Supplementary File: Structured Lasso for Regression with Matrix Covariates

Junlong Zhao and Chenlei Leng *

July 4, 2013

1. Proof of Lemma 1

Let $A = \{ \| \mathbb{V} \varepsilon \|_{\infty} / n < \lambda_n \}$ and $B = \{ \| \mathbb{V}_j \|_2 / \sqrt{n} \le 1 + \delta_0, j = 1, \cdots, pq \}$. Then $P(\mathcal{A}) = P(B)P(A|B)$. Then by the inequality of the tail probability of the normal distribution, we have

$$P(B) = 1 - P(B^c) \ge 1 - \sum_{j=1}^{pq} P\left(\|\mathbb{V}_j\|_2 / \sqrt{n} \ge 1 + \delta_0 \right).$$

Denoting $\delta_1 = (1 + \delta_0)^2 - 1$, we have

$$P\left(\|\mathbb{V}_{j}\|_{2}/\sqrt{n} \ge 1+\delta_{0}\right) \le P\left(\|\mathbb{V}_{j}\|_{2}^{2}-n \ge n[(1+\delta_{0})^{2}-1]\right) = P\left(\|\mathbb{V}_{j}\|_{2}^{2}-n \ge n\delta_{1}\right).$$

Note that $\|\mathbb{V}_{j}\|_{2}^{2}$ has a χ_{n}^{2} distribution. Based on the tail probability bound of $\chi_{n}^{2}($ that is, $P(\chi_{n}^{2} > n + x) < \exp(-\frac{1}{8}(x, x^{2}/n)))$. We have $P(\|\mathbb{V}_{j}\|_{2}/\sqrt{n} \ge 1 + \delta_{0}) \le \exp(-\frac{1}{8}\min(n\delta_{1}, n\delta_{1}^{2}))$. Consequently,

$$P(B) > 1 - \exp(-\frac{1}{8}\min(n\delta_1, n\delta_1^2) + \log(pq)).$$

On the other hand by Lemma C.1 of Zhou (2009), it is easy to see that taking $\lambda_n = (1 + \delta_0)\sigma\sqrt{2(1+a)\log(pq)/n}$ for any a > 0, we have $P(A|B) \ge 1 - [(pq)^a\sqrt{\pi\log(pq)}]^{-1}$. Therefore the conclusion holds. \Box

2. Proof of Theorem 1

Step 1. We first show that $\|\hat{\alpha} - \alpha\|_1$ can be small.

Let $u = \hat{\theta} - \theta = \hat{\beta} \otimes \hat{\alpha} - \beta \otimes \alpha$. Note that

$$(\hat{\alpha}, \hat{\beta}) = \arg\min_{(\alpha, \beta) \in \mathcal{E}} \frac{1}{n} \| \mathbb{Y} - \mathbb{V}^T \theta \|_2^2 + \lambda_n P_{\theta}$$

^{*}Zhao is with LMIB of the Ministry of Education, Beihang University, China (zhaojunlong928@126.com). Leng is with Department of Statistics, University of Warwick, UK and Department of Statistics and Applied Probability, National University of Singapore, Singapore (stalc@nus.edu.sg). Corresponding author: Chenlei Leng.

Conditioning on \mathcal{A} , similar to that of Bickel et al. (2009) and Lemma C.2 of Zhou (2009), for $\lambda_n = (1 + \delta_0)\sigma\sqrt{2(1 + a)\log(pq)/n}$, we have

$$||u_{S_{\theta}^{c}}||_{1} < 3||u_{S_{\theta}}||_{1}.$$

Furthermore, by the similar procedure of the Proposition C.3 of Zhou (2009), we have

$$\|u\|_{1} = \|\hat{\beta} \otimes \hat{\alpha} - \beta \otimes \alpha\|_{1} \le B_{0}\lambda_{n}s_{0}.$$
(A.1)

