Supplementary File: Structured Lasso for Regression with Matrix Covariates

Junlong Zhao and Chenlei Leng *

July 4, 2013

1. Proof of Lemma 1

Let $A=\left\{\|\mathbb{V} \varepsilon\|_{\infty} / n<\lambda_{n}\right\}$ and $B=\left\{\left\|\mathbb{V}_{j}\right\|_{2} / \sqrt{n} \leq 1+\delta_{0}, j=1, \cdots, p q\right\}$. Then $P(\mathcal{A})=$ $P(B) P(A \mid B)$. Then by the inequality of the tail probability of the normal distribution, we have

$$
P(B)=1-P\left(B^{c}\right) \geq 1-\sum_{j=1}^{p q} P\left(\left\|\mathbb{V}_{j}\right\|_{2} / \sqrt{n} \geq 1+\delta_{0}\right)
$$

Denoting $\delta_{1}=\left(1+\delta_{0}\right)^{2}-1$, we have

$$
P\left(\left\|\mathbb{V}_{j}\right\|_{2} / \sqrt{n} \geq 1+\delta_{0}\right) \leq P\left(\left\|\mathbb{V}_{j}\right\|_{2}^{2}-n \geq n\left[\left(1+\delta_{0}\right)^{2}-1\right]\right)=P\left(\left\|\mathbb{V}_{j}\right\|_{2}^{2}-n \geq n \delta_{1}\right) .
$$

Note that $\left\|\mathbb{V}_{j}\right\|_{2}^{2}$ has a χ_{n}^{2} distribution. Based on the tail probability bound of χ_{n}^{2} (that is, $\left.P\left(\chi_{n}^{2}>n+x\right)<\exp \left(-\frac{1}{8}\left(x, x^{2} / n\right)\right)\right)$. We have $P\left(\left\|\mathbb{V}_{j}\right\|_{2} / \sqrt{n} \geq 1+\delta_{0}\right) \leq \exp \left(-\frac{1}{8} \min \left(n \delta_{1}, n \delta_{1}^{2}\right)\right)$. Consequently,

$$
P(B)>1-\exp \left(-\frac{1}{8} \min \left(n \delta_{1}, n \delta_{1}^{2}\right)+\log (p q)\right)
$$

On the other hand by Lemma C. 1 of Zhou (2009), it is easy to see that taking $\lambda_{n}=(1+$ $\left.\delta_{0}\right) \sigma \sqrt{2(1+a) \log (p q) / n}$ for any $a>0$, we have $P(A \mid B) \geq 1-\left[(p q)^{a} \sqrt{\pi \log (p q)}\right]^{-1}$. Therefore the conclusion holds.

2. Proof of Theorem 1

Step 1. We first show that $\|\hat{\alpha}-\alpha\|_{1}$ can be small.
Let $u=\hat{\theta}-\theta=\hat{\beta} \otimes \hat{\alpha}-\beta \otimes \alpha$. Note that

$$
(\hat{\alpha}, \hat{\beta})=\arg \min _{(\alpha, \beta) \in \mathcal{E}} \frac{1}{n}\left\|\mathbb{Y}-\mathbb{V}^{T} \theta\right\|_{2}^{2}+\lambda_{n} P_{\theta}
$$

[^0]Conditioning on \mathcal{A}, similar to that of Bickel et al. (2009) and Lemma C. 2 of Zhou (2009), for $\lambda_{n}=\left(1+\delta_{0}\right) \sigma \sqrt{2(1+a) \log (p q) / n}$, we have

$$
\left\|u_{S_{\theta}}\right\|_{1}<3\left\|u_{S_{\theta}}\right\|_{1} .
$$

Furthermore, by the similar procedure of the Proposition C. 3 of Zhou (2009), we have

$$
\begin{equation*}
\|u\|_{1}=\|\hat{\beta} \otimes \hat{\alpha}-\beta \otimes \alpha\|_{1} \leq B_{0} \lambda_{n} s_{0} \tag{A.1}
\end{equation*}
$$

For simplicity, we denote $\tilde{\lambda}_{n}=B_{0} \lambda_{n} s_{0}$. Recall that $\|\hat{\alpha}\|_{1}=\|\alpha\|_{1}=1$ and that for any $\beta=\left(\beta_{1}, \cdots, \beta_{q}\right)^{T},\left|\beta_{(1)}\right| \geq \cdots \geq\left|\beta_{(q)}\right|$ is the decreasing order of $\left|\beta_{j}\right|$. For $j=1, \cdots, q$, define $\hat{a}_{j}=\left|\hat{\beta}_{j}\right|\|\hat{\alpha}\|_{1}=\left|\hat{\beta}_{j}\right|$ and $a_{j}=\left|\beta_{j}\right|\|\alpha\|_{1}=\left|\beta_{j}\right|$. By (A.1), we have

$$
\begin{equation*}
\max _{1 \leq j \leq q}\left\|\hat{\beta}_{j} \hat{\alpha}-\beta_{j} \alpha\right\|_{1} \leq \tilde{\lambda}_{n} \tag{A.2}
\end{equation*}
$$

