)]T )T ,

where

UR1 (β) =

m∑
i=1

XT
i (V βi )−1hβi (µi(β)), (S1.1)

UR2 (γ) =

m∑
i=1

TTi (V γi )−1hγi (r̂i(γ)), (S1.2)

UR3 (λ) =

m∑
i=1

ZTi Di(V
λ
i )−1hλi (σ2

i (λ)). (S1.3)

The following assumptions are required to establish asymptotic properties.
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(C.1) The covariate vectors are fixed. Also, for each subject the number of repeated
measurements, ni, is fixed.

(C.2) The design matrices in the joint models are all bounded, meaning that all
the elements of the matrices are bounded by a single finite real number. The first four
moments of yij exist.

(C.3) The random functions UR(·) satisfy Lipschitz condition, that is, there exists
a measurable function m(·) such that, ||UR(θ1, ·)−UR(θ2, ·)|| ≤ m(·)||θ1− θ2||, for every
θ1, θ2 in the neighborhood of θ0, where

∫
m2(·)dP <∞.

(C.4) For some δ > 0, we assume

supi{E||h
β
0i(µi)||

2+δ, E||hγ0i(r̂i)||
2+δ, E||hλ0i(σ2

i )||2+δ} <∞,

where h0i(·) is similar to hi(·) but the former is evaluated at the true value of parameters.
Moreover,

Ehβ0i(µi)h
β
0i(µi)

T
= F βi > 0, Ehγ0i(r̂i)h

γ
0i(r̂i)

T
= F γi > 0, Ehλ0i(σ

2
i )hλ0i(σ

2
i )
T

= Fλi > 0

with supi{||F
β
i ||, ||F

γ
i ||, ||Fλi ||} <∞.

(C.5) The function Cβi (µi) = E[ψ(A
−1/2
i (yi − µi))], Cγi (r̂i) = E[ψ(D

−1/2
i (ri − r̂i))]

and Cλi (σ2
i ) = E[ψ(Ã

−1/2
i (ε2i − σ2

i ))] has bounded second derivative. The functions ψ(·)
is piecewise twice differentiable, and the second derivatives are bounded.

(C.6) (a) For SCAD penalty we assume the tuning parameters τβm, τγm and τλm
satisfying τm → 0,

√
mτm →∞ when m→∞.

(b) For ALASSO penalty we assume the tuning parameters τβm, τγm and τλm satisfying√
mτm → 0, mτm →∞ when m→∞.

By (C.3), the convergence is uniform about θ in the neighborhood of θ0. (C.4)
and (C.5) imposed on the score function ψ can be easily checked to be satisfied when ψ
is bounded as that in section 2.2. (C.6) guarantees the oracle properties when we use
SCAD or ALASSO penalty.

Proof of Theorem 1.

The proof is a generalization of that in Johnson, Lin, and Zeng (2008). On one
hand, we propose three estimating equations for parameters in the mean regression
model together with the decomposed covariance matrices. Moreover, we robustify the
three penalized estimating equations.

To prove (a) in Theorem 1, we verify that θ̂ = (θ̂s1T , 0T )T is an approximate zero-

crossing estimator for U(·), where θ̂s1 = θs10 − m−1(Gs1)−1URs1(θ0). Here Us1(·) and
URs1(·) denote the nonzero s1-components of U(·) and UR(·).

The following result

sup
||θ−θ0||<Mm−1/2

||m−1/2UR(θ)−m−1/2UR(θ0)−m1/2Gm(θ − θ0)|| = op(1), (S1.4)
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was assumed in Johnson, Lin, and Zeng (2008). It can also be obtained by our conditions
(C.3) and (C.4), because (C.3) indicates that {U(θ) : θ ∈ Θ,Θ ⊆ Rp+q+d} is a Donsker
class of empirical process and the convergence is uniform about θ in the neighborhood
of θ0.

Meanwhile, conditions for multivariate Lyapunov central limit theorem for URθ
can be verified by the conditions (C.3)-(C.5) we imposed, i.e, m−1/2(Gs1)−1URs1(θ0) →
Ns1(0, (Gs1)−1Bs1 [(Gs1)T ]−1), as n→∞ in distribution.

Therefore under (S1.4) and θ̂ = θ0 +Op(m
−1/2), we have

m−1/2Uj(θ̂ ± εej) = op(1)−m−1/2qτm(|θ̂j ± ε|)sgn(|θ̂j ± ε|), j = 1, . . . , s1,

where Uj(·) is the jth component of U(·).

