OPTIMAL DESIGNS FOR TWO-PARAMETER NONLINEAR MODELS WITH APPLICATION TO SURVIVAL MODELS

Maria Konstantinou, Stefanie Biedermann and Alan Kimber

Statistical Sciences Research Institute, University of Southampton

Appendix

Proof of Lemma 1. Let α and $\beta > 0$ be fixed and $\alpha + \beta x = \theta$. The case where $\beta < 0$ can be shown analogously and is therefore not presented. From Theorem 1, we obtain that a D-optimal design ξ^* must satisfy the inequality

$$z(\theta) := z_1 + z_2\theta + z_3\theta^2 \le 2/Q(\theta) =: g(\theta) \quad \forall \theta \in [\alpha, \alpha + \beta],$$

for some coefficients $z_1, z_2, z_3 \in \mathbb{R}$, with equality at the support points of ξ^* .

Now suppose a *D*-optimal design has three support points, $\alpha \leq \theta_1 < \theta_2 < \theta_3 \leq \alpha + \beta$. Then $z(\theta_i) = g(\theta_i), i = 1, 2, 3$. By Cauchy's mean value theorem, there exist points $\tilde{\theta}_i, i = 1, 2$ such that $\theta_1 < \tilde{\theta}_1 < \theta_2 < \tilde{\theta}_2 < \theta_3$ and $z'(\tilde{\theta}_i) = g'(\tilde{\theta}_i)$. Since $z(\theta) \leq g(\theta)$ on $[\alpha, \alpha + \beta]$, we also have $z'(\theta_2) = g'(\theta_2)$. By the mean value theorem, there exist points $\hat{\theta}_i, i = 1, 2$ such that $\tilde{\theta}_1 < \theta_2 < \tilde{\theta}_2 < \tilde{\theta}_2$ and $z''(\tilde{\theta}_i) = g''(\tilde{\theta}_i)$. Now $z''(\theta)$ is constant, so can intersect with $g''(\theta)$ at most once on $[\alpha, \alpha + \beta]$, which contradicts the assumption of three support points. Hence a *D*-optimal design has exactly two support points, with equal weights.

Let ξ_1 and ξ_2 be two *D*-optimal designs. By log-concavity of the *D*-criterion, the design $\xi_3 = 0.5\xi_1 + 0.5\xi_2$ must also be *D*-optimal. However, if ξ_1 and ξ_2 are different, ξ_3 has more than two support points, which contradicts the result above. Hence the *D*-optimal design is unique.

Proof of Theorem 2. We give a sketch of the proof for part (a). The proof of (b) follows along similarly using symmetry arguments and is therefore omitted.

Let $\beta > 0$. For a design with two support points $x_1, x_2 \in [0, 1]$, with $x_1 < x_2$, the determinant of (2.1) is increasing with x_2 , regardless of the value of x_1 , and therefore maximised for $x_2 = 1$. It remains to maximise the function

$$r(\alpha + \beta x_1) = Q(\alpha + \beta x_1)(x_1 - 1)^2, \quad 0 \le x_1 < 1.$$

Using assumption (d), $r(\alpha + \beta x_1)$ has exactly two turning points on $(-\infty, 1]$, one of which is a minimum at $x_1 = 1$, hence the other one must be a maximum. If this maximum is attained outside the design space, $r(\alpha + \beta x_1)$ is maximised at $x_1 = 0$, which will then be the second support point of the *D*-optimal design. This occurs if and only $r'(\alpha + \beta x_1) < 0$ at $x_1 = 0$, which is equivalent to $\beta < 2Q(\alpha)/Q'(\alpha)$. Otherwise the point at which the maximum is attained will be the second support point. This is found by solving $r'(\alpha + \beta x_1) = 0$, which is equivalent to solving $\beta(x_1 - 1) + 2Q(\alpha + \beta x_1)/Q'(\alpha + \beta x_1) = 0.$

