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In this supplement material, we provided proofs for Theorems in the paper.

S1 Proof of Theorem 1

We first prove the consistency of (é, ;\) Let
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where fy = ng/N, V; = fy((Lim; ' — 1), L, " (b} — ﬁﬁv)),. Let A = pd, where ||8]| = 1,
so according to (S1.1), we have
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where u* = max;ca ||¥;]].

Under assumption (C3), we have n' va:l U, ¥! = Xy +0p(1), and Xy is a positive
definite matrix. Let A, be the smallest eigenvalue of Xy, then A, > 0. So, the following
holds

N
0'n5" Y " W8] > A, + 0p(1). (S1.3)

i=1

In addition, according to Assumption (C3),
— Z(S’\IJ = 0,(n5"?). (S1.4)

y (S1.2), (S1.3), (S1.4) and assumptions (C5), (C6),

Molol = Op(n5'?) + 0p(lp]).

Op(n5'").

Thus, we have |p| = Op(n§1/2)7 which means [|A|| = Oy(np

Because max;c4 |NU;| = Op(ngl/z)op(nB) = 0,(1) and assumption (C4), we can
apply Taylor expansion and get
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+ Op(nB ). (S1.5)

By assumption (C4), it can be shown that
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i=1

and
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so according to (S1.5), (S1.6) and (S1.7),
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By (S1.8), assumptions (C1) and (C2), we have 6 —? 6,. Hence,
(OporL. A) = (60,0). (S1.9)

According to (S1.9), assumptions (C2) and (C4), we can apply the standard argu-
ments using Taylor expansion to get

0=Q10.%) = (00,0 + 24000 5 gy 1 9D (5 ) 16,50,
and
0=Qa(6.3) = Qa(00,0) + 292000 g ) 1 L0 5 g) 16,5,

with 8, = ||6 — 6o]| + [|A]]. Let

g _ (86:21(90,0)/8)\ 8@1(9070)/39>
! 9Q2(00,0) /0N dQ2(00,0)/00 )~

Under the existence of moments, we can obtain

Sn*)p < Sfl sz >,

and
I[S11 = Sull = 0p(1),  [|ST2 = Sra2ll = 0p(1),  [[931 — Sa1| = 0,(1), (S1.10)
where
N N N
! 1 1 Lo KU (0)
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(S1.11)
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and
Soy = — NS I =1 NS vl = 1)k = Ay
121 1fN( _171)(h *hN) Nﬁlzi:1fN7Ti_l(hi*hN)®2
(S1.12)
According to assumption (C3),
) N
Q1(00,0) = 1me‘1U (60) = Op(n""®),  Qa(60,0) = N71 D" Wi(60,0) = Oy ("),

i=1

so we have 6, = O,(ng -1z ). Also, according to (S1.10), (S1.11) and (S1.12), after some
algebra,

A= —55'Q2(60,0 0) + op(n 1/2), (S1.13)
and
0—0) = —51_21{Ql(Go’O)—51152_116?2(9070)}4-0;,( 57
= {Qi(00,0) = B Qa(66.0)} + 0,(n""*), (S1.14)

where 7 = S15, B* = Qlﬁgl, Q1 = —(Nay) 1511 and Qy = —(Nay) 1Ss;. Hence,
(3.7) in Theorem 1 is proved. Result (3.10) can be obtained by (S1.14) and assumptions
(C3), (C4).

S2 Proof of Theorem 2

Maximizing (3.1) subject to

N N I N
i =1, ifn(= —1) =0, i— fn(hi = hy) =0,
;W ;w fN(m_ ) ;W WifN( N)

leads, after some algebra, to
~ A N ~
= log(wi(f)) = —Nlog(N) = > log(1 + X' ¥;y),
' i=1

where W,y = (fn(Lim; t — 1), L, * fx(hi — hy)')’. Similarly, consider maximizing (3.1)
subject to

N
> wi=1, szfN7—1_o Zwl I (hi = hy) =0,
i=1

i=1
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and
N
> wifnri =0,
i=1

with r; = L, 'U;(00) — Bi (Iim; * —1) = B Lim; *(hi —hy) and B* = (B}, B3) = S11S5,",
where 571,521 are defined in (S1.11) and (S1.12) of the proof of Theorem 1. After some
algebra,