For simplicity, we denote $\tilde{\lambda}_n = B_0 \lambda_n s_0$. Recall that $\|\hat{\alpha}\|_1 = \|\alpha\|_1 = 1$ and that for any $\beta = (\beta_1, \dots, \beta_q)^T$, $|\beta_{(1)}| \ge \dots \ge |\beta_{(q)}|$ is the decreasing order of $|\beta_j|$. For $j = 1, \dots, q$, define $\hat{a}_j = |\hat{\beta}_j| \|\hat{\alpha}\|_1 = |\hat{\beta}_j|$ and $a_j = |\beta_j| \|\alpha\|_1 = |\beta_j|$. By (A.1), we have

$$\max_{1 \le j \le q} \|\hat{\beta}_j \hat{\alpha} - \beta_j \alpha\|_1 \le \tilde{\lambda}_n.$$
(A.2)

Therefore, by the triangular inequality, we have

$$\max_{1 \le j \le q} \left| |\hat{\beta}_j| - |\beta_j| \right| = \max_{1 \le j \le q} \left| |\hat{\beta}_j| \|\hat{\alpha}\|_1 - |\beta_j| \|\alpha\|_1 \right| \le \tilde{\lambda}_n.$$
(A.3)

Let $d_0 = |\beta_{(1)}| - |\beta_{(2)}|$ and denote $k_0 = \arg \max_j |\beta_j|$. Recall our assumption that $\operatorname{sign}(\beta_{k_0}) = 1$. As $\tilde{\lambda}_n < d_0/2$, by (A.3), we have $\hat{a}_{k0} = |\hat{\beta}_{k_0}| = \max_{1 \le j \le q} |\hat{\beta}_j|$. By (2.2) and the fact $\operatorname{sign}(\hat{\beta}_{(1)}) = 1$ in the algorithm, we have

$$\operatorname{sign}(\hat{\beta}_{k0}) = 1. \tag{A.4}$$

Denote $\delta_{k0} = \hat{a}_{k0} - a_{k0}$. Then $|\delta_{k0}| \leq \tilde{\lambda}_n$. Also by (A.2), we have

$$\begin{split} \tilde{\lambda}_{n} &\geq \|\hat{\beta}_{k0}\hat{\alpha} - \beta_{k0}\alpha\|_{1} = \|\hat{a}_{k0}\hat{\beta}_{k0}\hat{\alpha}/\hat{a}_{k0} - a_{k0}\beta_{k0}\alpha/a_{k0}\|_{1} = \|(a_{k0} + \delta_{k0})\hat{\beta}_{k0}\hat{\alpha}/\hat{a}_{k0} - a_{k0}\beta_{k0}\alpha/a_{k0}\|_{1} \\ &= \|a_{k0}(\hat{\beta}_{k0}\hat{\alpha}/\hat{a}_{k0} - \beta_{k0}\alpha/a_{k0}) + \delta_{k0}\hat{\beta}_{k0}\hat{\alpha}/\hat{a}_{k0}\|_{1} \\ &\geq \left|\|a_{k0}(\hat{\beta}_{k0}\hat{\alpha}/\hat{a}_{k0} - \beta_{k0}\alpha/a_{k0})\|_{1} - \|\delta_{k0}\hat{\beta}_{k0}\hat{\alpha}/\hat{a}_{k0}\|_{1}\right| = \left|\|a_{k0}(\hat{\beta}_{k0}\hat{\alpha}/\hat{a}_{k0} - \beta_{k0}\alpha/a_{k0})\|_{1} - \|\delta_{k0}\hat{\beta}_{k0}\hat{\alpha}/\hat{a}_{k0}\|_{1}\right| = \left|\|a_{k0}(\hat{\beta}_{k0}\hat{\alpha}/\hat{a}_{k0} - \beta_{k0}\alpha/a_{k0})\|_{1} - \|\delta_{k0}\|_{1}^{2} \right|. \end{split}$$

Therefore, it follow that $\|a_{k0}(\hat{\beta}_{k0}\hat{\alpha}/\hat{a}_{k0} - \beta_{k0}\alpha/a_{k0})\|_1 \leq \tilde{\lambda}_n + |\delta_{k0}| \leq 2\tilde{\lambda}_n$. That is,

$$\|(\hat{\beta}_{k0}\hat{\alpha}/\hat{a}_{k0} - \beta_{k0}\alpha/a_{k0})\|_{1} \le 2\tilde{\lambda}_{n}/a_{k0} = 2\tilde{\lambda}_{n}/|\beta_{k0}|.$$
(A.5)

