POPULATION EMPIRICAL LIKELIHOOD FOR NONPARAMETRIC INFERENCE IN SURVEY SAMPLING

Sixia Chen and Jae Kwang Kim

Iowa State University

Supplementary Material

In this supplement material, we provided proofs for Theorems in the paper.

S1 Proof of Theorem 1

We first prove the consistency of $(\hat{\theta}, \hat{\lambda})$. Let

$$\hat{Q}_1(\theta, \lambda) = \frac{1}{n_B} \sum_{i=1}^{N} \frac{I_i \pi_i^{-1} f_N U_i(\theta)}{1 + \lambda' \Psi_i}, \quad \hat{Q}_2(\theta, \lambda) = \frac{1}{n_B} \sum_{i=1}^{N} \frac{\Psi_i}{1 + \lambda' \Psi_i}, \quad (S1.1)$$

where $f_N = n_B/N$, $\Psi_i = f_N((I_i\pi_i^{-1} - 1), I_i\pi_i^{-1}(h_i' - \bar{h}_N'))'$. Let $\hat{\lambda} = \rho \delta$, where $||\delta|| = 1$, so according to (S1.1), we have

$$\begin{split} 0 &= ||n_B^{-1} \sum_{i=1}^N \frac{\Psi_i}{1 + \hat{\lambda}' \Psi_i}|| \geq \left|n_B^{-1} \sum_{i=1}^N \frac{\delta' \Psi_i}{1 + \rho \delta' \Psi_i}\right| \\ &= |n_B^{-1} \sum_{i=1}^N \frac{\delta' \Psi_i (1 + \rho \delta' \Psi_i - \rho \delta' \Psi_i)}{1 + \rho \delta' \Psi_i}| \\ &= |n_B^{-1} \sum_{i=1}^N \delta' \Psi_i - n_B^{-1} \sum_{i=1}^N \frac{\rho \delta' \Psi_i \Psi_i' \delta}{1 + \rho \delta' \Psi_i}| \\ &\geq ||n_B^{-1} \sum_{i=1}^N \delta' \Psi_i| - |n_B^{-1} \sum_{i=1}^N \frac{\rho \delta' \Psi_i \Psi_i^T \delta}{1 + \rho \delta' \Psi_i}||. \end{split}$$

Hence,

$$\left|\frac{1}{n_B} \sum_{i=1}^{N} \delta' \Psi_i \right| = \left|\frac{1}{n_B} \sum_{i=1}^{N} \frac{\rho \delta' \Psi_i \Psi_i' \delta}{1 + \rho \delta' \Psi_i} \right|$$

$$\geq \left|\delta' \frac{1}{n_B} \sum_{i=1}^{N} \Psi_i \Psi_i' \delta \left| \frac{|\rho|}{1 + |\rho| u^*}, \right. \tag{S1.2}$$

where $u^* = \max_{i \in A} ||\Psi_i||$.

Under assumption (C3), we have $n_B^{-1} \sum_{i=1}^N \Psi_i \Psi_i' = \Sigma_{\Psi} + o_p(1)$, and Σ_{Ψ} is a positive definite matrix. Let λ_p be the smallest eigenvalue of Σ_{Ψ} , then $\lambda_p > 0$. So, the following holds

$$\left|\delta' n_B^{-1} \sum_{i=1}^N \Psi_i \Psi_i' \delta\right| \ge \lambda_p + o_p(1). \tag{S1.3}$$

In addition, according to Assumption (C3),

$$\frac{1}{n_B} \sum_{i=1}^{N} \delta' \Psi_i = O_p(n_B^{-1/2}). \tag{S1.4}$$

By (S1.2), (S1.3), (S1.4) and assumptions (C5), (C6),

$$\lambda_p |\rho| = O_p(n_B^{-1/2}) + o_p(|\rho|).$$

Thus, we have $|\rho| = O_p(n_B^{-1/2})$, which means $||\hat{\lambda}|| = O_p(n_B^{-1/2})$.

