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1. Proof of Lemma 1

Let A = {‖Vε‖∞/n < λn} and B = {‖Vj‖2/
√

n ≤ 1 + δ0, j = 1, · · · , pq}. Then P (A) =

P (B)P (A|B). Then by the inequality of the tail probability of the normal distribution, we have

P (B) = 1 − P (Bc) ≥ 1 −
pq∑

j=1

P
(
‖Vj‖2/

√
n ≥ 1 + δ0

)
.

Denoting δ1 = (1 + δ0)
2 − 1, we have

P
(
‖Vj‖2/

√
n ≥ 1 + δ0

)
≤ P

(
‖Vj‖2

2 − n ≥ n[(1 + δ0)
2 − 1]

)
= P

(
‖Vj‖2

2 − n ≥ nδ1

)
.

Note that ‖Vj‖2
2 has a χ2

n distribution. Based on the tail probability bound of χ2
n( that is,

P (χ2
n > n + x) < exp(−1

8
(x, x2/n))). We have P (‖Vj‖2/

√
n ≥ 1 + δ0) ≤ exp(−1

8
min(nδ1, nδ2

1)).

Consequently,

P (B) > 1 − exp(−1

8
min(nδ1, nδ2

1) + log(pq)).

On the other hand by Lemma C.1 of Zhou (2009), it is easy to see that taking λn = (1 +

δ0)σ
√

2(1 + a) log(pq)/n for any a > 0, we have P (A|B) ≥ 1 − [(pq)a
√

π log(pq)]−1. Therefore

the conclusion holds. ¤

2. Proof of Theorem 1

Step 1. We first show that ‖α̂ − α‖1 can be small.

Let u = θ̂ − θ = β̂ ⊗ α̂ − β ⊗ α. Note that

(α̂, β̂) = arg min
(α,β)∈E

1

n
‖Y − V

T θ‖2
2 + λnPθ

∗Zhao is with LMIB of the Ministry of Education, Beihang University, China (zhaojunlong928@126.com).
Leng is with Department of Statistics, University of Warwick, UK and Department of Statistics and Applied
Probability, National University of Singapore, Singapore (stalc@nus.edu.sg). Corresponding author: Chenlei
Leng.

1



Conditioning on A, similar to that of Bickel et al. (2009) and Lemma C.2 of Zhou (2009),

for λn = (1 + δ0)σ
√

2(1 + a) log(pq)/n, we have

‖uSc
θ
‖1 < 3‖uSθ

‖1.

Furthermore, by the similar procedure of the Proposition C.3 of Zhou (2009), we have

‖u‖1 = ‖β̂ ⊗ α̂ − β ⊗ α‖1 ≤ B0λns0. (A.1)

For simplicity, we denote λ̃n = B0λns0. Recall that ‖α̂‖1 = ‖α‖1 = 1 and that for any

β = (β1, · · · , βq)
T , |β(1)| ≥ · · · ≥ |β(q)| is the decreasing order of |βj|. For j = 1, · · · , q, define

âj = |β̂j|‖α̂‖1 = |β̂j| and aj = |βj|‖α‖1 = |βj|. By (A.1), we have

max
1≤j≤q

‖β̂jα̂ − βjα‖1 ≤ λ̃n. (A.2)

Therefore, by the triangular inequality, we have

max
1≤j≤q

∣∣∣|β̂j| − |βj|
∣∣∣ = max

1≤j≤q

∣∣∣|β̂j|‖α̂‖1 − |βj|‖α‖1

∣∣∣ ≤ λ̃n. (A.3)

Let d0 = |β(1)| − |β(2)| and denote k0 = arg max
j

|βj|. Recall our assumption that sign(βk0
) = 1.

As λ̃n < d0/2, by (A.3), we have âk0 = |β̂k0
| = max

1≤j≤q
|β̂j|. By (2.2) and the fact sign(β̂(1)) = 1 in

the algorithm, we have

sign(β̂k0) = 1. (A.4)

Denote δk0 = âk0 − ak0. Then |δk0| ≤ λ̃n . Also by (A.2), we have

λ̃n ≥ ‖β̂k0α̂ − βk0α‖1 = ‖âk0β̂k0α̂/âk0 − ak0βk0α/ak0‖1 = ‖(ak0 + δk0)β̂k0α̂/âk0 − ak0βk0α/ak0‖1

= ‖ak0(β̂k0α̂/âk0 − βk0α/ak0) + δk0β̂k0α̂/âk0‖1

≥
∣∣∣‖ak0(β̂k0α̂/âk0 − βk0α/ak0)‖1 − ‖δk0β̂k0α̂/âk0‖1

∣∣∣ =
∣∣∣‖ak0(β̂k0α̂/âk0 − βk0α/ak0)‖1 − |δk0|

∣∣∣.

