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This supplementary material gives the detailed proofs of the theorems in the paper.

S1 Useful Lemmas

We define a VWn class as a class of functions Fn indexed by θ ∈ Θ which satisfies
the conditions in (2.11.21) and the conditions of Theorem 2.11.22 in van der Vaart and
Wellner (1996). That is, the envelope function Fn satisfies

P ∗F 2
n = O(1),

P ∗F 2
nI
(
Fn >

√
nη
)
→ 0, ∀ η > 0,

sup
ρ(θ1,θ2)<δn

P (fn,θ1 − fn,θ2)
2 → 0, ∀ δn ↓ 0,

where ρ is a metric for θ so that (Θ, ρ) is total bounded. Moreover,∫
sup
Q

√
logN (ϵ∥Fn∥Q,2,Fn, L2(Q)) → 0, ∀ δn ↓ 0,

where N is the covering number and Q is the discrete probability measure.

We divide the proofs of Theorems 1 and 2 into a sequence of steps. Without loss
of generality, we assume that Z and W are bounded by 1. Let Pn and P denote the
empirical measure of n i.i.d. observations and the expectation, respectively; i.e., for any
measurable function f(Y ) in L2(P ),

Pnf(Y ) = n−1
n∑

i=1

f(Yi), Pf(Y ) = Ef(Y ).

Let Gn denote the empirical process based on n i.i.d. observations, i.e., Gn =
√
n(Pn−P).
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For k = 0, . . . , r, we define

Â
(k)

n (ξ, t) =
1

nhn

n∑
i=1

Khn
(Wi − w0)

(
Wi − w0

hn

)k

ZiI(logXi − ξTZ∗
i ≥ t),

and

A(k)
n (ξ, t) =

1

hn
E

{
Khn(W − w0)

(
W − w0

hn

)k

ZI(logX − ξTZ∗ ≥ t)

}
.

Clearly, we can write

Â
(k)

n (ξ, t) =
1√
nhn

Gnf
(k)
n (∆, X,W,Z; ξ, t) +A(k)

n (ξ, t), (A.1)

where

f (k)n (∆, X,W,Z; ξ, t) =
1√
hn

Khn(W − w0)

(
W − w0

hn

)k

ZI(logX − ξTZ∗ ≥ t).

Let t0 be the upper bound of (logX − ξT0 Z
∗), and we consider a class

Fn
1k =

{
f (k)n (∆, X,W,Z; ξ, t) : ∥ξ − ξ0∥ < δn, t ∈ (−∞, t0)

}
,

for some small constant δn. We first state two lemmas followed with their proofs, re-
spectively.

Lemma S.1 Fn
1k is a VWn class.

Proof. Clearly, an envelope function is given by

Fnk =
1√
hn

Khn(W − w0),

and thus, E(F 2
nk) ≤ O(1)h−1

n E{Khn(W − w0)
2} = O(1). In addition,

E
{
F 2
nkI(Fnk ≥

√
nη)
}
→ 0,

as
√
nhn → ∞. It holds that for any two functions fn1 and fn2 indexed by (ξ1, t1) and

(ξ2, t2),

P (fn1 − fn2)
2

≤ h−1
n E

{
Khn(W − w0)

2∥Z∥2|I(logX − ξT1 Z
∗ ≥ t1)− I(logX − ξT2 Z

∗ ≥ t2)|
}

≤ O(1)E
{
|I(logX − ξT1 Z

∗ ≥ t1)− I(logX − ξT2 Z
∗ ≥ t2)|

}
,
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according to condition (C1). We can choose ρ((ξ1, t1), (ξ2, t2)) as defined at the right-
hand side of the above inequality, which is a totally bounded semimetric as implied in
the following arguments. On the other hand,{

logX − ξTZ∗ − t : ∥ξ − ξ0∥ < δn, t ∈ [0, t0]
}

is a VC class, and so is
{
logX − ξTZ∗ − t ≥ 0 : ∥ξ − ξ0∥ < δn, t ∈ [0, t0]

}
. Therefore,

the uniform entropy integral condition holds for this class, and it also holds for Fn
1k by

a factor ∥Fnk∥L2(Q) for any probability measure Q. In conclusion, as the covariance

for any two functions in Fn
1k has a limit, we have that

√
nhn

{
Â

(k)

n (ξ, t)−A(k)
n (ξ, t)

}
converges weakly to a tight Gaussian process uniformly in ξ and t.