Proof of Lemma 2. From Caratheodory's theorem applied to the Elfving set, Elfving (1952), there exists a *c*-optimal design for β with at most two support points. We now assume that there exists an optimal design $\tilde{\xi}$ with only one support point $\tilde{\theta}$. For estimability we require that $(0 \ 1)^T$ is in the range of $M(\xi, \alpha, \beta)$, that is, there exists a vector $\eta = (\eta_1, \eta_2)^T \in \mathbb{R}^2$ such that

$$\begin{pmatrix} 0\\1 \end{pmatrix} = Q(\tilde{\theta}) \begin{pmatrix} 1 & \tilde{\theta}\\ \tilde{\theta} & \tilde{\theta}^2 \end{pmatrix} \begin{pmatrix} \eta_1\\ \eta_2 \end{pmatrix} \iff \begin{pmatrix} 0 = Q(\tilde{\theta})(\eta_1 + \eta_2 \tilde{\theta})\\ 1 = Q(\tilde{\theta})\tilde{\theta}(\eta_1 + \eta_2 \tilde{\theta}) \end{pmatrix},$$
(1)

which yields a contradiction.

Proof of Theorem 3. We give only a sketch of the proof of part (a). The proof of part (b) is similar and therefore omitted.

Let $\beta > 0$ and $x_1 < x_2$. Substituting the expressions for the optimal weights from (3.2), we obtain for the objective function defined in (3.1):

$$k(x_1, x_2) := \left(1/\sqrt{Q(\alpha + \beta x_1)} + 1/\sqrt{Q(\alpha + \beta x_2)}\right)^2 / (x_1 - x_2)^2.$$

Holding x_1 fixed, $k(x_1, x_2)$ is decreasing with x_2 and therefore attains its minimum in [u, v]at the upper boundary v. Now $k(x_1, v)$ has exactly one turning point x_1^* on $(-\infty, v]$ and so there is at most one turning point in [u, v], which is a minimum since $\lim_{x_1\to-\infty} k(x_1, v) =$ $\lim_{x_1\to v} k(x_1, v) = \infty$. If $x_1^* \notin [u, v]$ the lower boundary, u, is the smaller support point. This occurs if and only if $k'(x_1, v) > 0$ at $x_1 = u$, which is equivalent to condition (3.3). Otherwise x_1^* is the smaller support point and can be found solving $k'(x_1, v) = 0$, which is equivalent to solving (3.4).

Proof of Theorem 4. Using condition (d1) the function $\beta + 2Q(\alpha + \beta)/Q'(\alpha + \beta) := l(\beta)$ is increasing with β . Hence if $l(\beta_0) > 0$ then $l(\beta) > 0$ for all $\beta \in [\beta_0, \beta_1]$ and using part (b) in Theorem 2 the locally *D*-optimal design ξ_{β}^* is equally supported at points 0 and 1 for all $\beta \in [\beta_0, \beta_1]$. Hence the standardised maximin *D*-optimal design is also supported at 0 and 1 with equal weights.

Now let $l(\beta_0) \leq 0$. Since $l(\beta)$ is increasing with β there exists $\beta^* \in (\beta_0, \beta_1]$ such that $l(\beta) > 0$ for all $\beta \geq \beta^*$. Again using part (b) in Theorem 2 the locally *D*-optimal design ξ^*_{β} is equally supported at points 0 and $x(\beta)$ where $x(\beta) = 1$ for $\beta \geq \beta^*$. Otherwise $x(\beta)$ is the solution of the equation

$$\beta x(\beta) + 2Q(\alpha + \beta x(\beta))/Q'(\alpha + \beta x(\beta)) = 0, \quad 0 < x(\beta) \le 1.$$
⁽²⁾

From (5.3) the D-efficiency of a two-point design ξ equally supported at 0 and x is given by

$$eff_D(\xi) = \left(\frac{Q(\alpha + \beta x)x^2}{Q(\alpha + \beta x(\beta))x(\beta)^2}\right)^{\frac{1}{2}} := (u(x,\beta))^{\frac{1}{2}}$$

For $\beta \ge \beta^*$, $x(\beta) = 1$ and for fixed $0 < x \le 1$

$$\frac{du(x,\beta)}{d\beta} = x^2/Q^2(\alpha+\beta) \left[Q'(\alpha+\beta x)xQ(\alpha+\beta) - Q(\alpha+\beta x)Q'(\alpha+\beta)\right],$$

which is non-positive for all $\beta \in [\beta^*, \beta_1]$ using condition (d1). Hence for fixed $x, u(x, \beta)$ is minimised at β_1 .

