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Appendix
Proof of Lemma 1. Let α and β > 0 be fixed and α + βx = θ. The case where β < 0

can be shown analogously and is therefore not presented. From Theorem 1, we obtain that a

D-optimal design ξ∗ must satisfy the inequality

z(θ) := z1 + z2θ + z3θ
2 ≤ 2/Q(θ) =: g(θ) ∀θ ∈ [α, α+ β],

for some coefficients z1, z2, z3 ∈ R, with equality at the support points of ξ∗.

Now suppose a D-optimal design has three support points, α ≤ θ1 < θ2 < θ3 ≤ α + β. Then

z(θi) = g(θi), i = 1, 2, 3. By Cauchy’s mean value theorem, there exist points θ̃i, i = 1, 2 such

that θ1 < θ̃1 < θ2 < θ̃2 < θ3 and z′(θ̃i) = g′(θ̃i). Since z(θ) ≤ g(θ) on [α, α + β], we also

have z′(θ2) = g′(θ2). By the mean value theorem, there exist points θ̂i, i = 1, 2 such that

θ̃1 < θ̂1 < θ2 < θ̂2 < θ̃2 and z′′(θ̂i) = g′′(θ̂i). Now z′′(θ) is constant, so can intersect with g′′(θ)

at most once on [α, α+ β], which contradicts the assumption of three support points. Hence a

D-optimal design has exactly two support points, with equal weights.

Let ξ1 and ξ2 be two D-optimal designs. By log-concavity of the D-criterion, the design

ξ3 = 0.5ξ1 + 0.5ξ2 must also be D-optimal. However, if ξ1 and ξ2 are different, ξ3 has more

than two support points, which contradicts the result above. Hence the D-optimal design is

unique.

Proof of Theorem 2. We give a sketch of the proof for part (a). The proof of (b) follows

along similarly using symmetry arguments and is therefore omitted.

Let β > 0. For a design with two support points x1, x2 ∈ [0, 1], with x1 < x2, the determinant

of (2.1) is increasing with x2, regardless of the value of x1, and therefore maximised for x2 = 1.

It remains to maximise the function

r(α+ βx1) = Q(α+ βx1)(x1 − 1)2, 0 ≤ x1 < 1.

Using assumption (d), r(α + βx1) has exactly two turning points on (−∞, 1], one of which is

a minimum at x1 = 1, hence the other one must be a maximum. If this maximum is attained

outside the design space, r(α + βx1) is maximised at x1 = 0, which will then be the second

support point of the D-optimal design. This occurs if and only r′(α+βx1) < 0 at x1 = 0, which

is equivalent to β < 2Q(α)/Q′(α). Otherwise the point at which the maximum is attained will

be the second support point. This is found by solving r′(α + βx1) = 0, which is equivalent to
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solving β(x1 − 1) + 2Q(α+ βx1)/Q′(α+ βx1) = 0.

Proof of Lemma 2. From Caratheodory’s theorem applied to the Elfving set, Elfving (1952),

there exists a c-optimal design for β with at most two support points. We now assume that

there exists an optimal design ξ̃ with only one support point θ̃. For estimability we require that

(0 1)T is in the range of M(ξ, α, β), that is, there exists a vector η = (η1, η2)T ∈ R2 such that(
0

1

)
= Q(θ̃)

(
1 θ̃

θ̃ θ̃2

)(
η1
η2

)
⇐⇒

(
0 = Q(θ̃)(η1 + η2θ̃)

1 = Q(θ̃)θ̃(η1 + η2θ̃)

)
, (1)

which yields a contradiction.

Proof of Theorem 3. We give only a sketch of the proof of part (a). The proof of part (b) is

similar and therefore omitted.

Let β > 0 and x1 < x2. Substituting the expressions for the optimal weights from (3.2), we

obtain for the objective function defined in (3.1):

k(x1, x2) :=
(

1/
√
Q(α+ βx1) + 1/

√
Q(α+ βx2)

)2
/(x1 − x2)2.

Holding x1 fixed, k(x1, x2) is decreasing with x2 and therefore attains its minimum in [u, v]

at the upper boundary v. Now k(x1, v) has exactly one turning point x∗1 on (−∞, v] and so

there is at most one turning point in [u, v], which is a minimum since limx1→−∞ k(x1, v) =

limx1→v k(x1, v) = ∞. If x∗1 /∈ [u, v] the lower boundary, u, is the smaller support point. This

occurs if and only if k′(x1, v) > 0 at x1 = u, which is equivalent to condition (3.3). Otherwise

x∗1 is the smaller support point and can be found solving k′(x1, v) = 0, which is equivalent to

solving (3.4).