Therefore, by the triangular inequality, we have

$$
\begin{equation*}
\max _{1 \leq j \leq q}| | \hat{\beta}_{j}\left|-\left|\beta_{j}\right|\right|=\max _{1 \leq j \leq q}| | \hat{\beta}_{j}\left|\|\hat{\alpha}\|_{1}-\left|\beta_{j}\right|\|\alpha\|_{1}\right| \leq \tilde{\lambda}_{n} \tag{A.3}
\end{equation*}
$$

Let $d_{0}=\left|\beta_{(1)}\right|-\left|\beta_{(2)}\right|$ and denote $k_{0}=\arg \max _{j}\left|\beta_{j}\right|$. Recall our assumption that $\operatorname{sign}\left(\beta_{k_{0}}\right)=1$. As $\tilde{\lambda}_{n}<d_{0} / 2$, by (A.3), we have $\hat{a}_{k 0}=\left|\hat{\beta}_{k_{0}}\right|=\max _{1 \leq j \leq q}\left|\hat{\beta}_{j}\right|$. By (2.2) and the fact $\operatorname{sign}\left(\hat{\beta}_{(1)}\right)=1$ in the algorithm, we have

$$
\begin{equation*}
\operatorname{sign}\left(\hat{\beta}_{k 0}\right)=1 \tag{A.4}
\end{equation*}
$$

Denote $\delta_{k 0}=\hat{a}_{k 0}-a_{k 0}$. Then $\left|\delta_{k 0}\right| \leq \tilde{\lambda}_{n}$. Also by (A.2), we have

$$
\begin{aligned}
\tilde{\lambda}_{n} & \geq\left\|\hat{\beta}_{k 0} \hat{\alpha}-\beta_{k 0} \alpha\right\|_{1}=\left\|\hat{a}_{k 0} \hat{\beta}_{k 0} \hat{\alpha} / \hat{a}_{k 0}-a_{k 0} \beta_{k 0} \alpha / a_{k 0}\right\|_{1}=\left\|\left(a_{k 0}+\delta_{k 0}\right) \hat{\beta}_{k 0} \hat{\alpha} / \hat{a}_{k 0}-a_{k 0} \beta_{k 0} \alpha / a_{k 0}\right\|_{1} \\
& =\left\|a_{k 0}\left(\hat{\beta}_{k 0} \hat{\alpha} / \hat{a}_{k 0}-\beta_{k 0} \alpha / a_{k 0}\right)+\delta_{k 0} \hat{\beta}_{k 0} \hat{\alpha} / \hat{a}_{k 0}\right\|_{1} \\
& \geq\left|\left\|a_{k 0}\left(\hat{\beta}_{k 0} \hat{\alpha} / \hat{a}_{k 0}-\beta_{k 0} \alpha / a_{k 0}\right)\right\|_{1}-\left\|\delta_{k 0} \hat{\beta}_{k 0} \hat{\alpha} / \hat{a}_{k 0}\right\|_{1}\right|=\left|\left\|a_{k 0}\left(\hat{\beta}_{k 0} \hat{\alpha} / \hat{a}_{k 0}-\beta_{k 0} \alpha / a_{k 0}\right)\right\|_{1}-\left|\delta_{k 0}\right| .\right.
\end{aligned}
$$

Therefore, it follow that $\left\|a_{k 0}\left(\hat{\beta}_{k 0} \hat{\alpha} / \hat{a}_{k 0}-\beta_{k 0} \alpha / a_{k 0}\right)\right\|_{1} \leq \tilde{\lambda}_{n}+\left|\delta_{k 0}\right| \leq 2 \tilde{\lambda}_{n}$. That is,

$$
\begin{equation*}
\left\|\left(\hat{\beta}_{k 0} \hat{\alpha} / \hat{a}_{k 0}-\beta_{k 0} \alpha / a_{k 0}\right)\right\|_{1} \leq 2 \tilde{\lambda}_{n} / a_{k 0}=2 \tilde{\lambda}_{n} /\left|\beta_{k 0}\right| \tag{A.5}
\end{equation*}
$$

Recalling that $\operatorname{sign}\left(\beta_{k 0}\right)=1$, by (A.4), we have $\beta_{k 0} / a_{k_{0}}=\hat{\beta}_{k 0} / \hat{a}_{k 0}=1$. Combined with (A.5), we have

$$
\begin{equation*}
\|\hat{\alpha}-\alpha\|_{1} \leq 2 \tilde{\lambda}_{n} /\left|\beta_{k 0}\right| \tag{A.6}
\end{equation*}
$$