For $\beta < \beta^*$ and fixed $0 < x \le 1$, solving $\frac{du(x,\beta)}{d\beta} = 0$ is equivalent to solving

$$\beta x + 2Q(\alpha + \beta x)/Q'(\alpha + \beta x) = 0,$$

using equation (2). This has a unique solution β such that $x(\beta) = x$. So the function $\beta \to u(x, \beta)$ is unimodal for fixed x and it is minimised at β_0 or β_1 . We note that if $l(\beta_1) \leq 0$ then for all $l(\beta) \leq 0$ and $x(\beta)$ is the solution of equation (2). Following the same arguments as in the above case for fixed $0 < x \leq 1$, the function $\beta \to u(x, \beta)$ is unimodal and minimised at β_0 or β_1 . Hence the standardised maximin design can be found by maximising

$$\Phi(\xi) = \min\left\{u(x,\beta_0), u(x,\beta_1)\right\}.$$

This maximisation can be divided into maximisation over the sets

$$M_{<} := \left\{ x \in (0,1] \mid u(x,\beta_{0}) < u(x,\beta_{1}) \right\}$$
$$M_{>} := \left\{ x \in (0,1] \mid u(x,\beta_{0}) > u(x,\beta_{1}) \right\}$$
$$M_{=} := \left\{ x \in (0,1] \mid u(x,\beta_{0}) = u(x,\beta_{1}) \right\}$$

Now assume that the standardised maximin *D*-optimal design is in the set $M_{<}$ and so we must maximise the function $u(x, \beta_0)$. Taking its first derivative with respect to x and equating it to zero yields

$$\beta_0 x + 2Q(\alpha + \beta_0 x) / \beta Q'(\alpha + \beta_0 x) = 0 \Rightarrow x = x(\beta_0).$$

Hence $(u(x(\beta_0), \beta_0))^{\frac{1}{2}} = 1 < (u(x(\beta_0), \beta_1))^{\frac{1}{2}}$ which is a contradiction. Following similar arguments for set $M_>$ also leads to a contradiction and so the standardised maximin *D*-optimal design can be found by solving $u(x, \beta_0) = u(x, \beta_1)$ which is equivalent to solving

$$Q(\alpha + \beta_0 x)Q(\alpha + \beta_1 x(\beta_1))x(\beta_1)^2 = Q(\alpha + \beta_1 x)Q(\alpha + \beta_0 x(\beta_0))x(\beta_0)^2.$$

Proof of Theorem 5. For a binary design space the *c*-optimal weights $\omega(\beta)$ and $1 - \omega(\beta)$ for β are defined in (3.2). From (5.4) the *c*-efficiency of a design ξ with support points 0 and 1 and weights ω and $1 - \omega$ respectively is

$$eff_c(\xi) = \omega(1-\omega)/((1-\omega)(\omega(\beta))^2 + \omega(1-\omega(\beta))^2) := u(\omega,\omega(\beta))$$

and the standardised maximin c-optimal criterion is

$$\Phi(\xi) = \min\left\{ u(\omega, \omega(\beta)) \mid \omega(\beta) \in [\omega(\beta_0), \omega(\beta_1)] \right\}$$

For fixed ω the function $\omega(\beta) \to u(\omega, \omega(\beta))$ is unimodal and the standardised maximin design ω^* is in $M_{=}$. Hence we can find ω^* by solving the equation $u(\omega, \omega(\beta_0)) = u(\omega, \omega(\beta_1))$ which yields $\omega^* = (\omega(\beta_0) + \omega(\beta_1))/2$.