Because $\max_{i \in A} |\hat{\lambda}' \Psi_i| = O_p(n_B^{-1/2}) o_p(n_B) = o_p(1)$ and assumption (C4), we can apply Taylor expansion and get

$$0 = \frac{1}{n_B} \sum_{i=1}^{N} \frac{f_N I_i \pi_i^{-1} U_i(\hat{\theta})}{1 + \hat{\lambda}' \Psi_i}$$

$$= \frac{1}{n_B} \sum_{i=1}^{N} f_N I_i \pi_i^{-1} U_i(\hat{\theta}) - \left\{ \frac{1}{n_B} \sum_{i=1}^{N} f_N I_i \pi_i^{-1} U_i(\hat{\theta}) \Psi_i' \right\} \hat{\lambda}$$

$$+ O_p(n_B^{-1}). \tag{S1.5}$$

By assumption (C4), it can be shown that

$$n_B^{-1} \sum_{i=1}^N f_N I_i \pi_i^{-1} U_i(\hat{\theta}) \Psi_i' = O_p(1),$$
 (S1.6)

and

$$\sup_{\theta \in \Theta} || \frac{1}{n_B} \sum_{i=1}^{N} f_N I_i \pi_i^{-1} U_i(\theta) - \frac{1}{N} \sum_{i=1}^{N} U_i(\theta) || \to^p 0,$$
 (S1.7)

so according to (S1.5), (S1.6) and (S1.7),

$$0 = p \lim \left| \frac{1}{n_B} \sum_{i=1}^{N} f_N I_i \pi_i^{-1} U_i(\hat{\theta}) \right|$$

$$= p \lim \left| \frac{1}{n_B} \sum_{i=1}^{N} f_N I_i \pi_i^{-1} U_i(\hat{\theta}) - \frac{1}{N} \sum_{i=1}^{N} U_i(\hat{\theta}) + \frac{1}{N} \sum_{i=1}^{N} U_i(\hat{\theta}) \right|$$

$$\geq p \lim \left| \left| \frac{1}{n_B} \sum_{i=1}^{N} f_N I_i \pi_i^{-1} U_i(\hat{\theta}) - \frac{1}{N} \sum_{i=1}^{N} U_i(\hat{\theta}) \right| - \left| \frac{1}{N} \sum_{i=1}^{N} U_i(\hat{\theta}) \right| \right|$$

$$= \left| \frac{1}{N} \sum_{i=1}^{N} U_i(\hat{\theta}) \right|. \tag{S1.8}$$

By (S1.8), assumptions (C1) and (C2), we have $\hat{\theta} \to^p \theta_0$. Hence,

$$(\hat{\theta}_{POEL}, \hat{\lambda}) \to^p (\theta_0, 0).$$
 (S1.9)

According to (S1.9), assumptions (C2) and (C4), we can apply the standard arguments using Taylor expansion to get

$$0 = \hat{Q}_1(\hat{\theta}, \hat{\lambda}) = \hat{Q}_1(\theta_0, 0) + \frac{\partial \hat{Q}_1(\theta_0, 0)}{\partial \theta'}(\hat{\theta} - \theta_0) + \frac{\partial \hat{Q}_1(\theta_0, 0)}{\partial \lambda'}(\hat{\lambda} - 0) + o_p(\delta_n),$$

and

$$0 = \hat{Q}_2(\hat{\theta}, \hat{\lambda}) = \hat{Q}_2(\theta_0, 0) + \frac{\partial \hat{Q}_2(\theta_0, 0)}{\partial \theta'}(\hat{\theta} - \theta_0) + \frac{\partial \hat{Q}_2(\theta_0, 0)}{\partial \lambda'}(\hat{\lambda} - 0) + o_p(\delta_n),$$

with $\delta_n = ||\hat{\theta} - \theta_0|| + ||\hat{\lambda}||$. Let

$$S_n = \begin{pmatrix} \partial \hat{Q}_1(\theta_0, 0)/\partial \lambda & \partial \hat{Q}_1(\theta_0, 0)/\partial \theta \\ \partial \hat{Q}_2(\theta_0, 0)/\partial \lambda & \partial \hat{Q}_2(\theta_0, 0)/\partial \theta \end{pmatrix}.$$

