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Appendix
Proof of Lemma 1. Let o and 5 > 0 be fixed and o + Bz = 6. The case where 8 < 0
can be shown analogously and is therefore not presented. From Theorem 1, we obtain that a

D-optimal design £* must satisfy the inequality
2(0) 1= z1 + 220 + 230° < 2/Q(0) =: g(0) VO € [, a + ],

for some coefficients z1, 22, z3 € R, with equality at the support points of £*.

Now suppose a D-optimal design has three support points, a < 01 < 02 < 03 < a+ 5. Then
z(0;) = g(0;), i = 1,2,3. By Cauchy’s mean value theorem, there exist points ;, i = 1,2 such
that 01 < 61 < 62 < 02 < 03 and 2'(6;) = ¢'(6;). Since z(A) < g(#) on [o, a + f], we also
have z'(f2) = ¢'(02). By the mean value theorem, there exist points 6;, i = 1,2 such that
61 < 61 < 62 <0y <0y and 2”(6;) = g"(6;). Now 2" () is constant, so can intersect with g” (6)
at most once on [, a 4+ 3], which contradicts the assumption of three support points. Hence a
D-optimal design has exactly two support points, with equal weights.

Let & and &2 be two D-optimal designs. By log-concavity of the D-criterion, the design
&3 = 0.5&1 + 0.5¢2 must also be D-optimal. However, if £&; and & are different, {3 has more
than two support points, which contradicts the result above. Hence the D-optimal design is

unique. O

Proof of Theorem 2. We give a sketch of the proof for part (a). The proof of (b) follows
along similarly using symmetry arguments and is therefore omitted.

Let 8 > 0. For a design with two support points z1,z2 € [0, 1], with 1 < 2, the determinant
of (2.1) is increasing with xz2, regardless of the value of z1, and therefore maximised for zo = 1.
It remains to maximise the function

r(a+ Bz1) = Q(a+ Bz1)(z1 — 1)), 0<z < 1.

Using assumption (d), r(a + Bz1) has exactly two turning points on (—oo, 1], one of which is
a minimum at x; = 1, hence the other one must be a maximum. If this maximum is attained
outside the design space, r(a 4+ Sz1) is maximised at z; = 0, which will then be the second
support point of the D-optimal design. This occurs if and only r’(a+Bz1) < 0 at z1 = 0, which
is equivalent to 8 < 2Q(«)/Q’(a). Otherwise the point at which the maximum is attained will
be the second support point. This is found by solving r’(a + Bz1) = 0, which is equivalent to
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solving B(z1 — 1) + 2Q(a + Bz1)/Q' (o + Bx1) = 0. O

Proof of Lemma 2. From Caratheodory’s theorem applied to the Elfving set, Elfving (1952),
there exists a c-optimal design for § with at most two support points. We now assume that
there exists an optimal design §~ with only one support point 6. For estimability we require that
(0 1)7 is in the range of M (€, a, §), that is, there exists a vector n = (n1,72)7 € R? such that

0\ (m Q(0)(m + n20)
( ) o <9 e?) ( ) - ( = Q@) + M)’ W
which yields a contradiction. O

Proof of Theorem 3. We give only a sketch of the proof of part (a). The proof of part (b) is
similar and therefore omitted.

Let 8 > 0 and 1 < z2. Substituting the expressions for the optimal weights from (3.2), we
obtain for the objective function defined in (3.1):

k(z1,2z2) = (1/\/ (a4 Bz1)+1//Q Oé-l—ﬂil}g) xl—xgz

Holding z fixed, k(z1,22) is decreasing with x2 and therefore attains its minimum in [u,v]
at the upper boundary v. Now k(z1,v) has exactly one turning point z7 on (—oo,v] and so
there is at most one turning point in [u,v], which is a minimum since limg, o k(z1,v) =
limg, o k(z1,v) = co. If 27 ¢ [u,v] the lower boundary, u, is the smaller support point. This
occurs if and only if k¥'(z1,v) > 0 at 1 = u, which is equivalent to condition (3.3). Otherwise
x7 is the smaller support point and can be found solving k'(z1,v) = 0, which is equivalent to
solving (3.4). O