Proof of Theorem 4. Using condition (d1) the function β + 2Q(α + β)/Q′(α + β) := l(β)

is increasing with β. Hence if l(β0) > 0 then l(β) > 0 for all β ∈ [β0, β1] and using part (b)

in Theorem 2 the locally D-optimal design ξ∗β is equally supported at points 0 and 1 for all

β ∈ [β0, β1]. Hence the standardised maximin D-optimal design is also supported at 0 and 1

with equal weights.

Now let l(β0) ≤ 0. Since l(β) is increasing with β there exists β∗ ∈ (β0, β1] such that

l(β) > 0 for all β ≥ β∗. Again using part (b) in Theorem 2 the locally D-optimal design ξ∗β

is equally supported at points 0 and x(β) where x(β) = 1 for β ≥ β∗. Otherwise x(β) is the

solution of the equation

βx(β) + 2Q(α+ βx(β))/Q′(α+ βx(β)) = 0, 0 < x(β) ≤ 1. (2)

From (5.3) the D-efficiency of a two-point design ξ equally supported at 0 and x is given by

effD(ξ) =

(
Q(α+ βx)x2

Q(α+ βx(β))x(β)2

) 1
2

:= (u(x, β))
1
2 .
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For β ≥ β∗, x(β) = 1 and for fixed 0 < x ≤ 1

du(x, β)

dβ
= x2/Q2(α+ β)

[
Q′(α+ βx)xQ(α+ β)−Q(α+ βx)Q′(α+ β)

]
,

which is non-positive for all β ∈ [β∗, β1] using condition (d1). Hence for fixed x, u(x, β) is

minimised at β1.

For β < β∗ and fixed 0 < x ≤ 1, solving du(x,β)
dβ

= 0 is equivalent to solving

βx+ 2Q(α+ βx)/Q′(α+ βx) = 0,

using equation (2). This has a unique solution β such that x(β) = x. So the function β → u(x, β)

is unimodal for fixed x and it is minimised at β0 or β1. We note that if l(β1) ≤ 0 then for all

l(β) ≤ 0 and x(β) is the solution of equation (2). Following the same arguments as in the above

case for fixed 0 < x ≤ 1, the function β → u(x, β) is unimodal and minimised at β0 or β1.

Hence the standardised maximin design can be found by maximising

Φ(ξ) = min
{
u(x, β0), u(x, β1)

}
.

This maximisation can be divided into maximisation over the sets

M< :=
{
x ∈ (0, 1] u(x, β0) < u(x, β1)

}
M> :=

{
x ∈ (0, 1] u(x, β0) > u(x, β1)

}
M= :=

{
x ∈ (0, 1] u(x, β0) = u(x, β1)

}
Now assume that the standardised maximin D-optimal design is in the set M< and so we must

maximise the function u(x, β0). Taking its first derivative with respect to x and equating it to

zero yields

β0x+ 2Q(α+ β0x)/βQ′(α+ β0x) = 0⇒ x = x(β0).

Hence (u(x(β0), β0))
1
2 = 1 < (u(x(β0), β1))

1
2 which is a contradiction. Following similar ar-

guments for set M> also leads to a contradiction and so the standardised maximin D-optimal

design can be found by solving u(x, β0) = u(x, β1) which is equivalent to solving

Q(α+ β0x)Q(α+ β1x(β1))x(β1)2 = Q(α+ β1x)Q(α+ β0x(β0))x(β0)2.

Proof of Theorem 5. For a binary design space the c-optimal weights ω(β) and 1− ω(β) for

β are defined in (3.2). From (5.4) the c-efficiency of a design ξ with support points 0 and 1 and

weights ω and 1− ω respectively is

effc(ξ) = ω(1− ω)/((1− ω)(ω(β))2 + ω(1− ω(β))2) := u(ω, ω(β))

and the standardised maximin c-optimal criterion is

Φ(ξ) = min
{
u(ω, ω(β)) ω(β) ∈ [ω(β0), ω(β1)]

}
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For fixed ω the function ω(β) → u(ω, ω(β)) is unimodal and the standardised maximin design

ω∗ is in M=. Hence we can find ω∗ by solving the equation u(ω, ω(β0)) = u(ω, ω(β1)) which

yields ω∗ = (ω(β0) + ω(β1))/2.


