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1. Proof of Lemma 1

Let A = {||Ve|loo/n < M} and B = {||V,|l2/v/n < 1+ 80,5 = 1,--- ,pg}. Then P(A) =
P(B)P(A|B). Then by the inequality of the tail probability of the normal distribution, we have

pq
P(B)=1-P(B)=1=) P(|[V;lo/vn=1+6).
j=1
Denoting §; = (14 dp)? — 1, we have
P (I[Vjll2/vn =1+ d0) < P (IV;lz —n > n[(1+00)* = 1]) = P ([V;llz = n > nd1) .

Note that |V,]|3 has a x? distribution. Based on the tail probability bound of xZ( that is,
P(x2 >n+x) < exp(—z(z,2?/n))). We have P (||V;]l2/v/n > 1+ &) < exp(—3 min(ndy, né3)).
Consequently,

P(B)>1-— exp(—% min(ndy, nd;y) + log(pq)).

On the other hand by Lemma C.1 of Zhou (2009), it is easy to see that taking A\, = (1 +

0)o\/2(1 + a)log(pg)/n for any a > 0, we have P(A|B) > 1 — [(pq)*/mlog(pq)]~'. Therefore

the conclusion holds. O

2. Proof of Theorem 1

Step 1. We first show that ||& — «||; can be small.

Letu=é—9=ﬁ®d—ﬁ®a. Note that

A o1
(@, B) = arg Jnin [y - V70|12 4+ N\, Py
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Conditioning on 4, similar to that of Bickel et al. (2009) and Lemma C.2 of Zhou (2009),

for A, = (14 do)o\/2(1 + a)log(pq) /n, we have
Jusglly < 3[[us, |-
Furthermore, by the similar procedure of the Proposition C.3 of Zhou (2009), we have

lully = |3 ® & — B@ alli < Botnso. (A1)

For simplicity, we denote A, = By\.so. Recall that ||&|; = |||y = 1 and that for any
B = (B, ,0)" 1By = -+ > |Byl is the decreasing order of |3;]. For j = 1,--- ¢, define
a; = [Billall = [5;] and a; = |Gjll|lall = [5;]. By (A.1), we have

max || §;& — gialli < A (A.2)

1<5<q

Therefore, by the triangular inequality, we have

max
1<5<q

1351 = 1851

—maX‘WJmO‘Hl Billladla| < A (A.3)

Let dy = [Ba)| — |B(2)| and denote ky = arg max |3;|. Recall our assumption that sign(f,) = 1.
J
As A\, < do/2, by (A.3), we have ayo = |Ok,| = max |6;]. By (2.2) and the fact sign(f;)) =1 in
<i<q
the algorithm, we have

sign(Bro) = 1. (A.4)

Denote 6o = aro — ago. Then [dxo| < A, . Also by (A.2), we have

A > || Bro@ — Broalli = [laroBrod/dro — aroBror/arolly = I(axo + 0ko)Brodt/dro — aroBrocr/arolls
— Jlaro(Bro@t/aro — Brocr/aro) + SroBrod/dnolls

> HCLkO(BkOd/dkO — Broar/ako) Brocr/aro) |1 — |0l |-

Therefore, it follow that Hako(ﬁkod/&ko — Broa/ako) |1 < A\, + |0ko| < 2)\,,. That is,

H(Bko@/dko — Broar/ako) |1 < 25\n/ak0 = 25\n/‘ﬂk0‘- (A.5)



Recalling that sign(fGro) = 1, by (A.4), we have Fyo/ar, = Bko/&ko = 1. Combined with (A.5), we
have

& — alli < 20 /|Brol- (A.6)

Step 2. Based on (A.1) and the fact that ||&||; = |||y = 1, we have

o
3
V

IBea—-psealh=(B-F)ed—pFe(@—a)l
> I3 -p)@dh ~ I8 (a—a)lh|= ’IIB—ﬁlll— 18[l1[1(er = @[]

Consequently, by (A.6), we have

1B=B8li < N+ lIB8lhlla—all =X + 1Bl ]l& — all,
= (1 +2(|8111/18k0l) = Bodnso(L + 2[|8]1/|Bkol)-

This completes the proof.