Under the existence of moments, we can obtain

$$S_n \to^p \left(\begin{array}{cc} S_{11}^* & S_{12}^* \\ S_{21}^* & 0 \end{array} \right),$$

and

$$||S_{11}^* - S_{11}|| = o_p(1), \quad ||S_{12}^* - S_{12}|| = o_p(1), \quad ||S_{21}^* - S_{21}|| = o_p(1), \quad (S1.10)$$

where

$$S_{11} = -\left(\frac{1}{N}\sum_{i=1}^{N} f_N(\frac{1}{\pi_i} - 1)U_i, \frac{1}{N}\sum_{i=1}^{N} f_N\frac{1}{\pi_i}U_i(h_i - \bar{h}_N)'\right), \quad S_{12} = N^{-1}\sum_{i=1}^{N} \frac{\partial U_i(\theta_0)}{\partial \theta},$$
(S1.11)

and

$$S_{21} = -\left(\begin{array}{cc} N^{-1} \sum_{i=1}^{N} f_N(\pi_i^{-1} - 1) & N^{-1} \sum_{i=1}^{N} f_N(\pi_i^{-1} - 1)(h_i - \bar{h}_N)' \\ N^{-1} \sum_{i=1}^{N} f_N(\pi_i^{-1} - 1)(h_i - \bar{h}_N) & N^{-1} \sum_{i=1}^{N} f_N \pi_i^{-1}(h_i - \bar{h}_N)^{\otimes 2} \end{array}\right).$$
(S1.12)

According to assumption (C3),

$$\hat{Q}_1(\theta_0,0) = N^{-1} \sum_{i=1}^N I_i \pi_i^{-1} U_i(\theta_0) = O_p(n_B^{-1/2}), \quad \hat{Q}_2(\theta_0,0) = N^{-1} \sum_{i=1}^N \Psi_i(\theta_0,0) = O_p(n_B^{-1/2}),$$

so we have $\delta_n = O_p(n_B^{-1/2})$. Also, according to (S1.10), (S1.11) and (S1.12), after some algebra,

$$\hat{\lambda} = -S_{21}^{-1} \hat{Q}_2(\theta_0, 0) + o_p(n_B^{-1/2}), \tag{S1.13}$$

and

$$\hat{\theta} - \theta_0 = -S_{12}^{-1} \left\{ \hat{Q}_1(\theta_0, 0) - S_{11} S_{21}^{-1} \hat{Q}_2(\theta_0, 0) \right\} + o_p(n_B^{-1/2})
= -\tau \left\{ \hat{Q}_1(\theta_0, 0) - B^* \hat{Q}_2(\theta_0, 0) \right\} + o_p(n_B^{-1/2}),$$
(S1.14)

where $\tau = S_{12}$, $B^* = \Omega_1 \Omega_2^{-1}$, $\Omega_1 = -(N\alpha_N)^{-1} S_{11}$ and $\Omega_2 = -(N\alpha_N)^{-1} S_{21}$. Hence, (3.7) in Theorem 1 is proved. Result (3.10) can be obtained by (S1.14) and assumptions (C3), (C4).

S2 Proof of Theorem 2

Maximizing (3.1) subject to

$$\sum_{i=1}^{N} \omega_i = 1, \quad \sum_{i=1}^{N} \omega_i f_N(\frac{I_i}{\pi_i} - 1) = 0, \quad \sum_{i=1}^{N} \omega_i \frac{I_i}{\pi_i} f_N(h_i - \bar{h}_N) = 0,$$

leads, after some algebra, to

$$l(\hat{\theta}) = \sum_{i=1}^{N} \log(\omega_i(\hat{\theta})) = -N \log(N) - \sum_{i=1}^{N} \log(1 + \hat{\lambda}' \Psi_{i1}),$$

where $\Psi_{i1} = (f_N(I_i\pi_i^{-1} - 1), I_i\pi_i^{-1}f_N(h_i - \bar{h}_N)')'$. Similarly, consider maximizing (3.1) subject to

$$\sum_{i=1}^{N} \omega_i = 1, \quad \sum_{i=1}^{N} \omega_i f_N(\frac{I_i}{\pi_i} - 1) = 0, \quad \sum_{i=1}^{N} \omega_i \frac{I_i}{\pi_i} f_N(h_i - \bar{h}_N) = 0,$$

