Web Appendix: Supplementary Materials for "Two-fold Nested Designs: Their Analysis and Connection with Nonparametric ANCOVA" by Shu-Min Liao and Michael G. Akritas

This web appendix outlines sketch of proofs in Sections $3-5$ of the paper. In this appendix we will use the following notations:

$$
\begin{aligned}
\mathrm{U}_{c} \approx \mathrm{~V}_{c} \quad \Leftrightarrow \quad \sqrt{c}\left(\mathrm{U}_{c}-\mathrm{V}_{c}\right) \xrightarrow{P} 0, \quad \text { as } c \rightarrow \infty, \\
\mathrm{a}_{c} \approx \mathrm{~b}_{c} \quad \Leftrightarrow \quad \sqrt{c}\left(\mathrm{a}_{c}-\mathrm{b}_{c}\right) \rightarrow 0, \quad \text { as } c \rightarrow \infty,
\end{aligned}
$$

where U_{c} and V_{c} are two sequences of random vectors, while a_{c} and b_{c} are two sequences of constant vectors.

Proof of Theorem 3.1

Define

$$
\begin{gather*}
U_{i j}^{\delta}=n_{i j}\left(\bar{e}_{i j}+\frac{\delta_{i j}}{\sigma}\right)^{2}, \quad \bar{U}_{i c}^{\delta}=\frac{1}{c_{i}} \sum_{j=1}^{c_{i}} U_{i j}^{\delta}, \quad \bar{U}_{C}^{\delta}=\frac{1}{C} \sum_{i=1}^{r} \sigma^{2} c_{i} \bar{U}_{i c}^{\delta} \\
W_{i j}=\frac{\sum_{k=1}^{n_{i j}}\left(e_{i j k}-\bar{e}_{i j .}\right)^{2}}{\bar{n}-1}, \quad \bar{W}_{i c}=\frac{1}{c_{i}} \sum_{j=1}^{c_{i}} W_{i j}, \quad \bar{W}_{C}=\frac{1}{C} \sum_{i=1}^{r} \sigma^{2} c_{i} \bar{W}_{i c} \tag{1}\\
\mathrm{~V}_{i j}^{\delta}=\binom{U_{i j}^{\delta}}{W_{i j}}, \quad \overline{\mathrm{~V}}_{i c}^{\delta}=\binom{\bar{U}_{i c}^{\delta}}{\bar{W}_{i c}}, \quad \overline{\mathrm{~V}}_{C}^{\delta}=\binom{\bar{U}_{C}^{\delta}}{\bar{W}_{C}} .
\end{gather*}
$$

Note that

$$
\begin{aligned}
\bar{U}_{C}^{\delta} & =M S \delta+\left[\frac{1}{C-r} \sum_{i=1}^{r} \sigma^{2} n_{i} \cdot \bar{e}_{i . .}^{2}-\frac{r}{C-r} \bar{U}_{C}^{\delta}\right], \quad \text { and } \\
\bar{W}_{C} & =M S E+\left[\sum_{i=1}^{r}\left(\frac{c_{i}}{C}-\frac{c_{i}(\bar{n}-1)}{N_{C}-C}\right) \sigma^{2} \bar{W}_{i c}\right]
\end{aligned}
$$

It can be easily verified that, as $\min \left(c_{i}\right) \rightarrow \infty$ and $r, n_{i j}$ remain fixed,

$$
\begin{array}{r}
\sqrt{C} \frac{1}{C-r} \sum_{i=1}^{r} n_{i} \cdot \bar{e}_{i . .}^{2} \xrightarrow{P} 0, \quad \sqrt{C} \frac{r}{C-r} \bar{U}_{C}^{\delta} \xrightarrow{P} 0, \quad \text { and } \tag{2}\\
\sqrt{C} \sum_{i=1}^{r}\left(\frac{c_{i}}{C}-\frac{c_{i}(\bar{n}-1)}{N_{C}-C}\right) \sigma^{2} \bar{W}_{i c}=\left(1-\frac{C(\bar{n}-1)}{N_{C}-C}\right) \sqrt{C} \bar{W}_{C} \xrightarrow{P} 0 .
\end{array}
$$

