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S1 Matrix normal distribution

A matrix-valued distribution (De Waal, 1985) is a probability distribution of a random
matrix. The matrix normal distribution is a generalization of the multivariate normal dis-
tribution to matrix-valued random variables. Let X = (Xij), i = 1, ..., pL, j = 1, ..., pR,
be a matrix-valued variable. Its expected value and covariance matrix are defined as
E[X] = (E[Xij ]) = µ and var(X) = E[vec(X −E[X])vecT (X −E[X])] = Σ. Then X has
a matrix normal distribution if its covariance can be decomposed as the Kronecker prod-
uct of two positive definite matrices Ω and M , and vec(X) follows a multivariate normal
distribution with mean vec(µ) and covariance matrix Σ = Ω ⊗M . The matrix normal
distribution is denoted as NpL×pR(µ,Ω,M). Its density function is defined through the
distribution of vec(X) and is given by

fX(x) = fvec(X)(vec(x))

= (2π)−
pLpR

2 |Ω|−
pL
2 |M |−

pR
2 exp{−1

2
tr(Ω−1(x− µ)TM−1(x− µ))}.

(S1.1)

The second moments of X are E[(X−µ)(X−µ)T ] = Mtr(Ω) and E[(X−µ)T (X−µ)] =
Ωtr(M). Thus, Ω = E[(X − µ)T (X − µ)]/tr(M) is called the row covariance matrix and
M = E[(X − µ)(X − µ)T ]/tr(Ω) is called the column covariance matrix. The rows or
columns of X are independent if and only if Ω or M is diagonal. In addition, if both Ω
and M are scalar matrices, X is called isotropic, which means that X has an isotropic
variance.

The MLE algorithm for the matrix normal distribution was proposed by Dutilleul
(1999). The MLE of µ is x̄. For fixed M , the MLE Ω̂ is given by

Ω̂ =
1

npL

n∑
i=1

(Xi − X̄)TM−1(Xi − X̄); (S1.2)
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and for fixed Ω, the MLE M̂ is

M̂ =
1

npR

n∑
i=1

(Xi − X̄)Ω−1(Xi − X̄)T . (S1.3)

Dutilleul (1999) showed that the MLEs of Ω and M estimated from (S1.2) and (S1.3)
are positive definite if and only if n ≥ max(pL/pR, pR/pL) + 1, so a large sample size is
not required in order to invert the estimated covariance matrices, as long as the relative
ratios of the two dimensions are not too large.

Based on this result, for the general dimension folding PFC model with a log like-
lihood function (3.6), the MLE Ω̂ is given by

Ω̂ =
1

npL

n∑
i=1

(Xi − X̄ − Γ2β2fiβ
T
1 ΓT1 )TM−1(Xi − X̄ − Γ2β2fiβ

T
1 ΓT1 ), (S1.4)

for fixed Γ1, Γ2, β1, β2 and M ; and the MLE M̂ is

M̂ =
1

npR

n∑
i=1

(Xi − X̄ − Γ2β2fiβ
T
1 ΓT1 )Ω−1(Xi − X̄ − Γ2β2fiβ

T
1 ΓT1 )T , (S1.5)

for fixed Γ1, Γ2, β1, β2 and Ω.

S2 Proofs

Proof of Propositions 1 and 3. We demonstrate the proof of Proposition 1 first.
The condition ν|X ∼ ν | ΓT2 XΓ1 is equivalent to (X|ΓT2 XΓ1, ν) ∼ X|ΓT2 XΓ1, where
‘∼’ stands for equivalence in distribution. Treating ν as a parameter matrix and X as
data, we can show that ΓT2 XΓ1 is a sufficient statistic for X|ν. Since Γ1 and Γ2 have
the smallest column dimensions, it is equivalent to prove that ΓT2 XΓ1 is a minimum
sufficient statistic for X|ν. To show this, let f(X|ν) be the conditional density function
of X|ν, we consider the the log likelihood ratio based on model (2.2):

log
f(X|ν)

f(Z|ν)
= −1

2
tr[(X − µ)T (X − µ)− (Z − µ)T (Z − µ)] + tr[(ν(ΓT1 (X − Z)TΓ2)].