and

$$\sum_{i=1}^{N} \omega_i f_N r_i = 0,$$

with $r_i = I_i \pi_i^{-1} U_i(\theta_0) - B_1^* (I_i \pi_i^{-1} - 1) - B_2^* I_i \pi_i^{-1} (h_i - \bar{h}_N)$ and $B^* = (B_1^*, B_2^*) = S_{11} S_{21}^{-1}$, where S_{11}, S_{21} are defined in (S1.11) and (S1.12) of the proof of Theorem 1. After some algebra,

$$l(\theta_0) = \sum_{i=1}^{N} \log(\omega_i(\theta_0)) = -N \log(N) - \sum_{i=1}^{N} \log(1 + \lambda_0' \Psi_{i2}),$$

where $\Psi_{i2} = (f_N(I_i\pi_i^{-1} - 1), I_i\pi_i^{-1}f_N(h_i - \bar{h}_N)', f_Nr_i')'$. So, we can write

$$R_n(\theta_0) = 2\left\{ \sum_{i=1}^N \log(1 + \lambda_0' \Psi_{i2}) - \sum_{i=1}^N \log(1 + \hat{\lambda}' \Psi_{i1}) \right\},$$
 (S2.1)

and λ_0 is the solution of $\hat{Q}_3(\theta_0, \lambda) = 0$ with

$$\hat{Q}_3(\theta_0, \lambda) = \frac{1}{n_B} \sum_{i=1}^{N} \frac{\Psi_{i2}(\theta_0)}{1 + \lambda' \Psi_{i2}(\theta_0)}.$$

By the same argument for (S1.9), we have $\lambda_0 \to^p 0$. We can apply a Taylor expansion to get

$$0 = \hat{Q}_3(\theta_0, \lambda_0) = \hat{Q}_3(\theta_0, 0) + \frac{\partial \hat{Q}_3(\theta_0, 0)}{\partial \lambda} \lambda_0 + o_p(||\lambda_0||).$$

According to assumption (C3), $\hat{Q}_3(\theta_0,0) = n_B^{-1} \sum_{i=1}^N \Psi_{i2}(\theta_0,0) = O_p(n_B^{-1/2})$, hence $||\lambda_0|| = O_p(n_B^{-1/2})$, so

$$\lambda_0 = -S^{-1}\hat{Q}_3(\theta_0, 0) + o_p(n_B^{-1/2}), \tag{S2.2}$$

with

$$S = \begin{pmatrix} S_{21} & 0\\ 0 & S_r \end{pmatrix}, \tag{S2.3}$$

where

$$S_{r} = f_{N}\{-NV_{poi}(\bar{r}_{N}) - N^{-1} \sum_{i=1}^{N} U_{i}^{\otimes 2} - B_{2}^{*}N^{-1} \sum_{i=1}^{N} (h_{i} - \bar{h}_{N})^{\otimes 2} B_{2}^{*'} + N^{-1} \sum_{i=1}^{N} U_{i}(h_{i} - \bar{h}_{N})' B_{2}^{*'} + B_{2}^{*}N^{-1} \sum_{i=1}^{N} (h_{i} - \bar{h}_{N})U_{i}'\},$$
 (S2.4)

and $\bar{r}_N = N^{-1} \sum_{i=1}^N r_i$, S_{21} is defined in (S1.12) in the proof of Theorem 1 and V_{poi} is the variance under Poisson sampling.

According to assumption (C6), $n_B/N = o(1)$ and (S2.4), it can be shown that

$$||S_r + f_N N V_{poi}(\bar{r}_N)|| = o(1).$$
 (S2.5)

Similarly, by a Taylor expansion with respect to $\lambda_0 = 0$,

$$2\sum_{i=1}^{N}\log(1+\lambda_0'\Psi_{i2})=2\sum_{i=1}^{N}\lambda_0'\Psi_{i2}-\sum_{i=1}^{N}\lambda_0'\Psi_{i2}\Psi_{i2}'\lambda_0+o_p(1).$$
 (S2.6)