Step 2. Based on (A.1) and the fact that $\|\hat{\alpha}\|_{1}=\|\alpha\|_{1}=1$, we have

$$
\begin{aligned}
\tilde{\lambda}_{n} & \geq\|\hat{\beta} \otimes \hat{\alpha}-\beta \otimes \alpha\|_{1}=\|(\hat{\beta}-\beta) \otimes \hat{\alpha}-\beta \otimes(\alpha-\hat{\alpha})\|_{1} \\
& \geq\left|\|(\hat{\beta}-\beta) \otimes \hat{\alpha}\|_{1}-\|\beta \otimes(\alpha-\hat{\alpha})\|_{1}\right|=\left|\|\hat{\beta}-\beta\|_{1}-\|\beta\|_{1}\|(\alpha-\hat{\alpha})\|_{1}\right|
\end{aligned}
$$

Consequently, by (A.6), we have

$$
\begin{aligned}
\|\hat{\beta}-\beta\|_{1} & \leq \tilde{\lambda}_{n}+\|\beta\|_{1}\|\alpha-\hat{\alpha}\|_{1}=\tilde{\lambda}_{n}+\|\beta\|_{1}\|\hat{\alpha}-\alpha\|_{1} \\
& =\tilde{\lambda}_{n}\left(1+2\|\beta\|_{1} /\left|\beta_{k 0}\right|\right)=B_{0} \lambda_{n} s_{0}\left(1+2\|\beta\|_{1} /\left|\beta_{k 0}\right|\right)
\end{aligned}
$$

This completes the proof.

3. Proof of Theorem 2

Let $\Psi=\mathbb{V} \Sigma^{-1 / 2}=\left(\Psi_{1}, \cdots, \Psi_{n}\right)^{T}$ be a n by $p q$ matrix with i.i.d. rows $\Psi_{i}, i=1, \cdots, n$ from $N\left(0, I_{p q}\right)$.

Step 1. We first show that, for any $0<\gamma<1$, if (3.1) holds, then the following inequality holds with probability at least $1-\exp \left\{-\bar{c} \gamma^{2} n / \alpha_{0}^{4}\right\}$,

$$
\begin{equation*}
1-\gamma \leq \frac{\left\|\Psi \Sigma^{1 / 2} u\right\|_{2}}{\sqrt{n}} \leq 1+\gamma, \quad \text { for all } u \in \mathcal{J}_{1} \tag{A.1}
\end{equation*}
$$

Note that Ψ_{i} is an isotropic vector with the ψ_{2} norm α_{0}. Let $S^{p q-1}:=\left\{v: v \in R^{p q},\|v\|_{2}=1\right\}$. By Theorem 2.5 of Zhou (2009) or Theorem 2.1 of Mendelson et al (2008), for any $0<\gamma<1$ and any set $\mathcal{V} \subset S^{p q-1}$, if $n>\frac{c^{\prime} \alpha_{0}^{4}}{\gamma^{2}}\left[l_{*}(\mathcal{V})\right]^{2}$, then with probability at least $1-\exp \left\{-\bar{c} \gamma^{2} n / \alpha_{0}^{4}\right\}$, we have that

$$
1-\gamma \leq\|\Psi v\|_{2} / \sqrt{n} \leq 1+\gamma \quad \text { for all } v \in \mathcal{V}
$$

where $c^{\prime}, \bar{c}>0$ are constants. Therefore, (A.1) can be proved by taking $\mathcal{V}=\mathcal{I}_{1}$ and computing
the complexity measure $l_{*}\left(\mathcal{I}_{1}\right)$. Lemma 3 gives the following bound on $l_{*}\left(\mathcal{I}_{1}\right)$

$$
l_{*}\left(\mathcal{I}_{1}\right) \leq C_{s_{0}, k_{0}} \sqrt{\log \left[c\left(\epsilon, s_{0}\right) \max \left(p^{2 s_{0}} q, p q^{2 s_{0}}\right)\right]}
$$

where $c\left(\epsilon, s_{0}\right)$ and $C_{s_{0}, k_{0}}$ are defined in Lemma 3. Therefore, (A.1) holds with probability at least $1-\exp \left\{-\bar{c} \gamma^{2} n / \alpha_{0}^{4}\right\}$ since

$$
n>\left\{c^{\prime} \alpha_{0}^{4} C_{s_{0}, k_{0}} \log \left[c\left(\epsilon, s_{0}\right) \max \left(p^{2 s_{0}} q, p q^{2 s_{0}}\right)\right]\right\} / \gamma^{2}
$$

Step 2. We prove that, as (A.1) and (4.1) hold, the structured RE condition $\operatorname{SRE}\left(s_{0}, k_{0}\right)$ holds.