Combining the above we have that, as $\min \left(c_{i}\right) \rightarrow \infty$ and $r, n_{i j}$ remain fixed,

$$
\begin{equation*}
\overline{\mathrm{V}}_{C}^{\delta} \approx \mathrm{M}_{C}^{\delta} \equiv\binom{M S \delta}{M S E} \tag{3}
\end{equation*}
$$

Hence, the asymptotic joint distribution of $M S \delta$ and $M S E$ is the same as the asymptotic joint distribution of \bar{U}_{C}^{δ} and \bar{W}_{C}.

It can be shown that, under normality, $U_{i j}^{\delta}$ and $W_{i j}$ are independent, and

$$
U_{i j}^{\delta} \sim \chi_{1}^{2}\left(\frac{n_{i j} \delta_{i j}^{2}}{\sigma^{2}}\right), \quad(\bar{n}-1) W_{i j} \sim \chi_{n_{i j}-1}^{2} .
$$

Using known results regarding the mean and covariance of quadratic forms (cf. Theorem 1 in Akritas and Arnod (2000)) and the facts that $E\left(\chi_{a}^{2}(a \gamma)\right)=a(1+\gamma), \operatorname{Var}\left(\chi_{a}^{2}(a \gamma)\right)=$ $a(2+4 \gamma)$, we obtain

$$
\begin{gathered}
E\left(\mathrm{~V}_{i j}^{\delta}\right)=\binom{1+\frac{n_{i j} \delta_{i j}^{2}}{\sigma_{i j}^{2}}}{\frac{n_{i j}-1}{\bar{n}-1}}, \\
\operatorname{Cov}\left(\mathrm{~V}_{i j}^{\delta}\right)=\left(\begin{array}{cc}
2+4 \frac{n_{i j} \delta_{i j}^{2}}{\sigma^{2}} & 0 \\
0 & \frac{2\left(n_{i j}-1\right)}{(\bar{n}-1)^{2}}
\end{array}\right)+\frac{\kappa_{i}-3}{n_{i j}}\left(\begin{array}{cc}
1 & \frac{n_{i j}-1}{\bar{n}-1} \\
\frac{n_{i j}-1}{\bar{n}-1} & \left(\frac{n_{i j}-1}{\bar{n}-1}\right)^{2}
\end{array}\right) .
\end{gathered}
$$

Let $\theta_{i c_{i}}^{\delta}=\frac{1}{c_{i}} \sum_{j=1}^{c_{i}} n_{i j} \frac{\delta_{i j}^{2}}{\sigma^{2}}$. Then, for each class i, as $c_{i} \rightarrow \infty$,

$$
E\left(\bar{V}_{i c}^{\delta}\right)=\left(\begin{array}{c}
1+\theta_{i c}^{\delta} \tag{4}\\
\frac{\bar{n}_{i c}}{\delta}-1 \\
\bar{n}-1
\end{array}\right) \approx\binom{1+\theta_{i}}{\frac{\bar{n}_{i}-1}{\bar{n}-1}} \triangleq \boldsymbol{\mu}_{i}, \text { and }
$$

$$
c_{i} \cdot \operatorname{Cov}\left(\overline{\mathrm{~V}}_{i c}^{\delta}\right)
$$

$$
=\left(\begin{array}{cc}
2+4 \theta_{i c}^{\delta} & 0 \\
0 & \frac{2}{\bar{n}-1} \frac{\bar{n}_{i c_{i}}-1}{\bar{n}-1}
\end{array}\right)+\frac{\kappa_{i}-3}{(\bar{n}-1)^{2}}\left(\begin{array}{cc}
(\bar{n}-1)^{2} \underline{n}_{i c_{i}} & (\bar{n}-1)\left(1-\underline{n}_{i c_{i}}\right) \\
(\bar{n}-1)\left(1-\underline{n}_{i c_{i}}\right) & \bar{n}_{i c_{i}}+\underline{n}_{i c_{i}}-2
\end{array}\right)
$$