According to (S2.2), we have

$$\partial \hat{Q}_3(\theta_0, 0) / \partial \lambda = -n_B^{-1} \sum_{i=1}^N \Psi_{i2}(\theta_0) \Psi'_{i2}(\theta_0) \to^p S.$$
 (S2.7)

By plugging (S2.2) into (S2.6) and according to (S2.7), we have

$$2\sum_{i=1}^{N}\log(1+\lambda_0'\Psi_{i2}(\theta_0)) = -n_B\hat{Q}_3'(\theta_0,0)S^{-1}\hat{Q}_3(\theta_0,0) + o_p(1).$$
 (S2.8)

Similarly, according to (S1.13) and by using a Taylor expansion around $\hat{\lambda} = 0$,

$$2\sum_{i=1}^{N}\log(1+\hat{\lambda}'\Psi_{i1}(\hat{\theta})) = -n_B\hat{Q}'_2(\theta_0,0)S_{21}^{-1}\hat{Q}_2(\theta_0,0) + o_p(1).$$
 (S2.9)

By assumption (C3) and (C4), we can apply the central limit theorem to get

$$V_{poi}^{-1/2}(\bar{r}_N)\bar{r}_N \to^d N(0, I).$$
 (S2.10)

Therefore, plugging (S2.8) and (S2.9) into (S2.1) and by (S2.3), we have

$$R_n(\theta_0) = -n_B \hat{Q}_3'(\theta_0, 0) S^{-1} \hat{Q}_3(\theta_0, 0) + n_B \hat{Q}_2'(\theta_0, 0) S_{21}^{-1} \hat{Q}_2(\theta_0, 0) + o_p(1)$$

$$= \bar{r}_N (-n_B^{-1} S_r)^{-1} (\bar{r}_N)' + o_p(1).$$
(S2.11)

According to (S2.5), (S2.11) and (S2.10),

$$R_n(\theta_0) = \bar{r}_N \left\{ V_{poi}(\bar{r}_N) \right\}^{-1} (\bar{r}_N)' + o_p(1) \to^d \chi_p^2,$$

where $\bar{r}_N = N^{-1} \sum_{i=1}^N r_i$, and p is the dimension of θ_0 .

S3 Proof of Theorem 3

Similar as the proof of Theorem 1, $\hat{\theta}$ can be obtained by solving $\hat{Q}_1(\theta, \lambda) = 0$ and $\hat{Q}_2(\theta, \lambda) = 0$, where $\hat{Q}_1(\theta, \lambda)$ and $\hat{Q}_2(\theta, \lambda)$ are defined in (S1.1) with π_i, Ψ_i replaced by p_i, Ψ_i^* , and $\Psi_i^* = \left(f_N(I_ip_i^{-1} - 1)z_i^*, f_NI_ip_i^{-1}(h_i' - \bar{h}_N')\right)'$, with $z_i^* = (1, z_i')'$. Without loss of generality, we assume $\bar{z}_N = 0$ and $n_B N^{-2} \sum_{i=1}^N (1 - p_i) p_i^{-1} z_i^2 = 1$. Hence, according to assumption (C9) and (C10) in Section 4,

$$\pi_{i} = Pr(i \in s | \hat{Q}_{p,n} \leq \gamma^{2}) = \frac{Pr(\hat{Q}_{p,n} \leq \gamma^{2} | i \in s) Pr(i \in s)}{Pr(\hat{Q}_{p,n} \leq \gamma^{2})}$$

$$= p_{i} \left\{ 1 + C_{\gamma} \eta_{i} + o_{p}(n_{B}^{-1}) \right\}, \tag{S3.1}$$

and

$$\pi_{ij} = Pr(i, j \in s | \hat{Q}_{p,n} \leq \gamma^2) = \frac{Pr(\hat{Q}_{p,n} \leq \gamma^2 | i, j \in s) Pr(i, j \in s)}{Pr(\hat{Q}_{p,n} \leq \gamma^2)}$$

$$= p_{ij} \left\{ 1 + C_{\gamma}(\eta_i + \eta_j) + o_p(n_B^{-1}) \right\}, \tag{S3.2}$$

with $C_{\gamma} = g_{1N}(\gamma^2)G_N^{-1}(\gamma^2)$.

