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Abstract: We consider the problem of estimating a relationship using semipara-

metric additive regression splines when there exist both continuous and categor-

ical regressors, some of which are irrelevant but this is not known a priori. We

show that choosing the spline degree, number of subintervals, and bandwidths via

cross-validation can automatically remove irrelevant regressors, thereby delivering

‘automatic dimension reduction’ without the need for pre-testing. Theoretical un-

derpinnings are provided, finite-sample performance is studied, and an illustrative

application demonstrates the efficacy of the proposed approach in finite-sample set-

tings. An R package implementing the methods is available from the Comprehensive

R Archive Network (Racine and Nie (2011)).
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1. Introduction

Classical parametric regression models are known to impose rigid structure

upon the underlying data generating process (DGP). In applied settings, re-

searchers are expected to not only select the functional form of the model, but

also to select the relevant regressors in the model; getting either of these wrong

will adversely affect the model’s performance. Researchers sometimes gravitate

towards nonparametric models to address functional form concerns, which pro-

vides an enormous amount of flexibility. However, to be successful in practice,

a model must inevitably strike a balance between flexibility and the so-called

‘curse-of-dimensionality’ whereby the model’s rate of convergence worsens as the

number of regressors increases. Nonparametric models are frequently criticized

and avoided since they suffer from this curse.

Semiparametric additive regression models, on the other hand, are sometimes

chosen over their nonparametric counterparts simply because they circumvent

the curse-of-dimensionality and attain the one-dimensional nonparametric rate

by imposing a flexible, albeit additive, structure. As such, they are widely used

in applied settings and have attracted a considerable amount of attention

in the past three decades; see Friedman and Stuetzle (1981), Stone (1985),

Hastie and Tibshirani (1990), Linton (1997), Fan, Härdle, and Mammen (1998),
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Fan and Jiang (2005), and Carroll et al. (2009), among others. Stone (1985) pro-

posed estimators for the components of additive models possessing optimal rates

of convergence. These were later called ‘polynomial spline estimators’ in Stone

(1994), Huang (1998), Huang (2003), and Huang and Yang (2004). Stone’s (1985)

proposed spline method has the merits of simple implementation, fast computa-

tion, and an explicit expression that is particularly attractive to practitioners.

Categorical regressors are frequently encountered in applied settings, and de-

velopments from the nonparametric kernel literature on categorical variables have

recently been combined with spline methods to allow researchers using nonpara-

metric spline methods to handle the mix of categorical and continuous regressors

often encountered in practice; see Ma, Racine, and Yang (2011) for details. Ir-

relevant regressors also appear surprisingly often in applied settings, be they

categorical or continuous; the presence of irrelevant regressors adversely affects

a model’s performance as the model is ‘over-specified’. If it were known a priori

that a particular regressor was in fact irrelevant, it would not be included in the

model, but if not known a priori, there are a number of thorny issues for the prac-

titioner, in particular, those surrounding pre-testing. To address these issues, this

paper extends the spline idea of Stone (1994) to an estimating approach combin-

ing polynomial splines with local categorical kernels to deliver a semiparametric

additive model capable of admitting both continuous and categorical regressors,

and of automatically removing irrelevant regressors.

We provide theoretical support for the use of cross-validation for concur-

rently selecting the spline degree vector, number of interior knots vector, and

bandwidth vector for semiparametric additive regression spline models (band-

widths are associated with categorical regressors; see Ma, Racine, and Yang

(2011)). Moreover, cross-validation automatically determines which components

are relevant and which are not, through assigning low spline degrees (zero) to

the latter and consequently shrinking them toward the uniform distribution on

the respective marginals; this effectively removes irrelevant regressors from con-

tention by suppressing their contribution to estimator variance. Cross-validation

also gives important information about which components are relevant; they are

precisely those which cross-validation has chosen to smooth in a traditional way,

by assigning them smoothing parameters of conventional size. Cross-validation

produces asymptotically optimal smoothing for relevant components, while elimi-

nating irrelevant components, leading to more efficient and parsimonious models,

and avoiding pre-testing completely. We obtain uniform convergence by using a

one-step least squares procedure, and we provide theoretical underpinnings that

justify the use of cross-validation for selecting relevant regressors.