N N
1(00) = Y log(w;i(00)) = —Nlog(N) — > log(1+ Ay ¥i2),
i=1 i=1

where ;5 = (fN(Iﬂr;1 - 1)7Ii7r;1fN(hi —hn)', farh). So, we can write

N N
Ry (60) = 2{ > log(1+ A¥i2) — Y log(l+ X'¥;)}, (S2.1)

i=1 i=1
and Ag is the solution of Qg(ﬂo, A) = 0 with

N

~ 1 \I’ig(eo)
b \) = — 270

By the same argument for (S1.9), we have A9 —? 0. We can apply a Taylor expansion

to get

9Q3(6o,0)
oA

According to assumption (C3), Qg(GO,O) = ngl vazl U;2(0p,0) = Op(ngl/z), hence

ol = Op(n"%), s0

0 = Q3(f0, Xo) = Q3(60,0) + Ao + 0p([[Xol])-

Ao = =S Q3(60,0) + 0, (n5"?), (S2.2)
with
[ Sy 0
s=(% 0. 23)
where
N N ~
Sp = IN{-NVpoi(Fn) = N' Y UZ* = BN > (hi — hy)®*Bj
=1 =1
N B N B
+ N7 Ui(hi — hy) Bs + B3N~ (b — hy)U, }, (S2.4)
i=1 =1

and ry = N1 Zfil i, S21 is defined in (S1.12) in the proof of Theorem 1 and V; is
the variance under Poisson sampling.

According to assumption (C6), ng/N = o(1) and (S2.4), it can be shown that

1Sy + FNNVpei(Fn)|| = o(1). (52.5)

S5
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Similarly, by a Taylor expansion with respect to Ag = 0,

N N N

i=1 =1 =1

According to (S2.2), we have

N
0Q3(60,0) /0N = —n5" > Wis(60) Wiy (o) =7 S. (S2.7)

i=1
By plugging (S2.2) into (S2.6) and according to (S2.7), we have

N

2> log(1 + A\gWia(60)) = —npQ4(00,0)S ™' Q3(6o,0) + 0p(1). (S2.8)
=1

Similarly, according to (S1.13) and by using a Taylor expansion around A= 0,
N
2> log(1+XNTiy(0)) = —npQh(6o,0)S5' Q2(6o,0) + 0,(1). (S2.9)
i=1

By assumption (C3) and (C4), we can apply the central limit theorem to get

Vool 2w )iy =% N0, ). (52.10)
Therefore, plugging (S2.8) and (S2.9) into (S2.1) and by (S2.3), we have
Ru(fo) = —npQi(60,0)5'Qs(0h, 0) +n5Qh (00,0055, Q2(60, 0) + 0p(1)
= n(—ng'S) TN (IN) + 0p(1). (S2.11)

According to (S2.5), (S2.11) and (S2.10),
Rau(00) = v {Voos (7)) (7)) + 0(1) = X7,

where 7y = N1 vazl r;, and p is the dimension of 6.

S3 Proof of Theorem 3

Similar as the proof of Theorem 1, 6 can be obtained by solving Ql(Q, A) = 0 and
Q2(0,)\) = 0, where Q1(0,\) and Q2(6, \) are defined in (S1.1) with m;, ¥U; replaced by
pi, UF, and ¥F = (fN(Iipi_1 — 1)zj,fNIipi_1(h§ — E’JV))/, with z} = (1, 2})’. Without loss
of generality, we assume zZy = 0 and ngN 2 Zil(l — pi)pflzf = 1. Hence, according
to assumption (C9) and (C10) in Section 4,

) . Pr(Qpn <A2li € s)Pr(i€ s
R e
p,n =

= pi{l+Cymi+op(ng')}, (83.1)
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and
Pr(Qun <7?li,j € 5)Pr(i,j € s)
Pr(@p,n < 72)
= pij {1+ Cy(mi + ;) + 0p(ng")}, (S3.2)

m; = Pr(i,je s|(j2p,n < 72) =

with Cy = gin(v?)Gy (72).