Therefore, it follow that ‖ak0(β̂k0α̂/âk0 − βk0α/ak0)‖1 ≤ λ̃n + |δk0| ≤ 2λ̃n. That is,

‖(β̂k0α̂/âk0 − βk0α/ak0)‖1 ≤ 2λ̃n/ak0 = 2λ̃n/|βk0|. (A.5)
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Recalling that sign(βk0) = 1, by (A.4), we have βk0/ak0
= β̂k0/âk0 = 1. Combined with (A.5), we

have

‖α̂ − α‖1 ≤ 2λ̃n/|βk0|. (A.6)

Step 2. Based on (A.1) and the fact that ‖α̂‖1 = ‖α‖1 = 1, we have

λ̃n ≥ ‖β̂ ⊗ α̂ − β ⊗ α‖1 = ‖(β̂ − β) ⊗ α̂ − β ⊗ (α − α̂)‖1

≥
∣∣∣‖(β̂ − β) ⊗ α̂‖1 − ‖β ⊗ (α − α̂)‖1

∣∣∣ =
∣∣∣‖β̂ − β‖1 − ‖β‖1‖(α − α̂)‖1

∣∣∣.

Consequently, by (A.6), we have

‖β̂ − β‖1 ≤ λ̃n + ‖β‖1‖α − α̂‖1 = λ̃n + ‖β‖1‖α̂ − α‖1

= λ̃n(1 + 2‖β‖1/|βk0|) = B0λns0(1 + 2‖β‖1/|βk0|).

This completes the proof.

3. Proof of Theorem 2

Let Ψ = VΣ−1/2 = (Ψ1, · · · , Ψn)T be a n by pq matrix with i.i.d. rows Ψi, i = 1, · · · , n from

N(0, Ipq).

Step 1. We first show that, for any 0 < γ < 1, if (3.1) holds, then the following inequality

holds with probability at least 1 − exp{−c̄γ2n/α4
0},

1 − γ ≤ ‖ΨΣ1/2u‖2√
n

≤ 1 + γ, for all u ∈ J1. (A.1)

Note that Ψi is an isotropic vector with the ψ2 norm α0. Let Spq−1 := {v : v ∈ Rpq, ‖v‖2 = 1}.
By Theorem 2.5 of Zhou (2009) or Theorem 2.1 of Mendelson et al (2008), for any 0 < γ < 1

and any set V ⊂ Spq−1, if n >
c′α4

0

γ2 [l∗(V)]2, then with probability at least 1− exp{−c̄γ2n/α4
0}, we

have that

1 − γ ≤ ‖Ψv‖2/
√

n ≤ 1 + γ for all v ∈ V,

where c′, c̄ > 0 are constants. Therefore, (A.1) can be proved by taking V = I1 and computing
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the complexity measure l∗(I1). Lemma 3 gives the following bound on l∗(I1)

l∗(I1) ≤ Cs0,k0

√
log[c(ǫ, s0) max(p2s0q, pq2s0)],

where c(ǫ, s0) and Cs0,k0
are defined in Lemma 3. Therefore, (A.1) holds with probability at least

1 − exp{−c̄γ2n/α4
0} since

n > {c′α4
0Cs0,k0

log[c(ǫ, s0) max(p2s0q, pq2s0)]}/γ2.

Step 2. We prove that, as (A.1) and (4.1) hold, the structured RE condition SRE(s0, k0)

holds.

By Proposition 1.4 of Zhou (2009), for any u ∈ Rpq, such that ‖uSc
0
‖1 < k0‖uSc

0
‖1 for some

S0 ⊂ {1, · · · , pq} with |S0| ≤ s0, we have ‖uT c
0
‖1 < k0‖uT0

‖1. Recall the definition of uT0
. It

follows that set A1
△
= {u ∈ J0 : ∃S0 with |S0| ≤ s0 such that ‖uSc

0
‖1 < k0‖uS0

‖1} = {u ∈ J0 :