The rest of this paper proceeds as follows. Section 2 outlines the model

and introduces the general framework, notation, and assumptions underlying our
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analysis. Section 3 provides the underpinnings of additive spline regression with

categorical regressors, along with our proposed cross-validation method. Sec-

tion 4 contains a modest simulation experiment that buttresses our theoretical

analysis, Section 5 contains an illustrative application, while Section 6 presents

some brief concluding remarks. All proofs are relegated to the Appendix. An

R (R Development Core Team (2012)) package that implements these methods

is available. See the R package crs (Racine and Nie (2011)) available from the

Comprehensive R Archive Network (cran.r-project.org) for software that im-

plements the proposed method.

2. Model

We consider models of the form

Y = g(X,Z) + σ(X,Z)ε, (2.1)

whereX = (X1, . . . , Xq)
T is a q -dimensional vector of continuous regressors, Z =

(Z1, . . . , Zr)
T is an r-dimensional vector of categorical regressors, and σ2(X,Z)

is the conditional variance of Y given X and Z. Let z =(zs)
r
s=1, and assume that

zs takes cs different values in Ds ≡ {0, 1, . . . , cs−1}, s = 1, . . . , r, with cs a finite

positive constant. Let (Yi,X
T
i ,Z

T
i )

n
i=1 be an i.i.d. copy of (Y,X,Z), in which

Xi = (Xi1, . . . , Xiq)
T and Zi = (Zi1, . . . , Zir)

T. Assume for 1 ≤ l ≤ q, each Xl is

distributed on a compact interval [al, bl] and, without loss of generality, take all

intervals [al, bl] = [0, 1].

We consider the case in which some of the regressors may be irrelevant, but

that this is not known a priori. Without loss of generality, assume that only the

first q1 (1 ≤ q1 ≤ q) components of X and the first r1 (0 ≤ r1 ≤ r) components of

Z are “relevant” regressors. LetX = (X1, . . . , Xq1)
T, X̃ = (Xq1+1, . . . , Xq)

T, Z =

(Z1, . . . , Zr1)
T, and Z̃ = (Zr1+1, . . . , Zr)

T. Assume (Y,X,Z) are independent of

(X̃, Z̃). Then (2.1) can be written as

Y = g(X,Z) + σ(X,Z)ε.

We assume that g(X,Z) satisfies the additive relation, in X,

g(X,Z) = g0(Z) + g1(X1,Z) + · · ·+ gq1(Xq1 ,Z). (2.2)

For identifiability, additive component functions satisfy the conditions E{gl(Xl,

Z)} = 0, for 1 ≤ l ≤ q1.

A brief discussion regarding the presumption of independence is necessary

before proceeding. As mentioned in Hall, Li, and Racine (2007), ideally we would

like to assume that, conditional on the remaining relevant components (X,Z),

the irrelevant components (X̃, Z̃) are independent of Y . However, this raises
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technical issues that we are unable to handle at this stage. We do note that Hall,

Li, and Racine (2007) report extensive simulations that allow for a high degree of

correlation among the components of (X,Z). Simulations, not reported here for

space considerations, indicate that the results remain valid for the conditional

independence case, though we have been unable to prove this result.

3. Estimation Methods

For the categorical regressors, we adopt the discrete-support kernel function

l(Zs, zs, λs) =

{
1 when Zs = zs

λs otherwise.
,

L(Z, z, λ) =
r∏

s=1

l(Zs, zs, λs) =
r∏

s=1

λ1(Zs ̸=zs)
s .