Recalling that sign(β_{k0}) = 1, by (A.4), we have $\beta_{k0}/a_{k_0} = \hat{\beta}_{k0}/\hat{a}_{k_0} = 1$. Combined with (A.5), we have

$$\|\hat{\alpha} - \alpha\|_1 \le 2\lambda_n / |\beta_{k0}|. \tag{A.6}$$

Step 2. Based on (A.1) and the fact that $\|\hat{\alpha}\|_1 = \|\alpha\|_1 = 1$, we have

$$\begin{split} \tilde{\lambda}_n &\geq \|\hat{\beta} \otimes \hat{\alpha} - \beta \otimes \alpha\|_1 = \|(\hat{\beta} - \beta) \otimes \hat{\alpha} - \beta \otimes (\alpha - \hat{\alpha})\|_1 \\ &\geq \left\| \|(\hat{\beta} - \beta) \otimes \hat{\alpha}\|_1 - \|\beta \otimes (\alpha - \hat{\alpha})\|_1 \right\| = \left\| \|\hat{\beta} - \beta\|_1 - \|\beta\|_1 \|(\alpha - \hat{\alpha})\|_1 \right\|. \end{split}$$

Consequently, by (A.6), we have

$$\begin{aligned} \|\hat{\beta} - \beta\|_{1} &\leq \tilde{\lambda}_{n} + \|\beta\|_{1} \|\alpha - \hat{\alpha}\|_{1} = \tilde{\lambda}_{n} + \|\beta\|_{1} \|\hat{\alpha} - \alpha\|_{1} \\ &= \tilde{\lambda}_{n} (1 + 2\|\beta\|_{1} / |\beta_{k0}|) = B_{0} \lambda_{n} s_{0} (1 + 2\|\beta\|_{1} / |\beta_{k0}|). \end{aligned}$$

This completes the proof.

3. Proof of Theorem 2

Let $\Psi = \mathbb{V}\Sigma^{-1/2} = (\Psi_1, \cdots, \Psi_n)^T$ be a *n* by *pq* matrix with *i.i.d.* rows $\Psi_i, i = 1, \cdots, n$ from $N(0, I_{pq})$.

Step 1. We first show that, for any $0 < \gamma < 1$, if (3.1) holds, then the following inequality holds with probability at least $1 - \exp\{-\bar{c}\gamma^2 n/\alpha_0^4\}$,

$$1 - \gamma \le \frac{\|\Psi \Sigma^{1/2} u\|_2}{\sqrt{n}} \le 1 + \gamma, \quad \text{for all } u \in \mathcal{J}_1.$$
(A.1)

Note that Ψ_i is an isotropic vector with the ψ_2 norm α_0 . Let $S^{pq-1} := \{v : v \in \mathbb{R}^{pq}, \|v\|_2 = 1\}$. By Theorem 2.5 of Zhou (2009) or Theorem 2.1 of Mendelson et al (2008), for any $0 < \gamma < 1$ and any set $\mathcal{V} \subset S^{pq-1}$, if $n > \frac{c'\alpha_0^4}{\gamma^2} [l_*(\mathcal{V})]^2$, then with probability at least $1 - \exp\{-\bar{c}\gamma^2 n/\alpha_0^4\}$, we have that

$$1 - \gamma \le \|\Psi v\|_2 / \sqrt{n} \le 1 + \gamma$$
 for all $v \in \mathcal{V}$,

where $c', \bar{c} > 0$ are constants. Therefore, (A.1) can be proved by taking $\mathcal{V} = \mathcal{I}_1$ and computing

the complexity measure $l_*(\mathcal{I}_1)$. Lemma 3 gives the following bound on $l_*(\mathcal{I}_1)$

$$l_*(\mathcal{I}_1) \le C_{s_0,k_0} \sqrt{\log[c(\epsilon, s_0) \max(p^{2s_0}q, pq^{2s_0})]},$$

where $c(\epsilon, s_0)$ and C_{s_0,k_0} are defined in Lemma 3. Therefore, (A.1) holds with probability at least $1 - \exp\{-\bar{c}\gamma^2 n/\alpha_0^4\}$ since

$$n > \{c'\alpha_0^4 C_{s_0,k_0} \log[c(\epsilon, s_0) \max(p^{2s_0}q, pq^{2s_0})]\}/\gamma^2.$$

Step 2. We prove that, as (A.1) and (4.1) hold, the structured RE condition $SRE(s_0, k_0)$ holds.