We now consider the (k + 1)th component of Un(ξ),

U(k)
n (ξ) =

1

nhn

n∑
i=1

Khn(Wi − w0)((Wi − w0)/hn)
kZi∆iI(logXi − ξTZ∗

i ≤ 0)

Â
(k)

n (ξ, logXi − ξTZ∗
i )

+log(1−τ),

where hereafter the division and multiplication of vectors are componentwise, unless
otherwise noted.

Using the empirical process notation and expansion (A.1), we can write

U(k)
n (ξ) =

1√
nhn

GnS
(k)
n (∆, X,W,Z; ξ)

+
1

hn
E

{
Khn(W − w0)((W − w0)/hn)

kZ∆I(logX − ξTZ∗ ≤ 0)

A(k)
n (ξ, logX − ξTZ∗)

}
+ log(1− τ),

where

S(k)
n (∆, X,W,Z; ξ) =

1√
hn

Khn(W − w0)((W − w0)/hn)
kZ∆I(logX − ξTZ∗ ≤ 0)

Â
(k)

n (ξ, logX − ξTZ∗)

−Ẽ

{
1

hn

Khn(W̃ − w0)((W̃ − w0)/hn)
kZ̃∆̃I(log X̃ − ξT Z̃ ≤ 0)

Â
(k)

n (ξ, log X̃ − ξT Z̃)A(k)
n (ξ, log X̃ − ξT Z̃)

f (k)n (∆, X,W,Z; ξ, log X̃ − ξT Z̃)

}
,

and Ẽ takes the expectation with respect to (∆̃, X̃, W̃ , Z̃). Let Fn
2k be a class that

contains all the functions S(k)
n (∆, X,W,Z; ξ) for ∥ξ − ξ0∥ < δn.

Lemma S.2 Fn
2k is a VWn class.

Proof. To prove this lemma, we first show

Fn
3k =

{
1√
hn

Khn(W − w0)((W − w0)/hn)
kZ∆I(logXi − ξTZ∗

i ≤ 0)

Â
(k)

n (ξ, logX − ξTZ∗)
: ∥ξ − ξ0∥ < δn

}
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is a VWn class. Following similar arguments as in the proof of Lemma S.1, we can easily
verify that Fn

3k satisfies condition (2.11.21) in van der Vaart and Wellner (1996) with an

envelope function O(h
−1/2
n Khn(W − w0)), by noting that both Â

(k)

n (ξ, t) and A(k)
n (ξ, t)

converge to

µkE
{
ZI(logX − ξTZ∗ ≥ t)|W = w0

}
,

uniformly in ξ and t with the limit bounded away from zero.

It remains to verify the uniform entropy condition in Theorem 2.11.22 in van der

Vaart and Wellner (1996). We first argue that
{
Â

(k)

n (ξ, logX − ξTZ∗) : ∥ξ − ξ0∥ < δn
}

has a finite uniform entropy integral. To see this, we note that

Â
(k)

n (ξ, logX − ξTZ∗)

{
1

nhn

n∑
i=1

Khn(Wi − w0)

(
Wi − w0

hn

)k
}−1

is a convex combination of function I(logX−ξTZ∗ ≤ t) for t = logXi−ξTZ∗
i . Moreover,

1

nhn

n∑
i=1

Khn(Wi − w0)

(
Wi − w0

hn

)k

has a non-zero limit. Thus,
{
Â

(k)

n (ξ, logX − ξTZ∗) : ∥ξ − ξ0∥ < δn
}

has a finite
uniform entropy integral according to Theorem 2.6.9 in van der Vaart and Wellner

(1996). Since the limit of Â
(k)

n (ξ, t) is bounded from zero, the same conclusion holds

for
{
Â

(k)

n (ξ, logX − ξTZ∗)−1 : ∥ξ − ξ0∥ < δn
}
. It is then easy to see that Fn

3k has a
finite uniform entropy integral.