By Proposition 1.4 of Zhou (2009), for any $u \in R^{p q}$, such that $\left\|u_{S_{0}^{c}}\right\|_{1}<k_{0}\left\|u_{S_{0}^{c}}\right\|_{1}$ for some $S_{0} \subset\{1, \cdots, p q\}$ with $\left|S_{0}\right| \leq s_{0}$, we have $\left\|u_{T_{0}^{c}}\right\|_{1}<k_{0}\left\|u_{T_{0}}\right\|_{1}$. Recall the definition of $u_{T_{0}}$. It follows that set $A_{1} \triangleq\left\{u \in \mathcal{J}_{0}: \exists S_{0}\right.$ with $\left|S_{0}\right| \leq s_{0}$ such that $\left.\left\|u_{S_{0}}\right\|_{1}<k_{0}\left\|u_{S_{0}}\right\|_{1}\right\}=\left\{u \in \mathcal{J}_{0}\right.$: $\left.\left\|u_{T_{0}^{c}}\right\|_{1}<k_{0}\left\|u_{T_{0}}\right\|_{1}\right\} \triangleq A_{2}$. Recalling the definition of T_{0}, it follows that $\left\|u_{S_{0}}\right\|_{2} \leq\left\|u_{T_{0}}\right\|_{2}$, for any $S_{0} \subset\{1, \cdots, p q\}$ with $\left|S_{0}\right| \leq s_{0}$. Therefore, RE condition $R E\left(s_{0}, k_{0}, \Sigma\right)$ in (4.1) is equivalent to

$$
\begin{equation*}
\min _{u \in A_{1}} \frac{\left\|\Sigma^{1 / 2} u\right\|_{2}}{\left\|u_{S_{0}}\right\|_{2}}=\min _{u \in A_{2}} \frac{\left\|\Sigma^{1 / 2} u\right\|_{2}}{\left\|u_{T_{0}}\right\|_{2}}=K\left(s_{0}, k_{0}, \Sigma\right) \tag{A.2}
\end{equation*}
$$

for some $K\left(s_{0}, k_{0}, \Sigma\right)>0$. That is, for any $u \in A_{2}$, we have

$$
\begin{equation*}
\left\|\Sigma^{1 / 2} u\right\|_{2} \geq\left\|u_{T_{0}}\right\|_{2} K\left(s_{0}, k_{0}, \Sigma\right) \tag{A.3}
\end{equation*}
$$

In addition, for any $u \in A_{1}$, then $u /\left\|\Sigma^{1 / 2} u\right\|_{2} \in \mathcal{J}_{1}$. From (A.1), it is easy to see that

$$
\frac{\left\|\Psi \Sigma^{1 / 2} u\right\|_{2}}{\sqrt{n}} \geq(1-\gamma)\left\|\Sigma^{1 / 2} u\right\|_{2}, \quad \text { for all } u \in A_{1}
$$

That is,

$$
\frac{\|\mathbb{V} u\|_{2}}{\sqrt{n}} \geq(1-\gamma)\left\|\Sigma^{1 / 2} u\right\|_{2}, \quad \text { for all } \quad u \in A_{1}
$$

This combined with (A.3) results in

$$
\begin{equation*}
\frac{\|\mathbb{V} u\|_{2}}{\sqrt{n}} \geq\left\|\Sigma^{1 / 2} u\right\|_{2}(1-\gamma) \geq(1-\gamma)\left\|u_{T_{0}}\right\|_{2} K\left(s_{0}, k_{0}, \Sigma\right), \quad \text { for all } u \in A_{1} \tag{A.4}
\end{equation*}
$$

Similar to argument of (A.2), we have

$$
\min _{u \in A_{1}} \frac{\|\mathbb{V} u\|_{2}}{\sqrt{n}\left\|u_{S_{0}}\right\|_{2}}=\min _{u \in A_{1}} \frac{\|\mathbb{V} u\|_{2}}{\sqrt{n}\left\|u_{T_{0}}\right\|_{2}} \geq(1-\gamma) K\left(s_{0}, k_{0}, \Sigma\right)>0
$$

where the last inequality follows from (A.4).

4. Proof of Theorem 3

Define the counterpart $\widetilde{\mathcal{J}}_{1}$ and $\widetilde{\mathcal{I}}_{1}$ of \mathcal{J}_{1} and \mathcal{I}_{1}, respectively, as

$$
\widetilde{\mathcal{J}}_{1}=\left\{u: u \in R^{p q},\left\|\Sigma^{1 / 2} u\right\|_{2}=1, u_{T_{0}^{c}} \leq k_{0} u_{T_{0}}\right\}, \widetilde{\mathcal{I}}_{1}=\left\{v: v=\Sigma^{1 / 2} u, u \in \widetilde{\mathcal{J}}_{1}\right\}
$$

From Step 1 of Theorem 2, if $n>\frac{c^{\prime} \alpha_{0}^{4}}{\gamma^{2}} l_{*}\left(\widetilde{\mathcal{I}}_{1}\right)^{2}$, then unstructured RE condition $R E\left(s_{0}, k_{0}\right)$ holds.
Define the counterpart $\widetilde{U}_{s_{0}}$ of $U_{S_{0}}$ as $\widetilde{U}_{s_{0}}=\left\{u-\beta \otimes \alpha: u \in R^{p q},\|u-\beta \otimes \alpha\|_{2}=1,|\operatorname{supp}(u)|=\right.$ $\left.s_{0}\right\}$ and let $\Pi_{\widetilde{U}_{s_{0}}}$ be the ϵ-cover of $\widetilde{U}_{s_{0}}$. Similar to the proof of Lemma 3, we have

$$
l_{*}\left(\widetilde{\mathcal{I}}_{1}\right) \leq \frac{\left(k_{0}+2\right)}{K\left(s_{0}, k_{0}, \Sigma\right)} \mathbb{E} \sup _{u \in \widetilde{U}_{s_{0}}}\left|g^{T} u\right| \leq \frac{6\left(k_{0}+2\right)}{K\left(s_{0}, k_{0}, \Sigma\right)} \sqrt{\rho_{\max }\left(s_{0}\right) \log \left|\Pi_{\tilde{U}_{s_{0}}}\right|}
$$