According to (S3.1), (S3.2) and by using a similar argument as the proof of Theorem
1, it can be shown that (6,\) =P (p,0). After some algebra,

0—0p=—Sr {Q1(907 0) — S1155,' Q2 (6o, 0)} +op(n 1/2)7 (S3.3)

where

N
Si=—(N"1Y fn(mpy 2 = mip; Uiz 1mepz i(hi —hy)'),

N
1 o mi OUi(0
Sip = Ly T OUilf)

N P Pi o6
and
Sy = N1 Zléil fn(mp;® = 2mp !+ Dzizr f%(ﬂipf —mip; )z; (hi = hy)'
Soiiy S (mip? — mip; ) (hi — b2} Simy Inmipy 2 (hi — hiy)®?

By (S3.1) and (S3.2),

N N
1 I I —1/2
I 25U Z —Tilo)l| = op(np""?).
=1 4 =1
Hence,
N N
1 I; 1 I;
N 2 Uilto) = 7 D Uilbo) + op(n 577 (83.4)
i=1 " i=1""
Similarly, it can be shown that
N N
Nz(f — 1)z = NZ(F 1)z + 0,(ng'"?), (S3.5)
i=1 " i=1 "
N N
1 I; - 1 I; —1/2
sz(hi—hz\,) NZ?(h — hw) + 0p(ng'"?), (S3.6)
i=1 1" i=1

1512 = Stall = 0p(1), (IS = STall = 0p(1),  [IS21 = S5 | = 0p(1),
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where
N N
Sikl = —(N_l ZfN(ﬂ-i_l — 1)Ui2’;-k ,]\/v_1 ZfNﬂ'l_le(hz — BN)/),
=1 1=1
8U( o)
512 = N ~ 90
and

P N vt = Dz NT R (= Dz (= o)’
“ NS T S D ) N (e )2
Hence according to previous derivations and (S3.3),

N

N
N 1 I; 1 I; _ —-1/2
0— 0y = _T{N;mm(ao)—B(szm—mv)}ﬂp( ) (S3.7)

=1

with 7 = 57y, = (2:7 (hi}_lN)/)/a B = Q192_13 M = 7(NfN)715T13 Qy = *(NfN)ilsgl'
Thus, (4.9) in Theorem 3 is proved.

Let e; = U; — Bn; and ép =N"1 vazl Iipi_lei. Next we want to prove
Vi (€5) = Vpoi (&p)]] = 0p(n5"), (S3.8)

where V,..; and V), denote the variances under rejective Poisson sampling and Poisson
sampling, respectively. According to (S3.1) and (S3.2),

Vres (ép) = N2 Z Z T — TR ﬂ-lﬂ-] ]

im1 =1 Dbipj

N
_ 1 Z i — L e®2 4 Z Tij — TiTj 7TZ7TJ
- N2 € N2 j

p 75] DiDj

_ N2Z b ;@2 N221*p2 nBN22®2

1 — n
+ QZP ! 1 )eze +op(ng")
l#]

pl A —
- N2 Z ®2 + OP(nB ) = Vpoi(€p) + Op(nBl)'

So, (S3.8) is proved. Together with (S3.4), (S3.5) and (S3.6),
1Viei (€rT) = Vipoi (ép)|| = 0p(n5"), (53.9)
where égp = N1 Ef\il Iﬂri_lei.

Hence, result (4.12) in Theorem 3 can be obtained by (S3.7), (S3.9) and assumptions
(C3), (C4).
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S4 Proof of Theorem 4

By using the argument similar to the proof of Theorem 2, it can be shown that
Ro(00) = 7 {Vpor(PN)}  (P)' + 0, (1), (54.1)

where 7y = Q1 (6o, 0) — S1155, Q2(00, 0), and Q1 (0o, 0), Q2(6,0), S11, Sa1 are defined in
(S3.3) of the proof for Theorem 3. 7y = N1 Zfil r;, and p is the dimension of 6y.
According to (S3.8) in the proof of Theorem 3 and (S4.1), we have Ry, (60) —¢ x2.