It can be seen that logf(X|ν)/f(Z|ν) is a constant in ν if and only if (ΓT1 (X−Z)TΓ2) = 0.
Thus, ΓT2 XΓ1 is a minimum sufficient statistic and the condition ν|X ∼ ν | ΓT2 XΓ1 holds.
Similarly, it can be shown that (Γ1 ⊗ Γ2)Tvec(X) is a minimum sufficient statistic for
vec(X)|ν based the log likelihood ratio in (2.3).

For proposition 3, when the random error is isotropic, the result can be directly
obtained from proposition 1. When the random error has a general matrix normal
distribution, let Z = M−

1
2XΩ−

1
2 , then vec(Z) = (Ω ⊗ M)−

1
2 vec(X) has covariance

IpLpR . Transforming model (3.2) into Z scale, we have SY |◦Z◦ = (Ω⊗M)−
1
2 Span(Γ1 ⊗
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Γ2). Based on Proposition 1 in Li, et al. (2010), SY |◦X◦ = (Ω−
1
2 ⊗M−

1
2 )SY |◦Z◦ =

Span(Ω−1Γ1)⊗ Span(M−1Γ2).

Proof of Propositions 2 and 4. We first prove Proposition 2. It is easy to see that

n∑
i=1

tr[(Xi −G2ωiG
T
1 )T (Xi −G2ωiG

T
1 )] = tr(

n∑
i=1

XT
i Xi)− 2tr(

n∑
i=1

XT
i G2ωiG

T
1 )

+ tr(

n∑
i=1

ωTi ωi)

(S2.1)

Minimizing (S2.1) over G1, G2 and ωi is the same as minimizing L = tr(
n∑
i=1

ωTi ωi) −

2tr(
n∑
i=1

XT
i G2ωiG

T
1 ). For fixed G1 and G2, to obtain the minimizer νi over ωi, we take

the first derivative of L corresponding to ωi and have ∂L/∂ωi = 2ωi−2(GT2 XiG1). Since
the second derivate of L on ωi is positive, the minimum L is obtained when ν̂i = GT2 XiG1,
i = 1, ..., n. Thus, the objective function L becomes

L = −tr[GT1 (

n∑
i=1

XT
i P2Xi)G1], (S2.2)

where P2 = G2G
T
2 . For fixed G2, L is minimized by choosing the columns of the

minimizer Γ̂1 over G1 to be the dR eigenvectors of
n∑
i=1

XT
i P2Xi (or

n∑
i=1

XT
i P2Xi/n)

corresponding to its dR largest nonzero eigenvalues. Similarly, (S2.2) can be written as

L = −tr[GT2 (
n∑
i=1

XiP1X
T
i )G2], where P1 = G1G

T
1 . Then for fixed G1, the minimizer Γ̂2

over G2 is obtained when its columns are composed by the dL eigenvectors of
n∑
i=1

XiP1X
T
i

(or
n∑
i=1

XiP1X
T
i /n) corresponding to its dL largest nonzero eigenvalues.

To prove Proposition 4, for fixed G1 and b1, let f∗ = f(Y )bT1 and G20 ∈ RpL×(pL−dL)

be the orthogonal compliment of G2, then we have

En{tr[(X −G2b2f(Y )bT1 G
T
1 )T (X −G2b2f(Y )bT1 G

T
1 )]}

=En{tr[(X −G2b2f
∗GT1 )T (G2G

T
2 +G20G

T
20)(X −G2b2f

∗GT1 )]}
=En{tr[(GT2 X − b2f∗GT1 )(GT2 X − b2f∗GT1 )T ]}+ En{tr[(GT20X)T (GT20X)]}

(S2.3)

We first find the minimizer β̂2 over b2 assuming other terms are fixed. By taking the
first derivative of the last equation in (S2.3) corresponding to b2, we have ∂L1/∂b2 =

−2GT2 En(XG1f
∗T ) + 2b2En(f∗f∗

T

), then β̂2 = GT2 En(XG1f
∗T )[En(f∗f∗

T

)]−1. Replac-

ing b2 with β̂2, the objective function (3.5) becomes

En{tr[(X −G2β̂2f
∗GT1 )T (X −G2β̂2f

∗GT1 )]}

=En[tr(XXT )]− tr{PG2En(XG1f
∗T )[En(f∗f∗

T

)]−1En(XG1f
∗T )T }.
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Therefore, the minimizer Γ̂2 over G2 has its columns formed by the first dL eigenvectors
of

En(XG1f
∗T )[En(f∗f∗

T

)]−1En(f∗GT1 X
T ),

and correspondingly β̂2 = Γ̂T2 En(XG1f
∗T )[En(f∗f∗

T

)]−1.