According to (S3.1), (S3.2) and by using a similar argument as the proof of Theorem 1, it can be shown that $(\hat{\theta}, \hat{\lambda}) \to^p (\theta_0, 0)$. After some algebra,

$$\hat{\theta} - \theta_0 = -S_{12}^{-1} \left\{ \hat{Q}_1(\theta_0, 0) - S_{11} S_{21}^{-1} \hat{Q}_2(\theta_0, 0) \right\} + o_p(n_B^{-1/2}), \tag{S3.3}$$

where

$$S_{11} = -\left(N^{-1} \sum_{i=1}^{N} f_N(\pi_i p_i^{-2} - \pi_i p_i^{-1}) U_i z_i^{*'}, N^{-1} \sum_{i=1}^{N} f_N \pi_i p_i^{-2} U_i (h_i - \bar{h}_N)'\right),$$

$$S_{12} = \frac{1}{N} \sum_{i=1}^{N} \frac{\pi_i}{p_i} \frac{\partial U_i(\theta_0)}{\partial \theta}$$

and

$$S_{21} = -N^{-1} \left(\begin{array}{c} \sum_{i=1}^{N} f_N(\pi_i p_i^{-2} - 2\pi_i p_i^{-1} + 1) z_i^* z_i^{*'} & \sum_{i=1}^{N} f_N(\pi_i p_i^2 - \pi_i p_i^{-1}) z_i^* (h_i - \bar{h}_N)' \\ \sum_{i=1}^{N} f_N(\pi_i p_i^2 - \pi_i p_i^{-1}) (h_i - \bar{h}_N) z_i^{*'} & \sum_{i=1}^{N} f_N \pi_i p_i^{-2} (h_i - \bar{h}_N) \otimes^2 \end{array} \right).$$

By (S3.1) and (S3.2),

$$||\frac{1}{N}\sum_{i=1}^{N}\frac{I_{i}}{p_{i}}U_{i}(\theta_{0}) - \frac{1}{N}\sum_{i=1}^{N}\frac{I_{i}}{\pi_{i}}U_{i}(\theta_{0})|| = o_{p}(n_{B}^{-1/2}).$$

Hence,

$$\frac{1}{N} \sum_{i=1}^{N} \frac{I_i}{p_i} U_i(\theta_0) = \frac{1}{N} \sum_{i=1}^{N} \frac{I_i}{\pi_i} U_i(\theta_0) + o_p(n_B^{-1/2}).$$
 (S3.4)

Similarly, it can be shown that

$$\frac{1}{N} \sum_{i=1}^{N} \left(\frac{I_i}{p_i} - 1 \right) z_i^* = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{I_i}{\pi_i} - 1 \right) z_i^* + o_p(n_B^{-1/2}), \tag{S3.5}$$

$$\frac{1}{N} \sum_{i=1}^{N} \frac{I_i}{p_i} (h_i - \bar{h}_N) = \frac{1}{N} \sum_{i=1}^{N} \frac{I_i}{\pi_i} (h_i - \bar{h}_N) + o_p(n_B^{-1/2}), \tag{S3.6}$$

$$||S_{12} - S_{12}^*|| = o_p(1), \quad ||S_{11} - S_{11}^*|| = o_p(1), \quad ||S_{21} - S_{21}^*|| = o_p(1),$$

where

$$S_{11}^* = -(N^{-1} \sum_{i=1}^N f_N(\pi_i^{-1} - 1) U_i z_i^{*'}, N^{-1} \sum_{i=1}^N f_N \pi_i^{-1} U_i (h_i - \bar{h}_N)'),$$

$$S_{12}^* = \frac{1}{N} \sum_{i=1}^N \frac{\partial U_i(\theta_0)}{\partial \theta}$$

and

$$S_{21}^* = - \left(\begin{array}{cc} N^{-1} \sum_{i=1}^N f_N(\pi_i^{-1} - 1) z_i^* z_i^{*'} & N^{-1} \sum_{i=1}^N f_N(\pi_i^{-1} - 1) z_i^* (h_i - \bar{h}_N)' \\ N^{-1} \sum_{i=1}^N f_N(\pi_i^{-1} - 1) (h_i - \bar{h}_N) z_i^{*'} & N^{-1} \sum_{i=1}^N f_N \pi_i^{-1} (h_i - \bar{h}_N)^{\otimes 2} \end{array} \right).$$