3. Proof of Theorem 2

Let U = VX2 = (U, --- ,¥,)T be a n by pg matrix with 4.i.d. rows ¥;,4 = 1,---  n from
N(0, I,).

Step 1. We first show that, for any 0 < v < 1, if (3.1) holds, then the following inequality
holds with probability at least 1 — exp{—ey?n/ag},

| ol

< NG <1+4~, forall ueJ. (A.1)

Note that W, is an isotropic vector with the 1), norm ag. Let SP4! := {v : v € RP9,||v||o = 1}.
By Theorem 2.5 of Zhou (2009) or Theorem 2.1 of Mendelson et al (2008), for any 0 < v < 1

and any set V C SP7! ifn > C;agg [L.(V)]?, then with probability at least 1 —exp{—cy?n/ag}, we

have that
1—v < ||Wvlz/v/n <1+~ forall ve,

where ¢/, ¢ > 0 are constants. Therefore, (A.1) can be proved by taking V = Z; and computing



the complexity measure [,(Z;). Lemma 3 gives the following bound on [,(Z;)

Ly (Il) < C’S(),k’o \/1Og[6(67 30) max(p250q, pq280)]7

where c(e, sg) and Cy, j, are defined in Lemma 3. Therefore, (A.1) holds with probability at least

1 — exp{—cy*n/aj} since

250

n > { agCl, i, log[c(e, so) max(p**°q, pg®*)|} /7.

Step 2. We prove that, as (A.1) and (4.1) hold, the structured RE condition SRE(so, ko)
holds.

By Proposition 1.4 of Zhou (2009), for any u € R, such that [Juse|l; < kollusg||; for some

So C {1,--+,pq} with |So| < so, we have [Juzell; < kollug,|l1. Recall the definition of ug,. It
follows that set A; 2 {u € Jo : 3Sp with [Sp| < s such that  [Juge

1 < kollug, 1} = {u € Jo

1 < kollugy |1} 2 A,. Recalling the definition of T, it follows that ||ug,||2 < ||ur,|2, for any

||UTOC

So C {1, -+ ,pq} with |Sy| < sg. Therefore, RE condition RE(sg, ko, ) in (4.1) is equivalent to

21/2 21/2
min = ulls min =l K (sg, ko, X), (A.2)

wedr lus,lla vtz Jugfla

for some K (sg, ko, >) > 0. That is, for any u € As, we have
1= 2ully > Jlugy|l2 K (s0, ko, ). (A.3)

In addition, for any u € Ay, then u/||X'?ul|, € Ji. From (A.1), it is easy to see that

/2
N2l o g s 2ully, for all we Ay
Vn

That is,
[Vulls

Jn

This combined with (A.3) results in

> (1 —)||ZYully, for all ue Aj.

[Vulls

NG > (|5 2u|o(1 =) > (1 =) |lug,||2K (s0, ko, B), for all u € Aj. (A.4)
n




Similar to argument of (A.2), we have

Vel [Vl

————— =min —— > (1 — v)K(sg, ko, X)) > 0,
B lusils  von g, = P 0 ko)

where the last inequality follows from (A.4).
4. Proof of Theorem 3
Define the counterpart :71 and Z of J; and Z;, respectively, as
T = {u:ue R |2V, = Luge < kour, }, 7, = {fv:v=2Y2uue :71}

From Step 1 of Theorem 2, if n > C%ﬁh(i){ then unstructured RE condition RE(sg, ko) holds.