Here, for 1 ≤ s ≤ r, λs ∈ [0, 1] is the smoothing parameter for zs. Let Gl =

G
(ml−1)
l be the space of polynomial splines of degree ml and pre-select an integer

Nl = Nn,l, for 1 ≤ l ≤ q. Divide [0, 1] into (Nl + 1) subintervals Ijl = [tjl , tjl+1),

jl = 0, . . . , Nl − 1, INl
= [tNl

, 1], where {tjl}
Nl
jl=1 is a sequence of equally-spaced

points, called interior knots, given as

t−ml
= · · · = t0 = 0 < t1 < · · · < tNl

< 1 = tNl+1 = · · · = tNl+ml+1,

in which tjl = jl/(Nl + 1), jl = 0, 1 . . . , Nl + 1. Then Gl consists of functions

ϖ satisfying (i) ϖ is a polynomial of degree ml on each of the subintervals

Ijl , jl = 0, . . . , Nl; (ii) for ml ≥ 1, ϖ is ml − 1 times continuously differentiable

on [0, 1]. Let Kn,l = Nl +ml + 1, where Nl is the number of interior knots and

ml is the spline degree, Kn =
∑q

l=1Kn,l and Kn,max = max(Kn,l)
q
l=1.

Let {b0jl,l(xl) : 1 ≤ jl ≤ Kn,l}T be the normalized B-spline basis system of the

space Gl. Take cjl,l(z) =
∫
b0jl,l(xl)fl(xl |z)dxl where fl(xl |z) is the conditional

density of the lth continuous variable Xl on Z. Thus for 1 ≤ l ≤ q1, cjl,l( z) =

cjl,l(z) =
∫
b0jl,l(xl)fl(xl |z)dxl, and for q1 + 1 ≤ l ≤ q, cjl,l(z) = cjl,l(z̃) =∫

b0jl,l(xl)fl(xl |z̃)dxl. Define the centered B-spline basis bjl,l(xl, z) as bjl,l(xl, z) =

b0jl,l(xl) − [(cjl,l(z))/(cjl−1,l(z))]b
0
jl−1,l(xl), and the standardized B-spline basis

Bjl,l,z(xl, z) as

Bjl,l(xl, z) =
bjl,l(xl, z)

∥bjl,l∥2,z
, (3.1)

for 1 ≤ jl ≤ Kn,l, 1 ≤ l ≤ q, where ∥bjl,l∥2,z = {
∫
bjl,l(xl, z)

2f(xl |z)dxl}1/2 is the

L2 norm of bjl,l(xl, z) on [0, 1] for any given z ∈D, so that E{Bjl,l(Xl,Z) |Z} = 0

and E{B2
jl,l

(Xl,Z) |Z}=1. Let B(x, z)=[{1, Bjl,l(xl, z)}T1≤jl≤Kn,l,1≤l≤q](1+Kn)×1,
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and B =[{B(Xi,Zi)}T1≤i≤n]n×(1+Kn). Then g(x, z) can be approximated by

B(x, z)Tβ(z), where β(z) is a (1+Kn)×1 vector. We estimate β(z) by minimizing

the weighted least squares function

β̂(z) = arg min
β∈R(1+Kn)

n∑
i=1

(Yi −B(Xi,Zi)
Tβ)2L(Zi, z, λ).

The use of a weighted least squares objective function in semiparametric and

nonparametric settings is well-studied; see Li and Racine (2004) for its use in

local polynomial modeling, and Li, Ouyang, and Racine (2011) for its use in

semiparametric settings by way of illustration. Let Lz = diag{L(Z1, z, λ), . . .,