Similarly, given G2 and b2, let f∗ = b2f(Y ) and we have

En{tr[(X −G2b2f(Y )bT1 G
T
1 )(X −G2b2f(Y )bT1 G

T
1 )T ]}

=En{tr[(XT −G1b1f
∗TGT2 )T (XT −G1b1f

∗TGT2 )]}.

The same procedure for estimating Γ̂2 and β̂2 can be applied to obtain Γ̂1 and β̂1. Hence
the columns of Γ̂1 consist of the first dR eigenvectors of the matrix

En(XTG2f
∗)[En(f∗

T

f∗)]−1En(f∗
T

GT2 X),

and β̂1 = Γ̂T1 En(XTG2f
∗)[En(f∗

T

f∗)]−1.

Proof of Proposition 5 and Corollary 1. To prove Proposition 5 (i), for fixed Ω,

Γ1 and β1, let X∗ = XΩ−
1
2 , and f∗ = f(Y )βT1 ΓT1 Ω−

1
2 . The log likelihood function (3.6)

under centered predictors becomes

l(SΓ2 , β2,M) = C − npR
2

log|M | − 1

2

n∑
i=1

tr{(X∗i − Γ2β2f
∗
i )TM−1(X∗i − Γ2β2f

∗
i )},

where C = −npLpR2 log(2π)− npL
2 log|Ω|. Treating Γ2 and M fixed, by taking derivatives

of the log likelihood corresponding to β2, it is easy to obtain that

β̂2 = (ΓT2 M
−1Γ2)−1ΓT2 M

−1XTLFL(FTLFL)−1.

Substituting β̂2 back, after some algebra we have

l(SΓ2
,M) = C − npR

2
log|M | − npR

2
{tr(M− 1

2 M̃M−
1
2 )− tr(P

M− 1
2 Γ2

M−
1
2 Σ̂fitLM

− 1
2 }.

Now treating M fixed, the log likelihood is maximized when the columns of M−
1
2 Γ2

contain the first dL eigenvectors of M−
1
2 Σ̂fitLM

− 1
2 . Since M̂res = M̃ − Σ̂fitL , then the

log likelihood reduces to

l(M)

= C − npR
2

log|M | − npR
2
{tr(M− 1

2 M̂resM
− 1

2 )− tr((I − P
M− 1

2 Γ2
)M−

1
2 Σ̂fitLM

− 1
2 }

= C − npR
2

log|M | − npR
2

tr(M−1M̂res)−
npR

2

pL∑
i=dL+1

λi(M
−1Σ̂fitL).

The MLE of M is M̂ = M̂res + M̂
1
2

resÛLD̂LÛ
T
L M̂

1
2

res. This proof can be done in the same

way as for Theorem 3.1 in Cook and Forzani (2008). Thus it is omitted. Substitute M̂
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back to the estimate of M−
1
2 Γ2, we have Γ̂2 = M̂

1
2 times the first dL eigenvectors of

M̂−
1
2 Σ̂fitLM̂

− 1
2 and further β̂2 = Γ̂T2 M̂

−1XTLFL(FTLFL)−1.

The results in Proposition 5 (ii) can be simply obtained by taking transpose of (3.1)
and then following the above procedure.