$$
\longrightarrow\left(\begin{array}{cc}
2+4 \theta_{i} & 0 \\
0 & \frac{2\left(\bar{n}_{i}-1\right)}{(\bar{n}-1)^{2}}
\end{array}\right)+\frac{\kappa_{i}-3}{(\bar{n}-1)^{2}}\left(\begin{array}{cc}
(\bar{n}-1)^{2} \underline{n}_{i} & (\bar{n}-1)\left(1-\underline{n}_{i}\right) \\
(\bar{n}-1)\left(1-\underline{n}_{i}\right) & \bar{n}_{i}+\underline{n}_{i}-2
\end{array}\right) \triangleq \Sigma_{i} .
$$

Under the assumption that $E\left|e_{i j k}\right|^{4+2 \epsilon}<\infty$ for some $\epsilon>0$, Lindeberg-Feller's theorem together with Cramér-Wold's theorem yield

$$
\sqrt{c_{i}}\left(\overline{\mathrm{~V}}_{i c}^{\delta}-\boldsymbol{\mu}_{i}\right) \xrightarrow{d} N_{2}\left(0, \Sigma_{i}\right) .
$$

Using the independence among $\overline{\mathrm{V}}_{i c}^{\delta}$ and the assumption on sample sizes and subclass levels (specified as the relation (9) in the paper), one can be show that

$$
\begin{equation*}
\sqrt{C}\left(\overline{\mathrm{~V}}_{C}^{\delta}-\boldsymbol{\mu}\right) \xrightarrow{d} N_{2}\left(0, \sigma^{4} \sum_{i=1}^{r} \lambda_{i} \Sigma_{i}\right), \quad \text { where } \boldsymbol{\mu}=\sigma^{2}\binom{1+\theta}{1} . \tag{5}
\end{equation*}
$$

By the asymptotic equivalence between $\overline{\mathrm{V}}_{C}^{\delta}$ and M_{C}^{δ} shown in (3), we then have

$$
\sqrt{C}\left(\mathrm{M}_{C}^{\delta}-\boldsymbol{\mu}\right) \xrightarrow{d} N_{2}\left(0, \sigma^{4} \sum_{i=1}^{r} \lambda_{i} \Sigma_{i}\right), \text { as } \min \left(c_{i}\right) \rightarrow \infty .
$$

Note that if $\mathrm{s}^{\prime}=(1,-(1+\theta)) / \sigma^{2}, \sqrt{C} \mathrm{~s}^{\prime}\left(\mathrm{M}_{C}^{\delta}-\boldsymbol{\mu}\right)=\sqrt{C}[M S \delta-(1+\theta) M S E] / \sigma^{2}$ which, by Slutsky's theorem, is asymptotically equivalent to $\sqrt{C}\left(F_{C}^{\delta}-(1+\theta)\right)$. Thus, by the Δ-method, as $\min \left(c_{i}\right) \rightarrow \infty$,

$$
\sqrt{C}\left(F_{C}^{\delta}-(1+\theta)\right) \xrightarrow{d} N\left(0, \sigma^{4} \sum_{i=1}^{r} \lambda_{i} s^{\prime} \Sigma_{i} \mathrm{~s}\right)=N\left(0, \Sigma_{s}\right),
$$

where Σ_{s} is as defined in Theorem 3.1.