By Proposition 1.4 of Zhou (2009), for any $u \in \mathbb{R}^{pq}$, such that $||u_{S_0^c}||_1 < k_0 ||u_{S_0^c}||_1$ for some $S_0 \subset \{1, \dots, pq\}$ with $|S_0| \leq s_0$, we have $||u_{T_0^c}||_1 < k_0 ||u_{T_0}||_1$. Recall the definition of u_{T_0} . It follows that set $A_1 \stackrel{\triangle}{=} \{u \in \mathcal{J}_0 : \exists S_0 \text{ with } |S_0| \leq s_0 \text{ such that } ||u_{S_0^c}||_1 < k_0 ||u_{S_0}||_1\} = \{u \in \mathcal{J}_0 : ||u_{T_0^c}||_1 < k_0 ||u_{T_0}||_1\} \stackrel{\triangle}{=} A_2$. Recalling the definition of T_0 , it follows that $||u_{S_0}||_2 \leq ||u_{T_0}||_2$, for any $S_0 \subset \{1, \dots, pq\}$ with $|S_0| \leq s_0$. Therefore, RE condition $RE(s_0, k_0, \Sigma)$ in (4.1) is equivalent to

$$\min_{u \in A_1} \frac{\|\Sigma^{1/2} u\|_2}{\|u_{S_0}\|_2} = \min_{u \in A_2} \frac{\|\Sigma^{1/2} u\|_2}{\|u_{T_0}\|_2} = K(s_0, k_0, \Sigma),$$
(A.2)

for some $K(s_0, k_0, \Sigma) > 0$. That is, for any $u \in A_2$, we have

$$\|\Sigma^{1/2}u\|_{2} \ge \|u_{T_{0}}\|_{2}K(s_{0}, k_{0}, \Sigma).$$
(A.3)

In addition, for any $u \in A_1$, then $u/\|\Sigma^{1/2}u\|_2 \in \mathcal{J}_1$. From (A.1), it is easy to see that

$$\frac{\|\Psi\Sigma^{1/2}u\|_2}{\sqrt{n}} \ge (1-\gamma)\|\Sigma^{1/2}u\|_2, \quad \text{for all } u \in A_1.$$

That is,

$$\frac{\|\nabla u\|_2}{\sqrt{n}} \ge (1-\gamma) \|\Sigma^{1/2} u\|_2, \text{ for all } u \in A_1.$$

This combined with (A.3) results in

$$\frac{\|\nabla u\|_2}{\sqrt{n}} \ge \|\Sigma^{1/2} u\|_2 (1-\gamma) \ge (1-\gamma) \|u_{T_0}\|_2 K(s_0, k_0, \Sigma), \quad \text{for all } u \in A_1.$$
(A.4)

Similar to argument of (A.2), we have

$$\min_{u \in A_1} \frac{\|\mathbb{V}u\|_2}{\sqrt{n} \|u_{S_0}\|_2} = \min_{u \in A_1} \frac{\|\mathbb{V}u\|_2}{\sqrt{n} \|u_{T_0}\|_2} \ge (1-\gamma)K(s_0, k_0, \Sigma) > 0,$$

where the last inequality follows from (A.4).

4. Proof of Theorem 3

Define the counterpart $\widetilde{\mathcal{J}}_1$ and $\widetilde{\mathcal{I}}_1$ of \mathcal{J}_1 and \mathcal{I}_1 , respectively, as

$$\widetilde{\mathcal{J}}_1 = \{ u : u \in R^{pq}, \|\Sigma^{1/2}u\|_2 = 1, u_{T_0^c} \le k_0 u_{T_0} \}, \ \widetilde{\mathcal{I}}_1 = \{ v : v = \Sigma^{1/2}u, u \in \widetilde{\mathcal{J}}_1 \}.$$

From Step 1 of Theorem 2, if $n > \frac{c' \alpha_0^4}{\gamma^2} l_*(\widetilde{\mathcal{I}}_1)^2$, then unstructured RE condition $RE(s_0, k_0)$ holds.