The same arguments apply to the class containing

Ẽ

{
Khn(W̃ − w0)((W̃ − w0)/hn)

kZ̃∆̃I(log X̃ − ξT Z̃ ≤ 0)

hnÂ
(k)

n (ξ, log X̃ − ξT Z̃)A(k)
n (ξ, log X̃ − ξT Z̃)

f (k)n (∆, X,W,Z; ξ, log X̃ − ξT Z̃)

}
.

Particularly, from condition (C2), the function in this class is Lipschitz with respect to

ξ with the Lipschitz coefficient bounded by O(h
−1/2
n Khn(W − w0)). Thus, the uniform

entropy integral condition holds for this class, and Lemma S.2 holds.

Next we will prove Theorems 1 and 2, respectively.

S2 Proof of Theorem 1

We have that

Un(ξ) =
1√
nhn

GnSn(ξ) +Rn(ξ),
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where Sn(ξ) = {S(0)
n (ξ)T , . . . ,S(r)

n (ξ)T }T , and Rn(ξ) = {R(0)
n (ξ)T , . . . ,R(r)

n (ξ)T }T with

R(k)
n (ξ) =

1

hn
E

{
Khn(W − w0)((W − w0)/hn)

kZ∆I(logX − ξTZ∗ ≤ 0)

A(k)
n (ξ, logX − ξTZ∗)

}
+ log(1− τ).

Furthermore, it is straightforward to verify that the covariance function of S(k)
n (ξ) has a

finite limit. Theorem 2.11.22 in van der Vaart and Wellner (1996) yields that GnSn(ξ)
converges weakly to a normal distribution with variance-covariance matrix Σ1.

We perform the Taylor series expansion of Rn(ξ) in a (nhn)
−1/2-neighborhood of

ξ0,

Rn(ξ)

= DH(ξ − ξ0) + E

[
h−1
n Khn(W − w0)((W − w0)/hn)

kZ∆I(logX − ξT0 Z
∗ ≤ 0)

Ẽ{h−1
n Khn(W̃ − w0)((W̃ − w0)/hn)kZ̃I(log X̃ − ξT0 Z̃

∗ ≥ logX − ξT0 Z
∗)}

]
+ log(1− τ) + o(∥H(ξ − ξ0)∥),

where

D = I(r+1)×(r+1) ⊗
∂

∂βT
E

[
Z∆I(logX − βTZ ≤ 0)

Ẽ{I(log X̃ − βT Z̃ ≥ logX − βTZ)|W̃ = w0}
|W = w0

]
,

evaluated at β = β0(w0). We also note that

E

[
g(W )Z∆I(logX − β0(W )

T
Z ≤ 0)

Ẽ{g(W̃ )Z̃I(log X̃ − β0(W̃ )
T
Z̃ ≥ logX − β0(W )TZ)}

]
+ log(1− τ) = 0,

for any measurable function g(W ) ∈ L2(P ), and from condition (C7),

ξT0 Z
∗ − β0(W )

T
Z = −β

[r+1]
0 (w0)

TZ(W − w0)
r+1 + o(hr+1

n ),

whenever W − w0 = O(hn). Hence, we have

E

[
h−1
n Khn

(W − w0)((W − w0)/hn)
kZ∆I(logX − ξT0 Z

∗ ≤ 0)

Ẽ{h−1
n Khn(W̃ − w0)((W̃ − w0)/hn)kZ̃I(log X̃ − ξT0 Z̃

∗ ≥ logX − ξT0 Z
∗)}

]