Proof of Theorem 4. Using condition (d1) the function 8 + 2Q(a + 8)/Q'(a + B) = I(B)
is increasing with 3. Hence if [(8o) > 0 then [(8) > 0 for all 5 € [Bo, 1] and using part (b)
in Theorem 2 the locally D-optimal design £j is equally supported at points 0 and 1 for all
B € [Bo, B1]. Hence the standardised maximin D-optimal design is also supported at 0 and 1
with equal weights.

Now let 1(8o) < 0. Since I(8) is increasing with g there exists 8% € (8o, 1] such that
1(8) > 0 for all 8 > B*. Again using part (b) in Theorem 2 the locally D-optimal design &3
is equally supported at points 0 and z(8) where z(8) = 1 for 8 > B*. Otherwise z(83) is the

solution of the equation

Bz(B) +2Q(a + Bx(8))/Q (o + Bx(B)) =0, 0<=(B) < 1. (2)

From (5.3) the D-efficiency of a two-point design & equally supported at 0 and z is given by
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For B> 8%, z(8) =1 and for fixed 0 <z <1
du(z,B)

g

which is non-positive for all § € [8*, 81] using condition (d1). Hence for fixed z, u(z, ) is

22 /Q* (o + B) [Q (o + Bx)2Q(a + B) — Qo+ Bx)Q (o + B)]

minimised at ;.

For 8 < 8* and fixed 0 < z < 1, solving %ﬁgﬁ) = 0 is equivalent to solving

B +2Q(a + Bz)/Q (a + Bx) = 0,

using equation (2). This has a unique solution 8 such that z(8) = z. So the function 8 — u(z, )
is unimodal for fixed x and it is minimised at By or Bi. We note that if I(81) < 0 then for all
1(8) < 0 and z(B) is the solution of equation (2). Following the same arguments as in the above
case for fixed 0 < z < 1, the function 8 — wu(z, ) is unimodal and minimised at By or .

Hence the standardised maximin design can be found by maximising

@(§) = min {u(z, fo), u(z, f1) .

This maximisation can be divided into maximisation over the sets

M. = {:r € (0,1] ‘ u(z, o) < u(%ﬂl)}
M- = {x € (0,1] ‘ u(z, Bo) > u(%ﬁl)}
M- = {m € (0,1] ‘ u(z, Bo) = u(%ﬁl)}

Now assume that the standardised maximin D-optimal design is in the set M« and so we must
maximise the function u(z, 8p). Taking its first derivative with respect to z and equating it to

zero yields
Box +2Q(a + fox) /BQ (e + fox) = 0 = = = z(Bo).

Hence (u(x(ﬁo),ﬁo))% =1< (u(x(ﬁo),ﬁl))% which is a contradiction. Following similar ar-
guments for set M~ also leads to a contradiction and so the standardised maximin D-optimal

design can be found by solving u(z, 80) = u(z, $1) which is equivalent to solving

Q(a + Box)Q(a + fra(81)z(1)* = Q(a + fiz)Q(a + Box(Bo))z(bo)*.
O
Proof of Theorem 5. For a binary design space the c-optimal weights w(8) and 1 — w(3) for

B are defined in (3.2). From (5.4) the c-efficiency of a design £ with support points 0 and 1 and

weights w and 1 — w respectively is

effe(€) = w1l = w)/((1 = w)(@(B))* + w(l = w(B))?*) := u(w,w(B))

and the standardised maximin c-optimal criterion is

@(¢) = min {u(w,w()) | w(B) € [w(Bo),w(B)]}
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For fixed w the function w(fB) — u(w,w(B)) is unimodal and the standardised maximin design
w* is in M—=. Hence we can find w* by solving the equation u(w,w(Bo)) = u(w,w(B1)) which
yields w* = (w(Bo) + w(B1))/2. O