Define the counterpart \widetilde{U}_{s_0} of U_{s_0} as $\widetilde{U}_{s_0} = \{u - \beta \otimes \alpha : u \in \mathbb{R}^{pq}, \|u - \beta \otimes \alpha\|_2 = 1, |\operatorname{supp}(u)| = s_0\}$ and let $\Pi_{\widetilde{U}_{s_0}}$ be the ϵ -cover of \widetilde{U}_{s_0} . Similar to the proof of Lemma 3, we have

$$l_*(\widetilde{\mathcal{I}}_1) \le \frac{(k_0+2)}{K(s_0,k_0,\Sigma)} \mathbb{E} \sup_{u \in \widetilde{U}_{s_0}} |g^T u| \le \frac{6(k_0+2)}{K(s_0,k_0,\Sigma)} \sqrt{\rho_{\max}(s_0) \log |\Pi_{\widetilde{U}_{s_0}}|}$$

Recalling the definition of \widetilde{W}_0 in Section 4.2, similar to the argument of the relation between U_{s_0} and W_0 in Section 4.1, due to $s_0 \ll pq$, we have

$$|\Pi_{\widetilde{U}_{s_0}}| \le |\Pi_{\widetilde{W}_0}| \le 2s_0 \left(\frac{5d_0}{2\epsilon}\right)^{2s_0} \binom{pq}{2s_0},$$

where the last inequality is derived from (4.4). Note that $\binom{pq}{2s_0} \leq (\frac{epq}{2s_0})^{2s_0}$. We have

$$|\Pi_{\widetilde{U}_{s_0}}| \le 2s_0 \left(\frac{5d_0}{2\epsilon}\right)^{2s_0} \left(\frac{epq}{2s_0}\right)^{2s_0} = c_1(s_0,\epsilon)(pq)^{2s_0}.$$

Consequently,

$$l_*(\widetilde{\mathcal{I}}_1) \le \frac{6(k_0+2)}{K(s_0,k_0,\Sigma)} \sqrt{\rho_{\max}(s_0) \log[c_1(s_0,\epsilon)(pq)^{2s_0}]}$$

This completes the proof. \Box

5. Proof of Lemma 3

Step 1. We first prove that

$$l_*(\mathcal{I}_1) \le \frac{(k_0+2)}{K(s_0,k_0,\Sigma)} \mathbb{E} \sup_{u \in U_{s_0}} |g^T \Sigma^{1/2} u|.$$

By the definition of complexity measure, we have

$$l_*(\mathcal{I}_1) = \mathbb{E} \sup_{v \in \mathcal{I}_1} |g^T v| = \mathbb{E} \sup_{u \in \mathcal{J}_1} |g^T \Sigma^{1/2} u|,$$

where $g = (g_1, \dots, g_{pq}) \sim N(0, I_{pq})$. For any $J \subset \{1, \dots, pq\}$, We extend u_J into $u' \in \mathbb{R}^{pq}$, such that $u'_{J^c} = 0, u'_J = u_J$. In the following argument, with some abuse of notations, we still use u_J to denote the extended vector u' in \mathbb{R}^{pq} . The following argument is similar to that of Zhou (2009). We present here for completeness of the paper. For any $u \in \mathcal{J}_1$, we have

$$|g^{T}\Sigma^{1/2}u| \leq |g^{T}\Sigma^{1/2}u_{T_{0}}| + \sum_{k\geq 1} |g^{T}\Sigma^{1/2}u_{T_{k}}| \leq ||u_{T_{0}}||_{2} \frac{|g^{T}\Sigma^{1/2}u_{T_{0}}|}{||u_{T_{0}}||_{2}} + \sum_{k\geq 1} ||u_{T_{k}}||_{2} \frac{|g^{T}\Sigma^{1/2}u_{T_{k}}|}{||u_{T_{k}}||_{2}} \leq (||u_{T_{0}}||_{2} + \sum_{k\geq 1} ||u_{T_{k}}||_{2}) \sup_{t\in U_{s_{0}}} |g^{T}\Sigma^{1/2}u|.$$
(A.1)