Under condition (a) in (C.6), for any nonzero fixed θ ∈ Θ, we have limm→∞
√
mqτm(|θ|) =

limm→∞ q′τm(|θ|) = 0 for SCAD penalty. For ALASSO penalty, given condition (b) in

(C.6) we conclude
√
mqτm(|θ|) =

√
mτm/|θ̃| → 0 if 1/|θ̃| < ∞ and q′τm(|θ|) = 0, where

θ̃ stands for the regression coefficient estimates obtained from UR(θ) (without penalty).

As a consequence, for any ε→ 0+, m−1/2Uj(θ̂ ± εej) = op(1), j = 1, . . . , s1.

Furthermore, for SCAD and any M > 0,
√
m inf|θ|≤Mm−1/2qτm(|θ|) =

√
mτm →∞.

When
√
m(θ̃ − θ0) = Op(1) under some conditions, then

√
m inf|θ|≤Mm−1/2qτm/|θ̃| =

M−1mτm →∞ for ALASSO. Therefore, for j = s1 + 1, . . . , s, θ̂j = 0, m−1/2Uj(θ̂ + εej)

and m−1/2Uj(θ̂ − εej) are dominated by −m−1/2qτm(ε) and m−1/2qτm(ε) with opposite

signs when ε → 0. As a result, we conclude that θ̂ is an approximate zero-crossing
estimator by its definition.

We denote θ̂ = (θ̂1, . . . θ̂s)
T as

√
m consistent approximate zero-crossing solution of

U(θ) = 0. To prove (b) in Theorem 1, we need to show that for any ε > 0, when m is
sufficiently large,

P{θ̂j 6= 0, j = s1 + 1, . . . , s} < ε.

On one hand, for j = s1 + 1, . . . , s, there exists some M > 0 such that when m is
large enough, P{θ̂j 6= 0, j = s1 + 1, . . . , s, |θ̂j | ≥ Mm−1/2} < ε/2. Therefore, we only

need to show that P{θ̂j 6= 0, j = s1 + 1, . . . , s, |θ̂j | < Mm−1/2} < ε/2 when m is large
enough.

As shown in Johnson, Lin, and Zeng (2008), [m−1/2Uj(θ̂)]
2 = op(1) and there exists

some M ′ > 0 such that for large m,

P{θ̂j 6= 0, j = s1 + 1, . . . , s, |θ̂j | < Mm−1/2, m1/2qτm(|θ̂j |) > M ′} < ε/2.

Because for any M > 0, limm→∞
√
m inf |θ|≤Mm−1/2 qτm(|θ|) → ∞, by condition

(C.6), θ̂j 6= 0, j = s1 + 1, . . . , s, |θ̂|j < Mm−1/2 implies that m−1/2qτm(|θ̂j |) > M ′ for

large m. Thus P{θ̂j 6= 0, j = s1 + 1, . . . , s, |θ̂j | < Mm−1/2} < ε/2 and Theorem 1 (b)
has been proved.



A4

Proof of Theorem 2.

We apply the Taylor series expansion on the last term of

m−1/2URs1(θ0) +m1/2Gs1(θ̂s1 − θs10 )−m1/2qτm(|θ̂s1 |)sgn(θ̂s1) = op(1),

and rearranged by cm = (qτm(|θs101|)sgn(θs101), . . . , qτm(|θs10s1 |)sgn(θs10s1))T and Ωs1m to obtain
that √

m(Gs1m + Ωs1m){θ̂s1m − θ
s1
0 + (Gs1m + Ωs1m)−1cm} →d Ns1(0, Bs1).

For any nonzero fixed θ ∈ Θ, under conditions (a) and (b) in (C.6), limm→∞
√
mqτm(|θ|) =

limm→∞ q′τm(|θ|) = 0 for SCAD penalty and
√
mqτm(|θ|) =

√
mτm/|θ̃| → 0 if 1/|θ̃| <∞

and q′τm(|θ|) = 0 for ALASSO penalty, where θ̃ stands for the regression coefficient es-
timates obtained from UR(θ) (without penalty). Therefore, cm tends to zero for both
SCAD and ALASSO penalized estimators as m→∞.