Recalling the definition of \widetilde{W}_{0} in Section 4.2, similar to the argument of the relation between $U_{s_{0}}$ and W_{0} in Section 4.1, due to $s_{0} \ll p q$, we have

$$
\left|\Pi_{\widetilde{U}_{s_{0}}}\right| \leq\left|\Pi_{\widetilde{W}_{0}}\right| \leq 2 s_{0}\left(\frac{5 d_{0}}{2 \epsilon}\right)^{2 s_{0}}\binom{p q}{2 s_{0}},
$$

where the last inequality is derived from (4.4). Note that $\binom{p q}{2 s_{0}} \leq\left(\frac{e p q}{2 s_{0}}\right)^{2 s_{0}}$. We have

$$
\left|\Pi_{\tilde{U}_{s_{0}}}\right| \leq 2 s_{0}\left(\frac{5 d_{0}}{2 \epsilon}\right)^{2 s_{0}}\left(\frac{e p q}{2 s_{0}}\right)^{2 s_{0}}=c_{1}\left(s_{0}, \epsilon\right)(p q)^{2 s_{0}}
$$

Consequently,

$$
l_{*}\left(\widetilde{\mathcal{I}}_{1}\right) \leq \frac{6\left(k_{0}+2\right)}{K\left(s_{0}, k_{0}, \Sigma\right)} \sqrt{\rho_{\max }\left(s_{0}\right) \log \left[c_{1}\left(s_{0}, \epsilon\right)(p q)^{2 s_{0}}\right]} .
$$

This completes the proof.

5. Proof of Lemma 3

Step 1. We first prove that

$$
l_{*}\left(\mathcal{I}_{1}\right) \leq \frac{\left(k_{0}+2\right)}{K\left(s_{0}, k_{0}, \Sigma\right)} \mathbb{E} \sup _{u \in U_{s_{0}}}\left|g^{T} \Sigma^{1 / 2} u\right|
$$

By the definition of complexity measure, we have

$$
l_{*}\left(\mathcal{I}_{1}\right)=\mathbb{E} \sup _{v \in \mathcal{I}_{1}}\left|g^{T} v\right|=\mathbb{E} \sup _{u \in \mathcal{J}_{1}}\left|g^{T} \Sigma^{1 / 2} u\right|,
$$

where $g=\left(g_{1}, \cdots, g_{p q}\right) \sim N\left(0, I_{p q}\right)$. For any $J \subset\{1, \cdots, p q\}$, We extend u_{J} into $u^{\prime} \in R^{p q}$, such that $u_{J c}^{\prime}=0, u_{J}^{\prime}=u_{J}$. In the following argument, with some abuse of notations, we still use u_{J} to denote the extended vector u^{\prime} in $R^{p q}$. The following argument is similar to that of Zhou (2009). We present here for completeness of the paper. For any $u \in \mathcal{J}_{1}$, we have

$$
\begin{align*}
\left|g^{T} \Sigma^{1 / 2} u\right| & \leq\left|g^{T} \Sigma^{1 / 2} u_{T_{0}}\right|+\sum_{k \geq 1}\left|g^{T} \Sigma^{1 / 2} u_{T_{k}}\right| \leq\left\|u_{T_{0}}\right\|_{2} \frac{\left|g^{T} \Sigma^{1 / 2} u_{T_{0}}\right|}{\left\|u_{T_{0}}\right\|_{2}}+\sum_{k \geq 1}\left\|u_{T_{k}}\right\|_{2} \frac{\left|g^{T} \Sigma^{1 / 2} u_{T_{k}}\right|}{\left\|u_{T_{k}}\right\|_{2}} \\
& \leq\left(\left\|u_{T_{0}}\right\|_{2}+\sum_{k \geq 1}\left\|u_{T_{k}}\right\|_{2}\right) \sup _{t \in U_{s_{0}}}\left|g^{T} \Sigma^{1 / 2} u\right| . \tag{A.1}
\end{align*}
$$

It is easy to see that $\left\|u_{T_{k}}\right\|_{2} \leq \sqrt{s_{0}}\left\|u_{T_{k}}\right\|_{\infty} \leq\left\|u_{T_{k-1}}\right\|_{1} / \sqrt{s_{0}}$. Furthermore, by Lemma 2 , we have

$$
\sum_{k \geq 1}\left\|u_{T_{k}}\right\|_{2} \leq\left(\left\|u_{T_{0}}\right\|_{1}+\sum_{k \geq 1}\left\|u_{T_{j}}\right\|_{1}\right) / \sqrt{s_{0}} \leq\left(\left\|u_{T_{0}}\right\|_{1}+\left\|u_{T_{0}^{c}}\right\|_{1}\right) / \sqrt{s_{0}} \leq\left(k_{0}+1\right)\left\|u_{T_{0}}\right\|_{1} / \sqrt{s_{0}}
$$