Define the counterpart U, of Us, as Uy, = {u—B@a : u € R, |[u—B@ally = 1, |supp(u)| =

so} and let Hﬁso be the e-cover of (750. Similar to the proof of Lemma 3, we have

(ko + 2) T 6(/€0 + 2)
ISV ) <0 T pax(S0) log [T~ |.
K (s, ko, ) P lg7ul < K (so, ko, 2) \/p (s0) log |, |

u€Us,

l*(fﬂ <

Recalling the definition of Wo in Section 4.2, similar to the argument of the relation between Uk,

and Wy in Section 4.1, due to sg < pq, we have

5do\** [ pq

where the last inequality is derived from (4.4). Note that ( 5 q) < (22)20, We have

So 2s0
Bdo \ > (epg\*° 28
|Hﬁso S 280 (2_6> (2_80 - 01(30,6)(]3(]) °.
Consequently,
~ 6(ko + 2
l*(Il> S W\/ﬂma}((SO) log[cl (507 6) (pQ>280]'

This completes the proof. [J

5. Proof of Lemma 3



Step 1. We first prove that

ko + 2
(ko +2) E sup |g7%2u).

LW(1) < ———
( 1> K<307k072> u€ls

By the definition of complexity measure, we have

L(Th) = Esup |¢g"v| = E sup [¢" ="/ ?ul,
veTy ueJ1

where g = (g1, , gpg) ~ N(0, L,,). For any J C {1,--- ,pq}, We extend u; into v’ € RP, such
that v/ = 0,u/; = uy. In the following argument, with some abuse of notations, we still use
uy to denote the extended vector ' in RP?. The following argument is similar to that of Zhou

(2009). We present here for completeness of the paper. For any u € J;, we have

T21/2

Ty 1/2 Ty 1/2 T 1/2 |9T21/2UT0| g ur, |
9" 2u < g S Pug | + ) 19 S Pun | < lug o Y llum [l
E>1 ||uTO||2 k>1 ||uTk||2
< (fuglla + > luzll2) sup |g"S"ul. (A1)
o1 teUs,

It is easy to see that ||ur, |2 < v/Sollur, |l < [Juz, ,|l1/+/S0. Furthermore, by Lemma 2, we have

Z luz, 2 < ([Juz [l + Z luzy[[1)/v/s0 < (luzy [l + [luzg[[1)/v/s0 < (ko + D)|luz [l1/+/So0.-

k>1 k>1

Combining with |luz,||1/v/S0 < ||uz|2, we have

> lluzlle < (ko + 1)lfug [l (A.2)

k>1

Furthermore, by the definition of K (sg, ko, ), it follows that
luzy[l2 < 1=Y2ull2/ K (s0, ko, X) = 1/K (s0, ko, £). (A.3)
The last equation is due to the fact || X'/2ul|y = 1 for any u € J;. By (A.1)-(A.3), we have

Ts1/2 T 1/2 (Ko 2) T 1/2
g b)) ul < (k + 2 ur sup |g b)) U < — sup (g by ul.
| | —_ ( 0 )H 0||2ue » | | —_ F((SO,]’CU,E) we “ | |



Therefore we have

ko +2)
.(Z;) = E [ su Tzl/Qu) < (O—E su Tal.
( 1) (ue\% |g ‘ — K(So, k[), E) ueUIS)O |g ’

Step 2. We show that E sup [g7u| < 61/ pmax(s0) log[c(€o, o) max(p2soq, pg?»)].

t€Us,

By Lemma 2.3 of Mendelson et al. (2008), there exists set Ily, = {u; € Uy,i = 1,---} of

the cardinality |y, [, such that

Us, C 2CODVHUSO )

Consequently, we have

E sup |¢"SY%u] <2E  sup  [¢T8Y2u| =2E sup |g7EV . (A.4)

teUs, u€coanUS0 UGHUSO

By the results of Ledoux and Talagrand (1991)(See also Lemma B.5 of Zhou (2009)), we have

E sup |¢"SY%u| < 34/log 1y, 1<y2|%x |\/E(gTZl/2ui)2 < 3\/pmax(so)log 1y,
<i<|My,,

UEHUSO

, (A5

where we have used the definition of \/puax(so) and the fact that E(g?¥Y%u;)? = ul Yu; and
that g = (g1, , gpg) ~ N(0, Ig). Also by (4.2), we have [y, | < [y, |. Consequently, by the

results of Lemma 4, and the argument on the leading term of (4.3) in Section 4.2, we have