To prove Corollary 1, let A = (IpL + D̂L)−1 and ŨL = M̂
− 1

2
res ÛLA

1
2 . Applying

Lemma A.1 in Cook and Forzani (2008), we have Span(ŨL) = SdL(M̂, Σ̂fitL). Since A is

a full rank diagonal matrix, Span(ŨL) is equal to Span(M̂
− 1

2
res ÛL), where ÛL are the first

dL eigenvectors of M̂
− 1

2
res Σ̂fitLM̂

− 1
2

res . This implies that SdL(M̂, Σ̂fitL) = SdL(M̂res, Σ̂fitL).
Similarly, one can show that SdR(Ω̂, Σ̂fitR) = SdR(Ω̂res, Σ̂fitR). Thus the second form
holds. Since Σ̂fitL = M̃ − M̂res, it is easy to see that M̃−1Σ̂fitL and M̂−1

res Σ̂fitL have the

same eigenvectors. This provides the result: SdL(M̃, Σ̂fitL) = M̃−
1
2SdL(M̃−

1
2 Σ̂fitLM̃

− 1
2 ) =

SdL(M̃−1Σ̂fitL) = SdL(M̂res, Σ̂fitL). Similarly, SdR(Ω̂res, Σ̂fitR) = SdR(Ω̃, Σ̂fitR). The
third form is proved. The last two forms hold since Ω̃ = Ω̂res+Σ̂fitR and M̃ = M̂res+Σ̂fitL .

Proof of Proposition 6. Recall that g = β2f(Y )βT1 is the true fitting function and
l = κ2h(Y )κT1 is the selected fitting function. Let hi denote h(Yi) and hY denote
h(Y ). By applying conventional PFC model, we can obtain proper initial values for our
algorithm to prove the consistency of our estimates. To do so, we choose a nonzero
vector v ∈ RpL . Recall that f(Y ) is a diagonal fitted matrix with dimensions r × r.
Based on model (3.1), we have XT v = Γ1β1f(Y )βT2 ΓT2 v + εT v = Γ1β1f(Y )ω + εT v,
where ω = βT2 ΓT2 v is a r dimensional vector and var(εT v) = aΩ with a constant
a = vTMv. Let f̃ ∈ Rr denote a vector containing the diagonal elements in f(Y ),
then f(Y ) can be written as diag(f̃). Since diag(f̃)ω = diag(ω)f̃ , it follows that
XT v = Γ1β1diag(ω)f̃ + εT v = Γβf̃ + εT v, where Γ = Γ1 and β = β1diag(ω). This forms
a conventional PFC model and the unknown parameters Γ, β and Ω can be estimated
based on it. Conventional PFC provides

√
n consistent estimator for the true subspace

Span(Ω−1Γ), even when the function f̃ is misspecified by h̃ but they are sufficiently cor-
related (Cook and Forzani (2008)), where diag(h̃) = h(Y ). Thus, we can apply conven-

tional PFC to get proper initial values of Γ1, κ1 and Ω as Γ̂, κ̂ and Ω̂. Let X∗ = XiΩ̂
− 1

2 ,

h∗ = hY κ̂
T Γ̂T Ω̂−

1
2 . Then Σ̂fitL = (

n∑
i=1

X∗i h
∗T
i /n)(

n∑
i=1

h∗i h
∗T
i /n)−1(

n∑
i=1

h∗iX
∗T
i /n)/pR con-

verges to ΣfitL = E(XΩ−1Γ1κh
T
Y )Q−1E(XΩ−1Γ1κh

T
Y )T /pR, where Q = varc(hY κ

T ) =
E(hY κ

TκhY ), κ = κ1diag(ω) and ω = κT2 ΓT2 v. Using (3.1), we have E(XΩ−1Γ1κh
T
Y ) =

E(Γ2gκh
T
Y ) = Γ2covc(g, hY κ

T ) = Γ2covc(g, hY diag(ω)κT1 ) = Γ2V diag(ω), where V =
covc(g, hY κ

T
1 ). Thus, ΣfitL = Γ2V diag(ω)Q−1diag(ω)V TΓT2 /pR. As early defined,

M̃ =
n∑
i=1

X∗i X
∗T
i /npR =

n∑
i=1

XiΩ
−1XT

i /npR. It follows that M̃ converges at
√
n rate

to M∗ = E[XΩ−1
1 XT ]/pR = (Γ2varc(g)ΓT2 + M)/pR. The last equation is obtained

based on (3.1).