It is easy to see that $||u_{T_k}||_2 \leq \sqrt{s_0} ||u_{T_k}||_{\infty} \leq ||u_{T_{k-1}}||_1/\sqrt{s_0}$. Furthermore, by Lemma 2, we have

$$\sum_{k\geq 1} \|u_{T_k}\|_2 \le (\|u_{T_0}\|_1 + \sum_{k\geq 1} \|u_{T_j}\|_1) / \sqrt{s_0} \le (\|u_{T_0}\|_1 + \|u_{T_0^c}\|_1) / \sqrt{s_0} \le (k_0 + 1) \|u_{T_0}\|_1 / \sqrt{s_0}.$$

Combining with $||u_{T_0}||_1/\sqrt{s_0} \le ||u_{T_0}||_2$, we have

$$\sum_{k\geq 1} \|u_{T_k}\|_2 \le (k_0+1) \|u_{T_0}\|_2.$$
(A.2)

Furthermore, by the definition of $K(s_0, k_0, \Sigma)$, it follows that

$$\|u_{T_0}\|_2 \le \|\Sigma^{1/2}u\|_2 / K(s_0, k_0, \Sigma) = 1 / K(s_0, k_0, \Sigma).$$
(A.3)

The last equation is due to the fact $\|\Sigma^{1/2}u\|_2 = 1$ for any $u \in \mathcal{J}_1$. By (A.1)–(A.3), we have

$$|g^T \Sigma^{1/2} u| \le (k_0 + 2) ||u_{T_0}||_2 \sup_{u \in U_{s_0}} |g^T \Sigma^{1/2} u| \le \frac{(k_0 + 2)}{K(s_0, k_0, \Sigma)} \sup_{u \in U_{s_0}} |g^T \Sigma^{1/2} u|.$$

Therefore we have

$$l_*(\mathcal{I}_1) = E\left(\sup_{u \in \mathcal{J}_1} |g^T \Sigma^{1/2} u|\right) \le \frac{(k_0 + 2)}{K(s_0, k_0, \Sigma)} \mathbb{E}\sup_{u \in U_{s_0}} |g^T u|.$$

Step 2. We show that $\mathbb{E} \sup_{t \in U_{s_0}} |g^T u| \le 6\sqrt{\rho_{\max}(s_0) \log[c(\epsilon_0, s_0) \max(p^{2s_0}q, pq^{2s_0})]}.$

By Lemma 2.3 of Mendelson et al. (2008), there exists set $\Pi_{U_{s_0}} = \{u_i \in U_{s_0}, i = 1, \dots\}$ of the cardinality $|\Pi_{U_{s_0}}|$, such that

$$U_{s_0} \subseteq 2 \operatorname{conv} \Pi_{U_{s_0}}.$$

Consequently, we have

$$\mathbb{E} \sup_{t \in U_{s_0}} |g^T \Sigma^{1/2} u| \le 2\mathbb{E} \sup_{u \in \operatorname{conv}\Pi_{U_{s_0}}} |g^T \Sigma^{1/2} u| = 2\mathbb{E} \sup_{u \in \Pi_{U_{s_0}}} |g^T \Sigma^{1/2} u|.$$
(A.4)

By the results of Ledoux and Talagrand (1991) (See also Lemma B.5 of Zhou (2009)), we have

$$\mathbb{E}\sup_{u\in\Pi_{U_{s_0}}} |g^T \Sigma^{1/2} u| \le 3\sqrt{\log|\Pi_{U_{s_0}}|} \max_{1\le i\le |\Pi_{U_{s_0}}|} \sqrt{E(g^T \Sigma^{1/2} u_i)^2} \le 3\sqrt{\rho_{\max}(s_0)\log|\Pi_{U_{s_0}}|}, \quad (A.5)$$