Combining with $\left\|u_{T_{0}}\right\|_{1} / \sqrt{s_{0}} \leq\left\|u_{T_{0}}\right\|_{2}$, we have

$$
\begin{equation*}
\sum_{k \geq 1}\left\|u_{T_{k}}\right\|_{2} \leq\left(k_{0}+1\right)\left\|u_{T_{0}}\right\|_{2} \tag{A.2}
\end{equation*}
$$

Furthermore, by the definition of $K\left(s_{0}, k_{0}, \Sigma\right)$, it follows that

$$
\begin{equation*}
\left\|u_{T_{0}}\right\|_{2} \leq\left\|\Sigma^{1 / 2} u\right\|_{2} / K\left(s_{0}, k_{0}, \Sigma\right)=1 / K\left(s_{0}, k_{0}, \Sigma\right) \tag{A.3}
\end{equation*}
$$

The last equation is due to the fact $\left\|\Sigma^{1 / 2} u\right\|_{2}=1$ for any $u \in \mathcal{J}_{1}$. By (A.1)-(A.3), we have

$$
\left|g^{T} \Sigma^{1 / 2} u\right| \leq\left(k_{0}+2\right)\left\|u_{T_{0}}\right\|_{2} \sup _{u \in U_{s_{0}}}\left|g^{T} \Sigma^{1 / 2} u\right| \leq \frac{\left(k_{0}+2\right)}{K\left(s_{0}, k_{0}, \Sigma\right)} \sup _{u \in U_{s_{0}}}\left|g^{T} \Sigma^{1 / 2} u\right| .
$$

Therefore we have

$$
l_{*}\left(\mathcal{I}_{1}\right)=E\left(\sup _{u \in \mathcal{J}_{1}}\left|g^{T} \Sigma^{1 / 2} u\right|\right) \leq \frac{\left(k_{0}+2\right)}{K\left(s_{0}, k_{0}, \Sigma\right)} \mathbb{E} \sup _{u \in U_{s_{0}}}\left|g^{T} u\right|
$$

Step 2. We show that $\mathbb{E} \sup _{t \in U_{s_{0}}}\left|g^{T} u\right| \leq 6 \sqrt{\rho_{\max }\left(s_{0}\right) \log \left[c\left(\epsilon_{0}, s_{0}\right) \max \left(p^{2 s_{0}} q, p q^{2 s_{0}}\right)\right]}$.
By Lemma 2.3 of Mendelson et al. (2008), there exists set $\Pi_{U_{s_{0}}}=\left\{u_{i} \in U_{s_{0}}, i=1, \cdots\right\}$ of the cardinality $\left|\Pi_{U_{s_{0}}}\right|$, such that

$$
U_{s_{0}} \subseteq 2 \operatorname{conv} \Pi_{U_{s_{0}}} .
$$

Consequently, we have

$$
\begin{equation*}
\mathbb{E} \sup _{t \in U_{s_{0}}}\left|g^{T} \Sigma^{1 / 2} u\right| \leq 2 \mathbb{E} \sup _{u \in \operatorname{conv} \Pi_{U_{s_{0}}}}\left|g^{T} \Sigma^{1 / 2} u\right|=2 \mathbb{E} \sup _{u \in \Pi_{U_{s_{0}}}}\left|g^{T} \Sigma^{1 / 2} u\right| \tag{A.4}
\end{equation*}
$$

By the results of Ledoux and Talagrand (1991)(See also Lemma B. 5 of Zhou (2009)), we have

$$
\begin{equation*}
\mathbb{E} \sup _{u \in \Pi_{U_{s_{0}}}}\left|g^{T} \Sigma^{1 / 2} u\right| \leq 3 \sqrt{\log \left|\Pi_{U_{s_{0}}}\right|} \max _{1 \leq i \leq \Pi_{U_{s_{0}}} \mid} \sqrt{E\left(g^{\left.T \Sigma^{1 / 2} u_{i}\right)^{2}}\right.} \leq 3 \sqrt{\rho_{\max }\left(s_{0}\right) \log \left|\Pi_{U_{s_{0}}}\right|} \tag{A.5}
\end{equation*}
$$

where we have used the definition of $\sqrt{\rho_{\max }\left(s_{0}\right)}$ and the fact that $E\left(g^{T} \Sigma^{1 / 2} u_{i}\right)^{2}=u_{i}^{T} \Sigma u_{i}$ and that $g=\left(g_{1}, \cdots, g_{p q}\right) \sim N\left(0, I_{p q}\right)$. Also by (4.2), we have $\left|\Pi_{U_{s_{0}}}\right| \leq\left|\Pi_{W_{0}}\right|$. Consequently, by the results of Lemma 4, and the argument on the leading term of (4.3) in Section 4.2, we have