Proof of Corollary 3.2

It can be easily verified that for C large enough, the approximate distribution of the classical F-test under $H_{0}: \delta_{i j}=0$, and under the normality assumption is:

$$
\begin{equation*}
\sqrt{C}\left(F_{C}^{\delta}-1\right) \dot{\sim} N\left(0,2\left(1+\frac{C}{N_{C}-C}\right)\right) \tag{6}
\end{equation*}
$$

where $\dot{\sim}$ means "approximately distributed". The relation (6) is obviously not equivalent to the asymptotic null distribution specified in Theorem 3.1 (shown as the relation (11) in the paper), unless $n_{i j}=n$ for all i and j so that

$$
\bar{n}_{i c_{i}}=n=\bar{n}_{i}, \quad \underline{n}_{i c_{i}}=\frac{1}{n}=\underline{n}_{i} \longrightarrow \bar{n}_{i} \underline{n}_{i}-1=0,
$$

and hence both of the asymptotic null distribution and the relation (6) would become

$$
\begin{equation*}
\sqrt{C}\left(F_{C}^{\boldsymbol{\delta}}-1\right) \xrightarrow{d} N\left(0,2\left(1+\frac{1}{n-1}\right)\right) . \tag{7}
\end{equation*}
$$

Proof of Theorem 4.1

Define new quantities $U_{i j}^{\delta}, \bar{U}_{C}^{\delta}, \bar{W}_{C}$ to be as the corresponding quantities in (1) but with σ_{i}^{2} replacing σ^{2}, and the new quantity $W_{i j}$ to be as the corresponding quantity in (1) but with \bar{n}_{i} replacing \bar{n}. Finally, let $\bar{U}_{i c}^{\delta}, \bar{W}_{i c}, \mathrm{~V}_{i j}^{\delta}, \overline{\mathrm{V}}_{i c}^{\delta}$, and $\overline{\mathrm{V}}_{C}^{\delta}$ be as defined in (1) but using the above new quantities. It can then be shown that $\bar{U}_{C}^{\delta}, \bar{W}_{C}$ are related to $M S \delta$, $M S E^{*}$ via

$$
\begin{aligned}
\bar{U}_{C}^{\delta} & =M S \delta+\left[\frac{1}{C-r} \sum_{i=1}^{r} \sigma_{i}^{2} n_{i} . \bar{e}_{i . .}^{2}-\frac{r}{C-r} \bar{U}_{C}^{\delta}\right] \\
\bar{W}_{C} & =M S E^{*}+\left[\sum_{i=1}^{r}\left(\frac{c_{i}}{C}-\frac{\left(c_{i}-1\right) c_{i}\left(\bar{n}_{i}-1\right)}{(C-r)\left(n_{i .}-c_{i}\right)}\right) \sigma_{i}^{2} \bar{W}_{i c}\right] .
\end{aligned}
$$

Using (2), and the fact that, as $\min \left(c_{i}\right) \rightarrow \infty$ and $r, n_{i j}$ remain fixed,

$$
\begin{equation*}
\sqrt{C} \sum_{i=1}^{r}\left(\frac{c_{i}}{C}-\frac{\left(c_{i}-1\right) c_{i}\left(\bar{n}_{i}-1\right)}{(C-r)\left(n_{i}-c_{i}\right)}\right) \sigma_{i}^{2} \bar{W}_{i c} \xrightarrow{P} 0, \tag{8}
\end{equation*}
$$

we have that, as $\min \left(c_{i}\right) \rightarrow \infty$ and $r, n_{i j}$ remain fixed,

$$
\begin{equation*}
\overline{\mathrm{v}}_{C}^{\delta} \approx \mathrm{M}_{C}^{*} \equiv\binom{M S \delta}{M S E^{*}} . \tag{9}
\end{equation*}
$$