Hence according to previous derivations and (S3.3),

$$\hat{\theta} - \theta_0 = -\tau \left\{ \frac{1}{N} \sum_{i=1}^{N} \frac{I_i}{\pi_i} U_i(\theta_0) - B(\frac{1}{N} \sum_{i=1}^{N} \frac{I_i}{\pi_i} \eta_i - \bar{\eta}_N) \right\} + o_p(n_B^{-1/2})$$
 (S3.7)

with $\tau=S_{12}^*$, $\eta=(z_i^*,(h-\bar{h}_N)')'$, $B=\Omega_1\Omega_2^{-1}$, $\Omega_1=-(Nf_N)^{-1}S_{11}^*$, $\Omega_2=-(Nf_N)^{-1}S_{21}^*$. Thus, (4.9) in Theorem 3 is proved.

Let
$$e_i = U_i - B\eta_i$$
 and $\hat{e}_p = N^{-1} \sum_{i=1}^N I_i p_i^{-1} e_i$. Next we want to prove
$$||V_{rej}(\hat{e}_p) - V_{poi}(\hat{e}_p)|| = o_p(n_B^{-1}), \tag{S3.8}$$

where V_{rej} and V_{poi} denote the variances under rejective Poisson sampling and Poisson sampling, respectively. According to (S3.1) and (S3.2),

$$\begin{split} V_{rej}(\hat{e}_p) &= \frac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N \frac{\pi_{ij} - \pi_i \pi_j}{p_i p_j} e_i e'_j \\ &= \frac{1}{N^2} \sum_{i=1}^N \frac{\pi_i - \pi_i^2}{p_i^2} e_i^{\otimes 2} + \frac{1}{N^2} \sum_{i \neq j} \frac{\pi_{ij} - \pi_i \pi_j}{p_i p_j} e_i e'_j \\ &= \frac{1}{N^2} \sum_{i=1}^N \frac{1 - p_i}{p_i} e_i^{\otimes 2} + \frac{1}{N^2} \sum_{i=1}^N (1 - p_i) p_i^{-2} n_B N^{-2} z_i^2 e_i^{\otimes 2} \\ &+ \frac{1}{N^2} \sum_{i \neq j} p_i^{-1} p_j^{-1} o_p(\frac{n_B}{N^2}) e_i e'_j + o_p(n_B^{-1}) \\ &= \frac{1}{N^2} \sum_{i=1}^N \frac{1 - p_i}{p_i} e_i^{\otimes 2} + o_p(n_B^{-1}) = V_{poi}(\hat{e}_p) + o_p(n_B^{-1}). \end{split}$$

So, (S3.8) is proved. Together with (S3.4), (S3.5) and (S3.6),

$$||V_{rej}(\hat{e}_{HT}) - V_{poi}(\hat{e}_p)|| = o_p(n_B^{-1}),$$
 (S3.9)

where $\hat{\bar{e}}_{HT} = N^{-1} \sum_{i=1}^{N} I_i \pi_i^{-1} e_i$.

Hence, result (4.12) in Theorem 3 can be obtained by (S3.7), (S3.9) and assumptions (C3), (C4).

S4 Proof of Theorem 4

By using the argument similar to the proof of Theorem 2, it can be shown that

$$R_n(\theta_0) = \bar{r}_N \left\{ V_{poi}(\bar{r}_N) \right\}^{-1} (\bar{r}_N)' + o_p(1), \tag{S4.1}$$

where $\bar{r}_N = \hat{Q}_1(\theta_0, 0) - S_{11}S_{21}^{-1}\hat{Q}_2(\theta_0, 0)$, and $\hat{Q}_1(\theta_0, 0), \hat{Q}_2(\theta_0, 0), S_{11}, S_{21}$ are defined in (S3.3) of the proof for Theorem 3. $\bar{r}_N = N^{-1}\sum_{i=1}^N r_i$, and p is the dimension of θ_0 . According to (S3.8) in the proof of Theorem 3 and (S4.1), we have $R_n(\theta_0) \to^d \chi_p^2$.