15dy\ > "
[Ty, | < 259 (7) max{qC2*, pC7*°} < c(e, so) max(qp®, pg*™), (A.6)
where c(e, s9) = 23 (13‘:0)280+1 (ﬁ)%0 and CF* = P , which is less than (%)250 and CZ* is

280
defined in analogy. Therefore, by (A.4)- (A.6) and the fact |IIy, | < [Ily,|, we have

E Sup |gT21/2u| < 6\/:0max(50) IOg |HW0| < 6\/pmax(50) 10g[C(€, SO) max(pQS()q’quso)]_

teUs,

The proof is completed.

6. Proof of Lemma 4

Step 1. For simplicity, we first compute the covering number of the W; defined below, which

7



is a special case of Wy with dy = 1
Wy ={w=v; ®@vy;v; € R, 09 € RP,||v; @ v2]|2 < 1, |supp(v1)] - [supp(v2)| < 250, }.

We will show that for 0 < € < 1/2, there exists e-cover Iy, of W; with

mis 2 (7))

0<k1,ko€Zt k1ka<2sg

In fact, it is easy to see that

W, = U Wik

0<ki,ko€Zt k1ka<2sg

where Wik, = {w = vy @ vg;v1 € RP,v9 € RY, ||vy @ a2 < 1, [supp(vy)| = ki, [supp(ve)| = ko, }.
Since sg is fixed, here the summation involves only finite terms. For any m € Z%, define

S™={v:ve R |v|a=1} and B" = {v:v € R™, ||v|2 < 1}.

For any v; € R?, vy € RP, set v; = v;/||vill2,i = 1,2, then 0, € S7! 0, € SP~!. Noting that

|v1 @ valla < 1, it follows that ||vy|2 - [[va]|2 < 1. Consequently, for any w € Wy, x,, we have
w =01 ®vy = (|Jvrllz - |val]2) - 01 ® By £ b1 ® T,

Note that {||v]|2]|vall2-01 : 01 € ST supp(vy) = ki, [|Jv1||2]|v2lla < 1} = {91 : 01 € BY, supp(v;) =
ki1}. For any fixed ki, ks, by Lemma 2.3 of Mendelson et al. (2008), for the sets {0y : 01 €
BY, supp(vy) = k1} and {0y : 9o € SP7! supp(vy) = ko}, there exist respectively €/3-cover of
Ay ={0y,i=1,---,} and Ay = {0g;,i = 1,--- , } with

15\ /¢ 15\" [ p
M < | — Ao < | — .
s (z) (1) (@) ()
Therefore the e-cover of Wy, i, can be taken as
Hk1k2:{@1i®62j’i:1>""|A1|’j:17"'7|A2|}'

In fact, for any w = v; @ vy € Wi,,, we have w = 0, ® vy for some v, € B? and v, € SP~!. There



exists 79, jo such that

[01 = Vil S €/3, [[02 = Dgjol2 < €/3.

Consequently, letting v = 0 —0y;, and v§ = 0y — ¥y, and noting that |15, || < 1 and ||T9;, ]2 = 1,

we have
lor @ vy — 01 ® Bal2 = [[0f @ Doy + V1o ® 0§ + 0 @ V3 lla < [0l + (V32 + [lof[l2l|v5]l2 < e.
Therefore, I1j,x, is a e-cover of Wy x,. In addition, by the definition of Ilj,x,, we have

15 k1+k2 q p
< | = .
meel= () (1)(2)

Thus, Iy, = U I, is the e-cover of W) with

k1,k2
15 k1+k2 q p
II < — .
mis 2o @) (W)

0<ky,ko€Z% k1ka<2s9

Step 2. We compute the covering number of Wy. Replacing € by dge, v; by dov;, 1 = 1,2,
and making some small revision of the proof of step 1, we have the conclusion of Lemma 4. This

completes the proof. [