where we have used the definition of $\sqrt{\rho_{\max}(s_0)}$ and the fact that $E(g^T \Sigma^{1/2} u_i)^2 = u_i^T \Sigma u_i$ and that $g = (g_1, \dots, g_{pq}) \sim N(0, I_{pq})$. Also by (4.2), we have $|\Pi_{U_{s_0}}| \leq |\Pi_{W_0}|$. Consequently, by the results of Lemma 4, and the argument on the leading term of (4.3) in Section 4.2, we have

$$|\Pi_{W_0}| \le 2s_0 \left(\frac{15d_0}{2\epsilon}\right)^{2s_0+1} \max\{qC_p^{2s_0}, pC_q^{2s_0}\} \le c(\epsilon, s_0) \max(qp^{2s_0}, pq^{2s_0}),$$
(A.6)

where $c(\epsilon, s_0) = 2s_0 \left(\frac{15d_0}{2\epsilon}\right)^{2s_0+1} \left(\frac{e}{2s_0}\right)^{2s_0}$ and $C_p^{2s_0} = \begin{pmatrix} p \\ 2s_0 \end{pmatrix}$, which is less than $\left(\frac{ep}{2s_0}\right)^{2s_0}$ and $C_q^{2s_0}$ is defined in analogy. Therefore, by (A.4)– (A.6) and the fact $|\Pi_{U_{s_0}}| \leq |\Pi_{W_0}|$, we have

$$\mathbb{E} \sup_{t \in U_{s_0}} |g^T \Sigma^{1/2} u| \le 6\sqrt{\rho_{\max}(s_0) \log |\Pi_{W_0}|} \le 6\sqrt{\rho_{\max}(s_0) \log[c(\epsilon, s_0) \max(p^{2s_0} q, pq^{2s_0})]}.$$

The proof is completed.

6. Proof of Lemma 4

Step 1. For simplicity, we first compute the covering number of the W_1 defined below, which

is a special case of W_0 with $d_0 = 1$

$$W_1 = \{ w = v_1 \otimes v_2; v_1 \in R^q, v_2 \in R^p, \|v_1 \otimes v_2\|_2 \le 1, |\operatorname{supp}(v_1)| \cdot |\operatorname{supp}(v_2)| \le 2s_0, \}.$$

We will show that for $0 < \epsilon \leq 1/2$, there exists ϵ -cover Π_{W_1} of W_1 with

$$|\Pi_{W_1}| \le \sum_{0 < k_1, k_2 \in \mathbb{Z}^+, k_1 k_2 \le 2s_0} \left(\frac{15}{2\epsilon}\right)^{k_1 + k_2} \binom{p}{k_1} \binom{q}{k_2}.$$

In fact, it is easy to see that

$$W_1 = \bigcup_{0 < k_1, k_2 \in \mathbb{Z}^+, k_1 k_2 \le 2s_0} W_{k_1 k_2},$$

where $W_{k_1k_2} = \{w = v_1 \otimes v_2; v_1 \in R^p, v_2 \in R^q, \|v_1 \otimes v_2\|_2 \le 1, |\text{supp}(v_1)| = k_1, |\text{supp}(v_2)| = k_2, \}.$ Since s_0 is fixed, here the summation involves only finite terms. For any $m \in \mathbb{Z}^+$, define $S^m = \{v : v \in R^m, \|v\|_2 = 1\}$ and $\mathbb{B}^m = \{v : v \in R^m, \|v\|_2 \le 1\}.$

For any $v_1 \in R^q$, $v_2 \in R^p$, set $\tilde{v}_i = v_i / ||v_i||_2$, i = 1, 2, then $\tilde{v}_1 \in S^{q-1}$, $\tilde{v}_2 \in S^{p-1}$. Noting that $||v_1 \otimes v_2||_2 \leq 1$, it follows that $||v_1||_2 \cdot ||v_2||_2 \leq 1$. Consequently, for any $w \in W_{k_1k_2}$, we have

$$w = v_1 \otimes v_2 = (\|v_1\|_2 \cdot \|v_2\|_2) \cdot \tilde{v}_1 \otimes \tilde{v}_2 \triangleq \dot{v}_1 \otimes \tilde{v}_2.$$

