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This web appendix outlines sketch of proofs in Sections 3-5 of the paper. In this appendix
we will use the following notations:

U.~V, & ﬁ(UC—VC)QO, as ¢ — 00,
ac~b. & e(ac—b.) =0, asc— oo,

where U, and V. are two sequences of random vectors, while a. and b, are two sequences
of constant vectors.

Proof of Theorem 3.1
Define
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It can be easily verified that, as min (¢;) — co and r, n;; remain fixed,
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Combining the above we have that, as min (¢;) = oo and r, n;; remain fixed,
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Hence, the asymptotic joint distribution of M S and M SFE is the same as the asymptotic
joint distribution of Ug and We.
It can be shown that, under normality, Ufj and W;; are independent, and
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Using known results regarding the mean and covariance of quadratic forms (cf. Theorem
1 in Akritas and Arnod (2000)) and the facts that F(x2(av)) = a(1+7), Var(x2(ay)) =

a(2 + 4v), we obtain
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Under the assumption that Ele;j,|*T2¢ < oo for some € > 0, Lindeberg-Feller’s theorem
together with Cramér-Wold’s theorem yield
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Using the independence among \_/fC and the assumption on sample sizes and subclass
levels (specified as the relation (9) in the paper), one can be show that
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By the asymptotic equivalence between \7‘50 and I\/I‘é shown in (3), we then have
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Note that if ' = (1, —(1+6))/02, VCO'§'(M& — p) = VO[M S5 — (1 +0)MSE]/o? which,
by Slutsky’s theorem, is asymptotically equivalent to v/C (Fg - (14 9)) Thus, by the
A-method, as min (¢;) — oo,
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where X is as defined in Theorem 3.1.

Proof of Corollary 3.2

It can be easily verified that for C' large enough, the approximate distribution of the
classical F-test under Hy : ;; = 0, and under the normality assumption is:
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where ~ means ”approximately distributed”. The relation (6) is obviously not equivalent
to the asymptotic null distribution specified in Theorem 3.1 (shown as the relation (11)
in the paper), unless n;; = n for all < and j so that
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and hence both of the asymptotic null distribution and the relation (6) would become
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Proof of Theorem 4.1

Define new quantities U? Ug, We to be as the corresponding quantities in (1) but with
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01»2 replacing 2, and the new quantity Wij to be as the corresponding quantity in (1)

but with 7; replacing 7. Finally, let U2, Wic, V2., V. and V& be as defined in (1) but
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Using (2), and the fact that, as min (¢;) — oo and r, n;; remain fixed,
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we have that, as min (¢;) — oo and r, n;; remain fixed,
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Following the same derivation in the proof of Theorem 3.1, one can easily get
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By the independence among \_/fC and the assumption on sample sizes and subclass levels
(specified as the relation (9) in the paper), it can be shown that

VEWE = 1) % N0, oinh), where = (P10
=1

where § and 67 are as defined in Theorem 4.1. Because \7% and M7, are asymptotically
equivalent, as shown in (9), we then have
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Finally, by the A-method with s*’ = (1, —(1 + 6*))/3, where 0* = 67/, it can be easily
verified that, as min (¢;) — oo,
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where X} is as defined in Theorem 4.1.



Proof of Corollary 4.2

The fact that, when the design is balanced, the unweighted statistic Ff equals the
classical F-statistic is clear. Next, the asymptotic null distribution of Corollary 4.2
(shown as the relation (15) in the paper) follows directly from Theorem 4.1. Finally, the
fact that the classical F-test procedure is not valid follows by comparing the relation (7)
above and the relation (15) in the paper.

Proof of Theorem 5.1
Define V?j = (U, W), Vs, = (US
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Under the assumptions specified in Theorem 5.1, it can be easily verified that, as
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Combining the above we have that, as min (¢;) — oo and r, n;; remain fixed,
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Following the same derivation in the proof of Theorem 3.1, one can easily get the asymp-
totic distribution of Vfc as
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_ 1S5 g2 L LS 52 . ,
E(V?c) = ( Ci Z] sz T ;J Mij Oy > ~ < a1 + 01 ) £ p* and

o 245 945 ati

ci- Cov(V2)

(Tt Sy 0 ) 1§ oh(—3) < 11 )
= ot 2Nyt )
201; +402; 0 1 1) & e

By the independence among \7?0, the assumptions in Theorem 5.1 and the asymptotic

equivalence shown in (11), we then have
ay + 0 :
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where a1 and 6; are as defied in the theorem above. Finally, using the A-method with
s = (1, —(1+0*)) /a1, 6** = 01 /a1, one can easily get the limiting distribution of Fgr
as shown in Theorem 5.1 and complete the proof.

Proof of Corollary 5.2

The proof follows directly from Theorem 5.1.