‖uT c
0
‖1 < k0‖uT0

‖1}
△
= A2. Recalling the definition of T0, it follows that ‖uS0

‖2 ≤ ‖uT0
‖2, for any

S0 ⊂ {1, · · · , pq} with |S0| ≤ s0. Therefore, RE condition RE(s0, k0, Σ) in (4.1) is equivalent to

min
u∈A1

‖Σ1/2u‖2

‖uS0
‖2

= min
u∈A2

‖Σ1/2u‖2

‖uT0
‖2

= K(s0, k0, Σ), (A.2)

for some K(s0, k0, Σ) > 0. That is, for any u ∈ A2, we have

‖Σ1/2u‖2 ≥ ‖uT0
‖2K(s0, k0, Σ). (A.3)

In addition, for any u ∈ A1, then u/‖Σ1/2u‖2 ∈ J1. From (A.1), it is easy to see that

‖ΨΣ1/2u‖2√
n

≥ (1 − γ)‖Σ1/2u‖2, for all u ∈ A1.

That is,
‖Vu‖2√

n
≥ (1 − γ)‖Σ1/2u‖2, for all u ∈ A1.

This combined with (A.3) results in

‖Vu‖2√
n

≥ ‖Σ1/2u‖2(1 − γ) ≥ (1 − γ)‖uT0
‖2K(s0, k0, Σ), for all u ∈ A1. (A.4)

4



Similar to argument of (A.2), we have

min
u∈A1

‖Vu‖2√
n‖uS0

‖2

= min
u∈A1

‖Vu‖2√
n‖uT0

‖2

≥ (1 − γ)K(s0, k0, Σ) > 0,

where the last inequality follows from (A.4).

4. Proof of Theorem 3

Define the counterpart J̃1 and Ĩ1 of J1 and I1, respectively, as

J̃1 = {u : u ∈ Rpq, ‖Σ1/2u‖2 = 1, uT c
0
≤ k0uT0

}, Ĩ1 = {v : v = Σ1/2u, u ∈ J̃1}.

From Step 1 of Theorem 2, if n >
c′α4

0

γ2 l∗(Ĩ1)
2, then unstructured RE condition RE(s0, k0) holds.

Define the counterpart Ũs0
of US0

as Ũs0
= {u−β⊗α : u ∈ Rpq, ‖u−β⊗α‖2 = 1, |supp(u)| =

s0} and let ΠeUs0
be the ǫ-cover of Ũs0

. Similar to the proof of Lemma 3, we have

l∗(Ĩ1) ≤
(k0 + 2)

K(s0, k0, Σ)
E sup

u∈eUs0

|gT u| ≤ 6(k0 + 2)

K(s0, k0, Σ)

√
ρmax(s0) log |ΠeUs0

|.

Recalling the definition of W̃0 in Section 4.2, similar to the argument of the relation between Us0

and W0 in Section 4.1, due to s0 ≪ pq, we have

|ΠeUs0
| ≤ |ΠfW0

| ≤ 2s0

(
5d0

2ǫ

)2s0
(

pq

2s0

)
,

where the last inequality is derived from (4.4). Note that

(
pq

2s0

)
≤ ( epq

2s0
)2s0 . We have

|ΠeUs0
| ≤ 2s0

(
5d0

2ǫ

)2s0
(

epq

2s0

)2s0

= c1(s0, ǫ)(pq)
2s0 .

Consequently,

l∗(Ĩ1) ≤
6(k0 + 2)

K(s0, k0, Σ)

√
ρmax(s0) log[c1(s0, ǫ)(pq)2s0 ].

This completes the proof. ¤

5. Proof of Lemma 3
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Step 1. We first prove that

l∗(I1) ≤
(k0 + 2)

K(s0, k0, Σ)
E sup

u∈Us0

|gT Σ1/2u|.

By the definition of complexity measure, we have

l∗(I1) = E sup
v∈I1

|gT v| = E sup
u∈J1

|gT Σ1/2u|,

where g = (g1, · · · , gpq) ∼ N(0, Ipq). For any J ⊂ {1, · · · , pq}, We extend uJ into u′ ∈ Rpq, such

that u′
Jc = 0, u′

J = uJ . In the following argument, with some abuse of notations, we still use

uJ to denote the extended vector u′ in Rpq. The following argument is similar to that of Zhou

(2009). We present here for completeness of the paper. For any u ∈ J1, we have

|gT Σ1/2u| ≤ |gT Σ1/2uT0
| +

∑

k≥1

|gT Σ1/2uTk
| ≤ ‖uT0

‖2
|gT Σ1/2uT0

|
‖uT0

‖2

+
∑

k≥1

‖uTk
‖2
|gT Σ1/2uTk

|
‖uTk

‖2

≤ (‖uT0
‖2 +

∑

k≥1

‖uTk
‖2) sup

t∈Us0

|gT Σ1/2u|. (A.1)