Note that $\{\|v_1\|_2\|v_2\|_2 \cdot \tilde{v}_1 : \tilde{v}_1 \in S^{q-1}, \operatorname{supp}(v_1) = k_1, \|v_1\|_2\|v_2\|_2 \leq 1\} = \{\dot{v}_1 : \dot{v}_1 \in \mathbb{B}^q, \operatorname{supp}(\dot{v}_1) = k_1\}$. For any fixed k_1, k_2 , by Lemma 2.3 of Mendelson et al. (2008), for the sets $\{\dot{v}_1 : \dot{v}_1 \in \mathbb{B}^q, \operatorname{supp}(v_1) = k_1\}$ and $\{\tilde{v}_2 : \tilde{v}_2 \in S^{p-1}, \operatorname{supp}(v_2) = k_2\}$, there exist respectively $\epsilon/3$ -cover of $\Lambda_1 = \{\dot{v}_{1i}, i = 1, \cdots, \}$ and $\Lambda_2 = \{\tilde{v}_{2i}, i = 1, \cdots, \}$ with

$$|\Lambda_1| \le \left(\frac{15}{2\epsilon}\right)^{k_1} \binom{q}{k_1}, \quad |\Lambda_2| \le \left(\frac{15}{2\epsilon}\right)^{k_2} \binom{p}{k_2}$$

Therefore the $\epsilon\text{-cover}$ of $W_{k_1k_2}$ can be taken as

$$\Pi_{k_1k_2} = \{ \dot{v}_{1i} \otimes \tilde{v}_{2j}, i = 1, \cdots, |\Lambda_1|, j = 1, \cdots, |\Lambda_2| \}.$$

In fact, for any $w = v_1 \otimes v_2 \in W_{k_1k_2}$, we have $w = \dot{v}_1 \otimes \tilde{v}_2$ for some $\dot{v}_1 \in \mathbb{B}^q$ and $\tilde{v}_2 \in S^{p-1}$. There

exists i_0, j_0 such that

$$\|\dot{v}_1 - \dot{v}_{1i_0}\|_2 \le \epsilon/3, \quad \|\tilde{v}_2 - \tilde{v}_{2j_0}\|_2 \le \epsilon/3.$$

Consequently, letting $v_1^d = \dot{v}_1 - \dot{v}_{1i_0}$ and $v_2^d = \tilde{v}_2 - \tilde{v}_{2j_0}$ and noting that $\|\dot{v}_{1i_0}\|_2 \le 1$ and $\|\tilde{v}_{2j_0}\|_2 = 1$, we have

$$\|v_1 \otimes v_2 - \tilde{v}_1 \otimes \tilde{v}_2\|_2 = \|v_1^d \otimes \tilde{v}_{2j_0} + \dot{v}_{1i_0} \otimes v_2^d + v_1^d \otimes v_2^d\|_2 \le \|v_1^d\|_2 + \|v_2^d\|_2 + \|v_1^d\|_2 \|v_2^d\|_2 \le \epsilon.$$

Therefore, $\Pi_{k_1k_2}$ is a ϵ -cover of $W_{k_1k_2}$. In addition, by the definition of $\Pi_{k_1k_2}$, we have

$$|\Pi_{k_1k_2}| \le \left(\frac{15}{2\epsilon}\right)^{k_1+k_2} \binom{q}{k_1}\binom{p}{k_2}.$$

Thus, $\Pi_{W_1} = \bigcup_{k_1,k_2} \Pi_{k_1k_2}$ is the ϵ -cover of W_1 with

$$|\Pi_{W_1}| \le \sum_{0 < k_1, k_2 \in \mathbb{Z}^+, k_1 k_2 \le 2s_0} \left(\frac{15}{2\epsilon}\right)^{k_1 + k_2} \binom{q}{k_1} \binom{p}{k_2}.$$

Step 2. We compute the covering number of W_0 . Replacing ϵ by $d_0\epsilon$, v_i by $\sqrt{d_0}v_i$, i = 1, 2, and making some small revision of the proof of step 1, we have the conclusion of Lemma 4. This completes the proof. \Box