= E

[
h−1
n Khn(W − w0)((W − w0)/hn)

kZ∆I(logX − β0(W )
T
Z ≤ 0)

Ẽ{h−1
n Khn(W̃ − w0)((W̃ − w0)/hn)kZ̃I(log X̃ − β0(W̃ )

T
Z̃ ≥ logX − β0(W )

T
Z)}

]
+hr+1

n bk + o(hr+1
n )

= − log(1− τ) + hr+1
n bk + o(hr+1

n ),
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with the constant

bk

=
µk+r+1

µk
E

(
∂

∂ζ
E

[
Z∆I(logX − ζ ≤ 0)β

[r+1]
0 (w0)

TZ

Ẽ{I(log X̃ − β0(w0)T Z̃ ≥ logX − ζ)|W̃ = w0}

∣∣∣W = w0,Z

] ∣∣∣W = w0

)

+
µk+r+1

µk
E

(
Z∆I(logX − β0(w0)

TZ ≤ 0)

×
Ẽ[ ∂

∂ζ̃
Ẽ{I(log X̃ − ζ̃ ≥ logX − β0(w0)

TZ)β
[r+1]
0 (w0)

T Z̃|W̃ = w0, Z̃}|W̃ = w0]

Ẽ{I(log X̃ − ζ̃ ≥ logX − β0(w0)TZ)|W̃ = w0}2
∣∣∣W = w0

 ,

evaluated at ζ = ζ̃ = β0(w0)
TZ. If we define b = (bT

0 , . . . ,b
T
r )

T , then

Rn(ξ) = DH(ξ − ξ0) + hr+1
n b+ o(hr+1

n + ∥H(ξ − ξ0)∥).

We now study the asymptotic behavior of the covariance matrix Ωn(ξ). For the
first term in Ωn(ξ), n

−1
∑n

i=1 ui(ξ)ui(ξ)
T , each p× p submatrix has a form of

(nhn)
−1

n∑
i=1

[
h−1
n Khn(Wi − w0)

2

(
Wi − w0

hn

)k+j

∆iI(logXi − ξTZ∗
i ≤ 0)

×

{
Zi

A(k)
n (ξ, logXi − ξTZ∗

i )

}{
Zi

A(j)
n (ξ, logXi − ξTZ∗

i )

}T
 ,

for k, j = 0, . . . , r. From Lemma S.1, the first term of Ωn(ξ) is equivalent to Σ2(1 +
op(1))/hn for some positive definite matrixΣ2. The second term ofΩn(ξ) isUn(ξ)Un(ξ)

T =
op(1).

Finally, we have that

Qn(ξ) =
{
(nhn)

−1/2GnSn(ξ0) +DH(ξ − ξ0) + hr+1
n b+ o(hr+1

n + ∥H(ξ − ξ0)∥)
}T

× (Σ2/hn + op(1))
−1

×
{
(nhn)

−1/2GnSn(ξ0) +DH(ξ − ξ0) + hr+1
n b+ o(hr+1

n + ∥H(ξ − ξ0)∥)
}
,

in a (nhn)
−1/2-neighborhood of ξ0. Therefore, if we let ξ = ξ0 + (nhn)

−1/2y, then
(nh2

n)Qn(ξ0 + (nhn)
−1/2y) converges uniformly for y in any compact set to a quadratic

function with a unique minimum at y = 0. We thus conclude that there exists a local
minimum ξ̂n for minimizing Qn(ξ) and ξ̂n = ξ0 + Op((nhn)

−1/2). This completes the
proof of Theorem 1.
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S3 Proof of Theorem 2

Applying the standard M-estimation theory such as Theorem 3.2.16 in van der Vaart
and Wellner (1996), we have that

(nhn)
−1/2GnSn(ξ0) +DH(ξ − ξ0) + hr+1

n b+ o

(
hr+1
n +

1√
nhn

)
= op(1).

Hence, Theorem 2 holds with Σ = D−1Σ1D
−1.
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