$$
\begin{equation*}
\left|\Pi_{W_{0}}\right| \leq 2 s_{0}\left(\frac{15 d_{0}}{2 \epsilon}\right)^{2 s_{0}+1} \max \left\{q C_{p}^{2 s_{0}}, p C_{q}^{2 s_{0}}\right\} \leq c\left(\epsilon, s_{0}\right) \max \left(q p^{2 s_{0}}, p q^{2 s_{0}}\right) \tag{A.6}
\end{equation*}
$$

where $c\left(\epsilon, s_{0}\right)=2 s_{0}\left(\frac{15 d_{0}}{2 \epsilon}\right)^{2 s_{0}+1}\left(\frac{e}{2 s_{0}}\right)^{2 s_{0}}$ and $C_{p}^{2 s_{0}}=\binom{p}{2 s_{0}}$, which is less than $\left(\frac{e p}{2 s_{0}}\right)^{2 s_{0}}$ and $C_{q}^{2 s_{0}}$ is defined in analogy. Therefore, by (A.4)- (A.6) and the fact $\left|\Pi_{U_{s_{0}}}\right| \leq\left|\Pi_{W_{0}}\right|$, we have

$$
\mathbb{E} \sup _{t \in U_{s_{0}}}\left|g^{T} \Sigma^{1 / 2} u\right| \leq 6 \sqrt{\rho_{\max }\left(s_{0}\right) \log \left|\Pi_{W_{0}}\right|} \leq 6 \sqrt{\rho_{\max }\left(s_{0}\right) \log \left[c\left(\epsilon, s_{0}\right) \max \left(p^{2 s_{0}} q, p q^{2 s_{0}}\right)\right]} .
$$

The proof is completed.

6. Proof of Lemma 4

Step 1. For simplicity, we first compute the covering number of the W_{1} defined below, which
is a special case of W_{0} with $d_{0}=1$

$$
W_{1}=\left\{w=v_{1} \otimes v_{2} ; v_{1} \in R^{q}, v_{2} \in R^{p},\left\|v_{1} \otimes v_{2}\right\|_{2} \leq 1,\left|\operatorname{supp}\left(v_{1}\right)\right| \cdot\left|\operatorname{supp}\left(v_{2}\right)\right| \leq 2 s_{0},\right\} .
$$

We will show that for $0<\epsilon \leq 1 / 2$, there exists ϵ-cover $\Pi_{W_{1}}$ of W_{1} with

$$
\left|\Pi_{W_{1}}\right| \leq \sum_{0<k_{1}, k_{2} \in \mathbb{Z}^{+}, k_{1} k_{2} \leq 2 s_{0}}\left(\frac{15}{2 \epsilon}\right)^{k_{1}+k_{2}}\binom{p}{k_{1}}\binom{q}{k_{2}} .
$$

In fact, it is easy to see that

$$
W_{1}=\bigcup_{0<k_{1}, k_{2} \in \mathbb{Z}^{+}, k_{1} k_{2} \leq 2 s_{0}} W_{k_{1} k_{2}}
$$

where $W_{k_{1} k_{2}}=\left\{w=v_{1} \otimes v_{2} ; v_{1} \in R^{p}, v_{2} \in R^{q},\left\|v_{1} \otimes v_{2}\right\|_{2} \leq 1,\left|\operatorname{supp}\left(v_{1}\right)\right|=k_{1},\left|\operatorname{supp}\left(v_{2}\right)\right|=k_{2},\right\}$. Since s_{0} is fixed, here the summation involves only finite terms. For any $m \in \mathbb{Z}^{+}$, define $S^{m}=\left\{v: v \in R^{m},\|v\|_{2}=1\right\}$ and $\mathbb{B}^{m}=\left\{v: v \in R^{m},\|v\|_{2} \leq 1\right\}$.

For any $v_{1} \in R^{q}, v_{2} \in R^{p}$, set $\tilde{v}_{i}=v_{i} /\left\|v_{i}\right\|_{2}, i=1,2$, then $\tilde{v}_{1} \in S^{q-1}, \tilde{v}_{2} \in S^{p-1}$. Noting that $\left\|v_{1} \otimes v_{2}\right\|_{2} \leq 1$, it follows that $\left\|v_{1}\right\|_{2} \cdot\left\|v_{2}\right\|_{2} \leq 1$. Consequently, for any $w \in W_{k_{1} k_{2}}$, we have

$$
w=v_{1} \otimes v_{2}=\left(\left\|v_{1}\right\|_{2} \cdot\left\|v_{2}\right\|_{2}\right) \cdot \tilde{v}_{1} \otimes \tilde{v}_{2} \triangleq \dot{v}_{1} \otimes \tilde{v}_{2}
$$