Following the same derivation in the proof of Theorem 3.1, one can easily get

$$
\begin{gather*}
\sqrt{c_{i}}\left(\overline{\mathrm{~V}}_{i c}^{\delta}-\boldsymbol{\mu}_{i}^{*}\right) \xrightarrow{d} N_{2}\left(0, \Sigma_{i}^{*}\right), \text { where } \boldsymbol{\mu}_{i}^{*} \text { and } \Sigma_{i}^{*} \text { are defined by } \tag{10}\\
E\left(\overline{\mathrm{~V}}_{i c}^{\delta}\right)=\binom{1+\theta_{i c_{i}}^{\delta}}{\frac{\bar{n}_{i c_{i}}-1}{\bar{n}_{i}-1}} \approx\binom{1+\theta_{i}}{1} \triangleq \boldsymbol{\mu}_{i}^{*}, \text { where } \theta_{i c_{i}}^{\delta}=\frac{1}{c_{i}} \sum_{j=1}^{c_{i}} n_{i j} \frac{\delta_{i j}^{2}}{\sigma_{i}^{2}} \text {, and } \\
c_{i} \cdot \operatorname{Cov}\left(\overline{\mathrm{~V}}_{i c}^{\delta}\right) \\
=\left(\begin{array}{cc}
2+4 \theta_{i c}^{\delta} & 0 \\
0 & \frac{2}{\bar{n}_{i}-1} \bar{n}_{i_{i}-1}-1 \\
\bar{n}_{i}-1
\end{array}\right)+\frac{\kappa_{i}-3}{\left(\bar{n}_{i}-1\right)^{2}}\left(\begin{array}{cc}
\left(\bar{n}_{i}-1\right)^{2} \underline{n}_{i c_{i}} & \left(\bar{n}_{i}-1\right)\left(1-\underline{n}_{i c_{i}}\right) \\
\left(\bar{n}_{i}-1\right)\left(1-\underline{n}_{i c_{i}}\right) & \bar{n}_{i c_{i}}+\underline{n}_{i c_{i}}-2
\end{array}\right) \\
\longrightarrow\left(\begin{array}{cc}
2+4 \theta_{i} & 0 \\
0 & \frac{2}{\bar{n}_{i}-1}
\end{array}\right)+\frac{\kappa_{i}-3}{\left(\bar{n}_{i}-1\right)^{2}}\left(\begin{array}{cc}
\left(\bar{n}_{i}-1\right)^{2} \underline{n}_{i} & \left(\bar{n}_{i}-1\right)\left(1-\underline{n}_{i}\right) \\
\left(\bar{n}_{i}-1\right)\left(1-\underline{n}_{i}\right) & \bar{n}_{i}+\underline{n}_{i}-2
\end{array}\right) \triangleq \Sigma_{i}^{*} .
\end{gather*}
$$

By the independence among $\overline{\mathrm{V}}_{i c}^{\delta}$ and the assumption on sample sizes and subclass levels (specified as the relation (9) in the paper), it can be shown that

$$
\sqrt{C}\left(\overline{\mathrm{~V}}_{C}^{\delta}-\boldsymbol{\mu}^{*}\right) \xrightarrow{d} N_{2}\left(0, \sum_{i=1}^{r} \sigma_{i}^{4} \lambda_{i} \Sigma_{i}^{*}\right), \quad \text { where } \boldsymbol{\mu}^{*}=\binom{\beta+\theta^{\sigma}}{\beta},
$$

where β and θ^{σ} are as defined in Theorem 4.1. Because $\overline{\mathrm{V}}_{C}^{\delta}$ and M_{C}^{*} are asymptotically equivalent, as shown in (9), we then have

$$
\sqrt{C}\left(\mathrm{M}_{C}^{*}-\mu^{*}\right) \xrightarrow{d} N_{2}\left(0, \sum_{i=1}^{r} \sigma_{i}^{4} \lambda_{i} \Sigma_{i}^{*}\right), \text { as } \min \left(c_{i}\right) \rightarrow \infty
$$

Finally, by the Δ-method with $\mathbf{s}^{* \prime}=\left(1,-\left(1+\theta^{*}\right)\right) / \beta$, where $\theta^{*}=\theta^{\sigma} / \beta$, it can be easily verified that, as $\min \left(c_{i}\right) \rightarrow \infty$,

$$
\sqrt{C}\left(F_{C}^{*}-\left(1+\theta^{*}\right)\right) \xrightarrow{d} N\left(0, \sum_{i=1}^{r} \sigma_{i}^{4} \lambda_{i} \mathrm{~s}^{*} \Sigma_{i}^{*} \mathrm{~s}^{*}\right)=N\left(0, \Sigma_{s}^{*}\right),
$$

where Σ_{s}^{*} is as defined in Theorem 4.1.