It is easy to see that ‖uTk
‖2 ≤

√
s0‖uTk

‖∞ ≤ ‖uTk−1
‖1/

√
s0. Furthermore, by Lemma 2, we have

∑

k≥1

‖uTk
‖2 ≤ (‖uT0

‖1 +
∑

k≥1

‖uTj
‖1)/

√
s0 ≤ (‖uT0

‖1 + ‖uT c
0
‖1)/

√
s0 ≤ (k0 + 1)‖uT0

‖1/
√

s0.

Combining with ‖uT0
‖1/

√
s0 ≤ ‖uT0

‖2, we have

∑

k≥1

‖uTk
‖2 ≤ (k0 + 1)‖uT0

‖2. (A.2)

Furthermore, by the definition of K(s0, k0, Σ), it follows that

‖uT0
‖2 ≤ ‖Σ1/2u‖2/K(s0, k0, Σ) = 1/K(s0, k0, Σ). (A.3)

The last equation is due to the fact ‖Σ1/2u‖2 = 1 for any u ∈ J1. By (A.1)–(A.3), we have

|gT Σ1/2u| ≤ (k0 + 2)‖uT0
‖2 sup

u∈Us0

|gT Σ1/2u| ≤ (k0 + 2)

K(s0, k0, Σ)
sup

u∈Us0

|gT Σ1/2u|.

6



Therefore we have

l∗(I1) = E

(
sup
u∈J1

|gT Σ1/2u|
)

≤ (k0 + 2)

K(s0, k0, Σ)
E sup

u∈Us0

|gT u|.

Step 2. We show that E sup
t∈Us0

|gT u| ≤ 6
√

ρmax(s0) log[c(ǫ0, s0) max(p2s0q, pq2s0)].

By Lemma 2.3 of Mendelson et al. (2008), there exists set ΠUs0
= {ui ∈ Us0

, i = 1, · · · } of

the cardinality |ΠUs0
|, such that

Us0
⊆ 2convΠUs0

.

Consequently, we have

E sup
t∈Us0

|gT Σ1/2u| ≤ 2E sup
u∈convΠUs0

|gT Σ1/2u| = 2E sup
u∈ΠUs0

|gT Σ1/2u|. (A.4)

By the results of Ledoux and Talagrand (1991)(See also Lemma B.5 of Zhou (2009)), we have

E sup
u∈ΠUs0

|gT Σ1/2u| ≤ 3
√

log |ΠUs0
| max
1≤i≤|ΠUs0

|

√
E(gT Σ1/2ui)2 ≤ 3

√
ρmax(s0) log |ΠUs0

|, (A.5)

where we have used the definition of
√

ρmax(s0) and the fact that E(gT Σ1/2ui)
2 = uT

i Σui and

that g = (g1, · · · , gpq) ∼ N(0, Ipq). Also by (4.2), we have |ΠUs0
| ≤ |ΠW0

|. Consequently, by the

results of Lemma 4, and the argument on the leading term of (4.3) in Section 4.2, we have

|ΠW0
| ≤ 2s0

(
15d0

2ǫ

)2s0+1

max{qC2s0

p , pC2s0

q } ≤ c(ǫ, s0) max(qp2s0 , pq2s0), (A.6)

where c(ǫ, s0) = 2s0

(
15d0

2ǫ

)2s0+1
( e

2s0
)2s0 and C2s0

p =

(
p

2s0

)
, which is less than ( ep

2s0
)2s0 and C2s0

q is

defined in analogy. Therefore, by (A.4)– (A.6) and the fact |ΠUs0
| ≤ |ΠW0

|, we have

E sup
t∈Us0

|gT Σ1/2u| ≤ 6
√

ρmax(s0) log |ΠW0
| ≤ 6

√
ρmax(s0) log[c(ǫ, s0) max(p2s0q, pq2s0)].

The proof is completed.

6. Proof of Lemma 4

Step 1. For simplicity, we first compute the covering number of the W1 defined below, which
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is a special case of W0 with d0 = 1

W1 = {w = v1 ⊗ v2; v1 ∈ Rq, v2 ∈ Rp, ‖v1 ⊗ v2‖2 ≤ 1, |supp(v1)| · |supp(v2)| ≤ 2s0, }.