From Corollary 1, we know SdL(M̂, Σ̂fitL) = SdL(M̃, Σ̂fitL), that is equivalent to

SdL(M̃−1Σ̂fitL). Hence SdL(M̂, Σ̂fitL) converges to SdL(M∗
−1

ΣfitL) at
√
n rate. Us-

ing the fact that (Γ2CΓT2 + M)−1 = M−1 −M−1Γ2(C−1 + ΓT2 M
−1Γ2)−1ΓT2 M

−1, we

have Span(M∗
−1

ΣfitL) = Span{(Γ2varc(g)ΓT2 + M)−1Γ2V diag(ω)Q−1diag(ω)V TΓT2 } ⊆
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Span{(Γ2varc(g)ΓT2 +M)−1Γ2} = Span(M−1Γ2). Since Γ2 has full rank dL and diag(ω)
has full rank r (Its diagonal elements are all nonzeros with probability one.), we have

Span(M∗
−1

ΣfitL) = Span(M−1Γ2) if and only if the rank of V = covc(g, hY κ
T
1 ) is equal

to dL. Since ρL = var
− 1

2
c (g)covc(g, l)var

− 1
2

c (l) = var
− 1

2
c (g)covc(g, hY κ

T
1 )κT2 var

− 1
2

c (l) and
κ2 has rank dL, the rank of ρL is equal to the rank of covc(g, hY κ

T
1 ).

Similarly, by following the above steps one can show that SdR(Ω̂−1/2, Σ̂fitR) con-
verges to Span(Ω−1Γ1) at

√
n rate if and only if covr(g, h

T
Y κ

T
2 ) or, equivalently, ρR has

rank dR, based on the fact that Span(M̂−1Γ̂2) = SdL(M̂, Σ̂fitL) is
√
n consistent to

Span(M−1Γ2).

Proof of Proposition 7. Assume that E(X) = 0. Let Z = M−
1
2XΩ−

1
2 and let

SY |◦Z◦ = Span(α1 ⊗ α2). Under the elliptically symmetric condition, we have

(Ω⊗M)−
1
2 E[vec(X)|Y ] = E[vec(Z)|Y ] = E{E[vec(Z)|(α1 ⊗ α2)Tvec(Z), Y ]|Y }

= E{E[vec(Z)|(α1 ⊗ α2)Tvec(Z)]|Y }
= Pα1⊗α2

E[vec(Z)|Y ].

(S2.4)

Thus, (Ω ⊗ M)−
1
2 E[vec(X)|Y ] ∈ SY |◦Z◦. From model (3.1), we can observe that

E[vec(Z)|Y ] = (Ω ⊗M)−
1
2 (Γ1 ⊗ Γ2)(β1 ⊗ β2)vec(f(Y )). Hence (Ω ⊗M)−

1
2 Span(Γ1 ⊗

Γ2) = Span{E[vec(Z)|Y ] : over all Y } ⊆ SY |◦Z◦. By the invariance property SY |◦Z◦ =

(Ω ⊗ M)
1
2SY |◦X◦, we have SfPFC = (Ω ⊗ M)−1Span(Γ1 ⊗ Γ2) = Span{ζ = (Ω ⊗

M)−1E[vec(X)|Y ] : over all Y } ⊆ SY |◦X◦.

Dimension folding SIR can be formulated with f(Y ) specified by h(Y ) = diag{I(Y ∈
J1)−n1

n , ..., I(Y ∈ Jh−1)−nh−1

n }
T = diag(I(Ỹ = 1)−n1

n , ..., I(Ỹ = h−1)/(h−1)−nh−1

n )T .

Then ζ̃ = (Ω⊗M)−1E[vec(X)|Ỹ ] = (Ω⊗M)−1(Γ1 ⊗ Γ2)(β1 ⊗ β2)vec(h(Y )). It follows
that Span(ζ̃) = Span{(Ω ⊗M)−1E[vec(X)|Ỹ ] : over all Ỹ } ⊆ Span{(Ω ⊗M)−1(Γ1 ⊗
Γ2)} = SfPFC . According to Theorem 1 in Li et al. (2010), the dimension folding
SIR subspace SfSIR is equal to the Kronecker envelope E⊗(ζ), which is the Kronecker
product of the two smallest subspaces S◦ζ⊗Sζ◦ such that Span(ζ) ⊆ S◦ζ⊗Sζ◦. Therefore,
SfSIR ⊆ SfPFC .