Proof of Corollary 4.2

The fact that, when the design is balanced, the unweighted statistic F_{C}^{*} equals the classical F-statistic is clear. Next, the asymptotic null distribution of Corollary 4.2 (shown as the relation (15) in the paper) follows directly from Theorem 4.1. Finally, the fact that the classical F-test procedure is not valid follows by comparing the relation (7) above and the relation (15) in the paper.

Proof of Theorem 5.1

Define $\mathrm{V}_{i j}^{\delta}=\left(U_{i j}^{\delta}, W_{i j}\right)^{\prime}, \overline{\mathrm{V}}_{i c}^{\delta}=\left(\bar{U}_{i c}^{\delta}, \bar{W}_{i c}\right)^{\prime}$, and $\overline{\mathrm{V}}_{C}^{\delta}=\left(\bar{U}_{C}^{\delta}, \bar{W}_{C}\right)^{\prime}$, where

$$
\begin{aligned}
U_{i j}^{\delta} & =\sigma_{i j}^{2} n_{i j}\left(\bar{e}_{i j} .+\frac{\delta_{i j}}{\sigma_{i j}}\right)^{2}, \quad \bar{U}_{i c}^{\delta}=\frac{1}{c_{i}} \sum_{j=1}^{c_{i}} U_{i j}^{\delta}, \quad \bar{U}_{C}^{\delta}=\frac{1}{C} \sum_{i=1}^{r} c_{i} \bar{U}_{i c}^{\delta}, \\
W_{i j} & =\frac{\sigma_{i j}^{2}}{n_{i j}-1} \sum_{k=1}^{n_{i j}}\left(e_{i j k}-\bar{e}_{i j .}\right)^{2}, \quad \bar{W}_{i c}=\frac{1}{c_{i}} \sum_{j=1}^{c_{i}} W_{i j}, \quad \bar{W}_{C}=\frac{1}{C} \sum_{i=1}^{r} c_{i} \bar{W}_{i c} .
\end{aligned}
$$

Note that

$$
\begin{aligned}
\bar{U}_{C}^{\delta} & =M S \delta+\left[\frac{1}{C-r} \sum_{i=1}^{r} \frac{1}{n_{i}}\left(\sum_{j=1}^{c_{i}} \sigma_{i j} n_{i j} \bar{e}_{i j}\right)^{2}-\frac{r}{C-r} \bar{U}_{C}^{\delta}\right], \text { and } \\
\bar{W}_{C} & =M S E^{* *}-\frac{r}{C-r} \sum_{i=1}^{r} \frac{1}{C} \sum_{j=1}^{c_{i}} S_{i j}^{2}+\frac{1}{C-r} \sum_{i=1}^{r} \frac{1}{n_{i}} \sum_{j=1}^{c_{i}} n_{i j} S_{i j}^{2} .
\end{aligned}
$$

Under the assumptions specified in Theorem 5.1, it can be easily verified that, as $\min \left(c_{i}\right) \rightarrow \infty$,

$$
\begin{aligned}
& \sqrt{C} \frac{1}{C-r} \sum_{i=1}^{r} \frac{1}{n_{i}}\left(\sum_{j=1}^{c_{i}} \sigma_{i j} n_{i j} \bar{e}_{i j} .\right)^{2} \xrightarrow{P} 0, \quad \sqrt{C} \frac{r}{C-r} \bar{U}_{C}^{\delta} \xrightarrow{P} 0, \\
& \sqrt{C} \frac{r}{C-r} \sum_{i=1}^{r} \frac{1}{C} \sum_{j=1}^{c_{i}} S_{i j}^{2} \xrightarrow{P} 0, \quad \sqrt{C} \frac{1}{C-r} \sum_{i=1}^{r} \frac{1}{n_{i}} \sum_{j=1}^{c_{i}} n_{i j} S_{i j}^{2} \xrightarrow{P} 0 .
\end{aligned}
$$