Note that $\left\{\left\|v_{1}\right\|_{2}\left\|v_{2}\right\|_{2} \cdot \tilde{v}_{1}: \tilde{v}_{1} \in S^{q-1}, \operatorname{supp}\left(v_{1}\right)=k_{1},\left\|v_{1}\right\|_{2}\left\|v_{2}\right\|_{2} \leq 1\right\}=\left\{\dot{v}_{1}: \dot{v}_{1} \in \mathbb{B}^{q}, \operatorname{supp}\left(\dot{v}_{1}\right)=\right.$ $\left.k_{1}\right\}$. For any fixed k_{1}, k_{2}, by Lemma 2.3 of Mendelson et al. (2008), for the sets $\left\{\dot{v}_{1}: \dot{v}_{1} \in\right.$ $\left.\mathbb{B}^{q}, \operatorname{supp}\left(v_{1}\right)=k_{1}\right\}$ and $\left\{\tilde{v}_{2}: \tilde{v}_{2} \in S^{p-1}, \operatorname{supp}\left(v_{2}\right)=k_{2}\right\}$, there exist respectively $\epsilon / 3$-cover of $\Lambda_{1}=\left\{\dot{v}_{1 i}, i=1, \cdots,\right\}$ and $\Lambda_{2}=\left\{\tilde{v}_{2 i}, i=1, \cdots,\right\}$ with

$$
\left|\Lambda_{1}\right| \leq\left(\frac{15}{2 \epsilon}\right)^{k_{1}}\binom{q}{k_{1}}, \quad\left|\Lambda_{2}\right| \leq\left(\frac{15}{2 \epsilon}\right)^{k_{2}}\binom{p}{k_{2}}
$$

Therefore the ϵ-cover of $W_{k_{1} k_{2}}$ can be taken as

$$
\Pi_{k_{1} k_{2}}=\left\{\dot{v}_{1 i} \otimes \tilde{v}_{2 j}, i=1, \cdots,\left|\Lambda_{1}\right|, j=1, \cdots,\left|\Lambda_{2}\right|\right\} .
$$

In fact, for any $w=v_{1} \otimes v_{2} \in W_{k_{1} k_{2}}$, we have $w=\dot{v}_{1} \otimes \tilde{v}_{2}$ for some $\dot{v}_{1} \in \mathbb{B}^{q}$ and $\tilde{v}_{2} \in S^{p-1}$. There
exists i_{0}, j_{0} such that

$$
\left\|\dot{v}_{1}-\dot{v}_{1 i_{0}}\right\|_{2} \leq \epsilon / 3, \quad\left\|\tilde{v}_{2}-\tilde{v}_{2 j_{0}}\right\|_{2} \leq \epsilon / 3 .
$$

Consequently, letting $v_{1}^{d}=\dot{v}_{1}-\dot{v}_{1 i_{0}}$ and $v_{2}^{d}=\tilde{v}_{2}-\tilde{v}_{2 j_{0}}$ and noting that $\left\|\dot{v}_{1 i_{0}}\right\|_{2} \leq 1$ and $\left\|\tilde{v}_{2 j_{0}}\right\|_{2}=1$, we have

$$
\left\|v_{1} \otimes v_{2}-\tilde{v}_{1} \otimes \tilde{v}_{2}\right\|_{2}=\left\|v_{1}^{d} \otimes \tilde{v}_{2 j_{0}}+\dot{v}_{1 i_{0}} \otimes v_{2}^{d}+v_{1}^{d} \otimes v_{2}^{d}\right\|_{2} \leq\left\|v_{1}^{d}\right\|_{2}+\left\|v_{2}^{d}\right\|_{2}+\left\|v_{1}^{d}\right\|_{2}\left\|v_{2}^{d}\right\|_{2} \leq \epsilon .
$$

Therefore, $\Pi_{k_{1} k_{2}}$ is a ϵ-cover of $W_{k_{1} k_{2}}$. In addition, by the definition of $\Pi_{k_{1} k_{2}}$, we have

$$
\left|\Pi_{k_{1} k_{2}}\right| \leq\left(\frac{15}{2 \epsilon}\right)^{k_{1}+k_{2}}\binom{q}{k_{1}}\binom{p}{k_{2}} .
$$

Thus, $\Pi_{W_{1}}=\bigcup_{k_{1}, k_{2}} \Pi_{k_{1} k_{2}}$ is the ϵ-cover of W_{1} with

$$
\left|\Pi_{W_{1}}\right| \leq \sum_{0<k_{1}, k_{2} \in \mathbb{Z}^{+}, k_{1} k_{2} \leq 2 s_{0}}\left(\frac{15}{2 \epsilon}\right)^{k_{1}+k_{2}}\binom{q}{k_{1}}\binom{p}{k_{2}}
$$

Step 2. We compute the covering number of W_{0}. Replacing ϵ by $d_{0} \epsilon, v_{i}$ by $\sqrt{d_{0}} v_{i}, i=1,2$, and making some small revision of the proof of step 1 , we have the conclusion of Lemma 4. This completes the proof.

[^0]: *Zhao is with LMIB of the Ministry of Education, Beihang University, China (zhaojunlong928@126.com). Leng is with Department of Statistics, University of Warwick, UK and Department of Statistics and Applied Probability, National University of Singapore, Singapore (stalc@nus.edu.sg). Corresponding author: Chenlei Leng.

