GENERATING DISTRIBUTIONS BY TRANSFORMATION OF SCALE

M.C. Jones

The Open University

Supplementary Material

S1 Proof of Proposition 2

Let subscripts ℓ and r denote left- and right-hand 'halves' of the unimodal densities f and g, that is, $f_{\ell}(x)=f(x) I\left(x<x_{0}\right), g_{\ell}(x)=g(x) I(x<0), f_{r}(x)=f(x) I\left(x>x_{0}\right)$ and $g_{r}(y)=g(x) I(x>0)$; all these functions are invertible and $f_{r}^{-1}(y)=\Pi\left\{g_{r}^{-1}(y / 2)\right\}$, $f_{\ell}^{-1}(y)=\Pi\left\{-g_{r}^{-1}(y / 2)\right\}$. If (X, Y) is uniformly distributed over the region between the x-axis and f, then, unconditionally, $X \sim f$ (this is the basis of many methods of random variate generation), but conditionally

$$
X \mid Y=y \sim U\left\{f_{\ell}^{-1}(y), f_{r}^{-1}(y)\right\}
$$

Define $Z_{1}=g_{r}^{-1}(Y / 2)>0$ and $Z=Z_{1}$ with probability $1 / 2$ and $Z=-Z_{1}$ otherwise. It follows that

$$
X \mid Z=z_{1}>0 \sim U\left\{\Pi\left(z_{1}\right)-\Pi\left(-z_{1}\right)\right\}+\Pi\left(-z_{1}\right)=U z_{1}+\Pi\left(z_{1}\right)-z_{1}
$$

and
$X \mid Z=z_{2}=-z_{1}<0 \sim U\left\{\Pi\left(-z_{1}\right)-\Pi\left(z_{1}\right)\right\}+\Pi\left(z_{1}\right)=\Pi\left(z_{1}\right)-U z_{1}=U z_{2}+\Pi\left(z_{2}\right)-z_{2}$.
Unconditionally, the form of (17) in the text follows.
It remains to deduce the distribution of Z_{1} and hence of Z. A minor modification of Lemma 2.4 in Chaubey, Mudholkar, and Jones (2010) shows that $Y \in(0,2 g(0))$ has distribution function

$$
\begin{aligned}
F_{Y}(y) & =\int_{0}^{y} \int_{-\infty}^{\infty} I(0 \leq z \leq f(x)) d x d z \\
& =\int_{-\infty}^{\infty} \min \{y, f(x)\} d x \\
& =\int_{-\infty}^{f_{\ell}^{-1}(y)} f(x) d x+\int_{f_{\ell}^{-1}(y)}^{f_{r}^{-1}(y)} y d x++\int_{f_{r}^{-1}(y)}^{\infty} f(x) d x \\
& =F\left\{f_{\ell}^{-1}(y)\right\}+y\left\{f_{r}^{-1}(y)-f_{\ell}^{-1}(y)\right\}+1-F\left\{f_{r}^{-1}(y)\right\}
\end{aligned}
$$

and hence that $Z_{1} \in \mathbb{R}^{+}$has distribution function

$$
F_{Z_{1}}(z)=1-F_{Y}\left(2 g_{r}(z)\right)=1-\left[F\{\Pi(-z)\}+2 z g_{r}(z)+1-F\{\Pi(z)\}\right] .
$$

Differentiating,

$$
f_{Z_{1}}(z)=-2\left\{-\pi(-z) g(z)+g(z)+z g^{\prime}(z)-\pi(z) g(z)\right\}=-2 z g^{\prime}(z), \quad z>0 .
$$

Similarly, $f_{-Z_{1}}(z)=-2 z g^{\prime}(z), z<0$, and the result of Proposition 2 follows.

S2 Proof of Shannon Entropy Version of Proposition 3

$$
\begin{aligned}
S(f) & =-2 \int_{S_{f}} g\left(\Pi^{-1}(x)\right)\left\{\log 2+\log g\left(\Pi^{-1}(x)\right)\right\} d x \\
& =-\log 2-2 \int_{\mathcal{D}} \pi(y) g(y) \log g(y) d y \\
& =-\log 2-\int_{S_{g}} g(y) \log g(y) d y=S(g)-\log 2
\end{aligned}
$$

the third equality arising since $2 \int_{\mathcal{D}} \pi(y) h(y) d y=\int_{\mathcal{D}} h(y) d y$ for any even function h. It remains to recall the standard result that $S\left(g_{\sigma}\right)=S(g)-\log \sigma$ when $g_{\sigma}(x)=\sigma g(\sigma x)$ and the Shannon entropy version of the proposition follows.