S2 An algorithm

We describe the algorithm for estimating β, γ and λ simultaneously. The iterative MM
algorithm can be written as:

β(k+1) = β(k) + [G(β(k)) + ∆τ(1)(β(k))]−1U1(β(k)),

γ(k+1) = γ(k) + [G(γ(k)) + ∆τ(2)(γ(k))]−1U2(γ(k)),

λ(k+1) = λ(k) + [G(λ(k)) + ∆τ(3)(λ(k))]−1U3(λ(k)),

where G(β), G(γ) and G(λ) are p× p, q × q and d× d submatrices of G corresponding
to the parameters, and

∆τ(1)(β) = diag(
qτ(1)(|β1|)
εp + |β1|

, · · · , qτ(1)(|βp|)
εp + |βp|

),

∆τ(2)(γ) = diag(
qτ(2)(|γ1|)
εp + |γ1|

, · · · , qτ(2)(|γq|
εp + |γq|

), ∆τ(3)(λ) = diag(
qτ(3)(|λ1|)
εp + |λ1|

, · · · , qτ(3)(|λd|)
εp + |λd|

).

Here εp is a fixed small number for the purpose of preventing computational singular,
and chosen to be 10−6 in our simulation.

Convenient initial values for the covariance parameters are γ = 0 and λ = 0, which
indicate independence structure in the covariance matrix. A natural choice of the initial
estimate β(0) of β is the solution to (2.2) in this special case as the robust GEE estimator
under working independence covariance structure, whose consistency has been proved.
The following algorithm summarizes the computation of the penalized GEE estimators
for joint mean and covariance model.
Algorithm:



A5

0. Take zeros as initial values of γ and λ, that is γ(0) and λ(0). Then take β(0) as
the the solution to (2.2) with independent working matrix.

1. Given current {β(k), γ(k), λ(k)}, use the MM algorithm to update γ and λ until
convergence, which are denoted as γ(k+1) and λ(k+1).

2. For the updated γ(k+1) and λ(k+1), form

φ
(k+1)
ijk = gTijkγ

(k+1), and (σ2
ij)

(k+1) = exp(zTijλ
(k+1))

to construct
Σ

(k+1)
i = (Φ

(k+1)
i )−1D

(k+1)
i [(Φ

(k+1)
i )T ]−1.

Then update β according to the MM algorithm to obtain β(k+1).

3. Repeat Step 1 and Step 2 above until convergence.

This widely-used algorithm (the non-robust version, i.e. the tuning parameter of
Huber function c is set to a very large value) has been proved to be well performed under
the usual case (no outliers) by Kou and Pan (2011). However, in our simulation, we find
the non-robust algorithm behaves poorly when there are outliers. Since the joint mean
and covariance model introduces more parameters than GEE, the algorithm based on
the non-robust penalized estimating equations faces a great challenge to obtain a reliable
estimator when the contamination can happen in any of three estimating equations. Even
a tiny contamination can result in non-convergence or estimation with a large bias. In
contrast, the robust algorithm performs fairly well against perturbations.

S3 Standard errors and losses of covariance matrix
estimators in Studies 1 and 2

To judge the performance of the proposed covariance estimator, we introduce two com-
monly used loss functions: the entropy loss

L1(Σ, Σ̂) = m−1
m∑
i=1

{trace(ΣiΣ̂
−1
i )− log |ΣΣ̂−1i | − ni}

and the quadratic loss

L2(Σ, Σ̂) = m−1
m∑
i=1

trace(Σ−1i Σ̂i − Ii)2,

where Σi and Σ̂i are the true covariance matrix and its estimator.
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Table S3.1: Standard errors for SCAD estimators in Study 1
γ = 0 γ 6= 0

n=100 n=200 n=100 n=200
NR R NR R NR R NR R

NC
β1 0.023 0.025 0.016 0.018 0.022 0.026 0.016 0.018
β4 0.027 0.030 0.018 0.020 0.025 0.031 0.016 0.024
β5 0.028 0.031 0.019 0.022 0.025 0.030 0.016 0.020
β10 0.027 0.029 0.017 0.020 0.026 0.030 0.015 0.018
γ1 0.006 0.006 0.002 0.003 0.008 0.009 0.005 0.006
λ2 0.095 0.109 0.064 0.073 0.087 0.101 0.063 0.072
λ6 0.076 0.085 0.052 0.058 0.074 0.089 0.052 0.064