Combining the above we have that, as $\min \left(c_{i}\right) \rightarrow \infty$ and $r, n_{i j}$ remain fixed,

$$
\begin{equation*}
\overline{\mathrm{V}}_{C}^{\delta} \approx \mathrm{M}_{C}^{* *} \equiv\binom{M S \delta}{M S E^{* *}} \tag{11}
\end{equation*}
$$

Following the same derivation in the proof of Theorem 3.1, one can easily get the asymptotic distribution of $\overline{\mathrm{V}}_{i c}^{\delta}$ as

$$
\sqrt{c_{i}}\left(\overline{\mathrm{~V}}_{i c}^{\delta}-\mu_{i}^{* *}\right) \xrightarrow{d} N_{2}\left(0, \Sigma_{i}^{* *}\right),
$$

where $\boldsymbol{\mu}_{i}^{* *}$ and $\Sigma_{i}^{* *}$ are

$$
E\left(\overline{\mathrm{~V}}_{i c}^{\delta}\right)=\binom{\frac{1}{c_{i}} \sum_{j} \sigma_{i j}^{2}+\frac{1}{c_{i}} \sum_{j} n_{i j} \delta_{i j}^{2}}{\frac{1}{c_{i}} \sum_{j} \sigma_{i j}^{2}} \approx\binom{a_{1 i}+\theta_{1 i}}{a_{1 i}} \triangleq \boldsymbol{\mu}_{i}^{* *}, \text { and }
$$

$$
c_{i} \cdot \operatorname{Cov}\left(\overline{\mathrm{~V}}_{i c}^{\delta}\right)
$$

$$
=\left(\begin{array}{cc}
2 \frac{1}{c_{i}} \sum_{j} \sigma_{i j}^{4}+4 \frac{1}{c_{i}} \sum_{j} n_{i j} \sigma_{i j}^{2} \delta_{i j}^{2} & 0 \\
0 & 2 \frac{1}{c_{i}} \sum_{j} \frac{\sigma_{i j}^{4}}{n_{i j}-1}
\end{array}\right)+\frac{1}{c_{i}} \sum_{j} \frac{\sigma_{i j}^{4}\left(\kappa_{i j}-3\right)}{n_{i j}}\left(\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right)
$$

$$
\longrightarrow\left(\begin{array}{cc}
2 b_{1 i}+4 \theta_{2 i} & 0 \\
0 & 2 b_{2 i}
\end{array}\right)+b_{3 i}\left(\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right) \triangleq \Sigma_{i}^{* *} .
$$

By the independence among $\overline{\mathrm{V}}_{i c}^{\delta}$, the assumptions in Theorem 5.1 and the asymptotic equivalence shown in (11), we then have

$$
\sqrt{C}\left(\mathrm{M}_{C}^{* *}-\binom{a_{1}+\theta_{1}}{a_{1}}\right) \xrightarrow{d} N_{2}\left(0, \sum_{i=1}^{r} \lambda_{i} \Sigma_{i}^{* *}\right),
$$

where a_{1} and θ_{1} are as defied in the theorem above. Finally, using the Δ-method with $\mathrm{s}^{* \prime \prime}=\left(1,-\left(1+\theta^{* *}\right)\right) / a_{1}, \theta^{* *}=\theta_{1} / a_{1}$, one can easily get the limiting distribution of $F_{C}^{* *}$ as shown in Theorem 5.1 and complete the proof.

Proof of Corollary 5.2

The proof follows directly from Theorem 5.1.