We will show that for 0 < ǫ ≤ 1/2, there exists ǫ-cover ΠW1
of W1 with

|ΠW1
| ≤

∑

0<k1,k2∈Z+,k1k2≤2s0

(
15

2ǫ

)k1+k2
(

p

k1

)(
q

k2

)
.

In fact, it is easy to see that

W1 =
⋃

0<k1,k2∈Z+,k1k2≤2s0

Wk1k2
,

where Wk1k2
= {w = v1 ⊗ v2; v1 ∈ Rp, v2 ∈ Rq, ‖v1 ⊗ v2‖2 ≤ 1, |supp(v1)| = k1, |supp(v2)| = k2, }.

Since s0 is fixed, here the summation involves only finite terms. For any m ∈ Z
+, define

Sm = {v : v ∈ Rm, ‖v‖2 = 1} and B
m = {v : v ∈ Rm, ‖v‖2 ≤ 1}.

For any v1 ∈ Rq, v2 ∈ Rp, set ṽi = vi/‖vi‖2, i = 1, 2, then ṽ1 ∈ Sq−1, ṽ2 ∈ Sp−1. Noting that

‖v1 ⊗ v2‖2 ≤ 1, it follows that ‖v1‖2 · ‖v2‖2 ≤ 1. Consequently, for any w ∈ Wk1k2
, we have

w = v1 ⊗ v2 = (‖v1‖2 · ‖v2‖2) · ṽ1 ⊗ ṽ2 , v̇1 ⊗ ṽ2.

Note that {‖v1‖2‖v2‖2 · ṽ1 : ṽ1 ∈ Sq−1, supp(v1) = k1, ‖v1‖2‖v2‖2 ≤ 1} = {v̇1 : v̇1 ∈ B
q, supp(v̇1) =

k1}. For any fixed k1, k2, by Lemma 2.3 of Mendelson et al. (2008), for the sets {v̇1 : v̇1 ∈
B

q, supp(v1) = k1} and {ṽ2 : ṽ2 ∈ Sp−1, supp(v2) = k2}, there exist respectively ǫ/3-cover of

Λ1 = {v̇1i, i = 1, · · · , } and Λ2 = {ṽ2i, i = 1, · · · , } with

|Λ1| ≤
(

15

2ǫ

)k1
(

q

k1

)
, |Λ2| ≤

(
15

2ǫ

)k2
(

p

k2

)
.

Therefore the ǫ-cover of Wk1k2
can be taken as

Πk1k2
= {v̇1i ⊗ ṽ2j, i = 1, · · · , |Λ1|, j = 1, · · · , |Λ2|}.

In fact, for any w = v1 ⊗ v2 ∈ Wk1k2
, we have w = v̇1 ⊗ ṽ2 for some v̇1 ∈ B

q and ṽ2 ∈ Sp−1. There
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exists i0, j0 such that

‖v̇1 − v̇1i0‖2 ≤ ǫ/3, ‖ṽ2 − ṽ2j0‖2 ≤ ǫ/3.

Consequently, letting vd
1 = v̇1−v̇1i0 and vd

2 = ṽ2−ṽ2j0 and noting that ‖v̇1i0‖2 ≤ 1 and ‖ṽ2j0‖2 = 1,

we have

‖v1 ⊗ v2 − ṽ1 ⊗ ṽ2‖2 = ‖vd
1 ⊗ ṽ2j0 + v̇1i0 ⊗ vd

2 + vd
1 ⊗ vd

2‖2 ≤ ‖vd
1‖2 + ‖vd

2‖2 + ‖vd
1‖2‖vd

2‖2 ≤ ǫ.

Therefore, Πk1k2
is a ǫ-cover of Wk1k2

. In addition, by the definition of Πk1k2
, we have

|Πk1k2
| ≤

(
15

2ǫ

)k1+k2
(

q

k1

)(
p

k2

)
.

Thus, ΠW1
=

⋃
k1,k2

Πk1k2
is the ǫ-cover of W1 with

|ΠW1
| ≤

∑

0<k1,k2∈Z+,k1k2≤2s0

(
15

2ǫ

)k1+k2
(

q

k1

)(
p

k2

)
.

Step 2. We compute the covering number of W0. Replacing ǫ by d0ǫ, vi by
√

d0vi, i = 1, 2,

and making some small revision of the proof of step 1, we have the conclusion of Lemma 4. This

completes the proof. ¤
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