C0
β1 0.052 0.029 0.041 0.019 0.056 0.043 0.044 0.023
β4 0.038 0.030 0.037 0.020 0.050 0.043 0.053 0.024
β5 0.043 0.034 0.036 0.023 0.049 0.038 0.033 0.028
β10 0.036 0.028 0.030 0.019 0.045 0.038 0.029 0.022
γ1 0.014 0.007 0.004 0.002 0.017 0.014 0.016 0.002
λ2 0.152 0.112 0.158 0.074 0.182 0.122 0.222 0.078
λ6 0.229 0.092 0.194 0.058 0.294 0.119 0.265 0.064

Table S3.2: Standard errors for mean estimators in Study 2
NC C1

rpjar rpjin rpgeear rpgeeex rpgeein rpjar rpjin rpgeear rpgeeex rpgeein
IN

β1 0.048 0.048 0.047 0.047 0.047 0.054 0.054 0.057 0.056 0.057
β4 0.049 0.049 0.047 0.047 0.047 0.050 0.050 0.052 0.052 0.052
β5 0.051 0.051 0.051 0.051 0.051 0.056 0.056 0.059 0.059 0.059
β10 0.048 0.048 0.047 0.047 0.047 0.051 0.051 0.061 0.061 0.061

AR
β1 0.055 0.055 0.046 0.050 0.054 0.059 0.059 0.059 0.059 0.063
β4 0.056 0.056 0.046 0.048 0.054 0.063 0.063 0.062 0.061 0.064
β5 0.061 0.061 0.050 0.057 0.060 0.067 0.067 0.065 0.066 0.067
β10 0.054 0.054 0.046 0.052 0.054 0.057 0.057 0.063 0.065 0.066

EX
β1 0.056 0.056 0.043 0.041 0.057 0.061 0.061 0.061 0.058 0.065
β4 0.064 0.064 0.052 0.045 0.063 0.069 0.069 0.066 0.062 0.069
β5 0.061 0.061 0.050 0.048 0.060 0.068 0.068 0.063 0.060 0.066
β10 0.056 0.056 0.045 0.044 0.056 0.060 0.060 0.062 0.060 0.066

Three normal covariance structures are set as the truth: working independence (IN), auto-regressive
(AR) and exchangeable (EX) with correlation parameter 0.5. rpjar and rpjin are robust joint models
with independent and AR(1) correlation structure in (2.4,) respectively; rpgeeein, rpgeeear, and rpgeeeex
are robust penalized GEE estimations with IN, AR and EX as working correlation matrices.
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Table S3.3: Entropy loss (L1) and quadratic loss (L2) in estimating Σ in Study 2
IN AR EX

L1 L2 L1 L2 L1 L2

rpjar 0.052 0.027 1.213 0.043 1.728 0.054
rpjin 0.052 0.028 1.211 0.043 1.726 0.053
rpgeear 0.013 0.014 0.039 0.036 0.570 0.045

NC rpgeeex 0.012 0.015 0.509 0.025 0.040 0.038
rpgeein 0.003 0.004 1.155 0.005 1.679 0.007
pgeear 0.015 0.017 0.019 0.022 0.549 0.033
pgeeex 0.014 0.017 0.505 0.022 0.019 0.023
pgeein 0.003 0.004 1.155 0.005 1.679 0.007

rpjar 0.042 0.042 1.205 0.050 1.727 0.064
rpjin 0.042 0.042 1.206 0.052 1.728 0.065
rpgeear 1.079 0.071 1.952 0.088 2.484 0.090

C1 rpgeeex 1.079 0.071 2.009 0.087 2.278 0.101
rpgeein 1.080 0.071 2.218 0.072 2.745 0.077
pgeear 1.046 0.069 1.877 0.120 2.410 0.120
pgeeex 1.044 0.069 1.932 0.103 2.168 0.135
pgeein 1.046 0.069 2.187 0.070 2.713 0.074

S4 Estimates for mean after removing the outlier in
hormone data analysis

Table S4.1: Estimates of the mean parameters β and standard errors (inside brackets)
after removing the outlier (observation 10 of subject 1)

Intercept Age BMI Time Time2 Age× BMI Age× Time BMI× Time

rpj 0.882 0 0 0.717 0 0 0 0
(0.074) (-) (-) (0.053) (-) (0) (-) (0)

pj 0.890 0 0 0.684 0 0 0 0
(0.075) (-) (-) (0.054) (-) (-) (-) (-)

gee 0.981 - - 0.746 - - - -
(0.088) - - (0.045) - - - -