L(Zn, z, λ)} be a diagonal matrix with L(Zi, z, λ), 1 ≤ i ≤ n as the diagonal

entries. Then β̂(z) can be written as

β̂(z) = V−1
n (n−1BTLzY),

where Y =(Y1, . . . , Yn)
T and Vn = n−1BTLzB. Here g(x, z) is estimated by

ĝ(x, z) = B(x, z)Tβ̂(z). Denote the space of kth order smooth functions as

C(k)[0, 1]={g
∣∣g(k)∈C[0, 1]}. Least squares cross-validation selects N̂=(N̂1, . . .,

N̂q)
T, m̂=(m̂1, . . . , m̂q)

T, and λ̂=(λ̂1, . . . , λ̂r)
T to minimize the cross-validation

function

CV (N,m, λ) = n−1
n∑

i=1

{Yi − ĝ−i(Xi,Zi)}2, (3.2)

where ĝ−i(Xi,Zi) is the leave-one-out spline estimator of g(Xi,Zi). Let D =

D1 × · · · ×Dr1 . The conditions needed for the asymptotic results are as follows.

(C1) For any given z∈D, 1 ≤ l ≤ q1, there exists an integer 1 ≤ pl ≤ ml + 1,

such that the lth component of the regression function gl(xl, z) ∈ C(pl)[0, 1].

(C2) The marginal density f(x) of X satisfies f(x) ∈ C[0, 1]q and f(x) ∈ [cf , Cf ]

for constants 0 < cf ≤ Cf < ∞. There exists a positive constant cP such

that P (Z = z |X) ≥ cP for all z ∈D.

(C3) The noise ε satisfies E(ε |X,Z) = 0, E(ε2 |X,Z) = 1. There exists a pos-

itive value δ and a finite positive Mδ such that supx∈[0,1]q ,z∈D E(|ε|2+δ
∣∣X =

x,Z = z) < Mδ and E(|ε|2+δ) < Mδ. The standard deviation function

σ( x, z) is continuous on [0, 1]q × D and 0 < cσ ≤ infx∈[0,1]q ,z∈D σ(x, z) ≤
supx∈[0,1]q ,z∈D σ(x, z) ≤ Cσ < ∞.

(C4) As n → ∞, K2
n,maxn

−1 log3 n = o(1), and there exists a positive constant ζ

such that K−1
n,max(log n)

1+ζ = o(1).

As the relevant components are not known a priori, we consider the following

condition, with

ĝ0g(x, z) = B(x, z)T{E(Vn)}−1E(n−1BTLzY). (3.3)
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(C5) Π0 =
∑

z

∫
{ĝ0g(z) − g(x, z)}2f(x, z)dx, a function of N1, . . . , Nq1, λ1, . . .,

λr1, vanishes if and only if all of the number of knots converge to infinity

and the bandwidths converge to zero.

In the Appendix we show that Π0 only depends on the smoothing param-

eters N1, . . . , Nq1, m1, . . . ,mq1 , λ1, . . . , λr1 , and (C5) implies that as n → ∞,

Nl → ∞ for 1 ≤ l ≤ q1 and λs → 0 for 1 ≤ s ≤ r1. Let N
0
1 , . . . , N

0
q1, m

0
1, . . . ,m

0
q1 ,

λ0
1, . . . , λ

0
r1 denote values of N1, . . . , Nq1, m1, . . . ,mq1 , λ1, . . . , λr1 that minimize

Π0 +Π′
1
, where Π′

1
is defined in (A.13), with each of them required to be nonneg-

ative. It is shown in the Appendix that Π0 and Π′
1
do not contain the irrelevant

components (x̃, z̃).

Theorem 1. Under (C1)−(C5), the smoothing parameters λ̂1, . . . , λ̂r, N̂1, . . .,

N̂q, and m̂1, . . ., m̂q that minimize CV (N,m, λ) satisfy as n → ∞, i) λ̂s → 1 in

probability for r1+1 ≤ s ≤ r, N̂l → 0 and m̂l → 0 in probability, for q1+1 ≤ l ≤ q;

ii) λ̂s/λ
0
s → 1 in probability, for 1 ≤ s ≤ r1, N̂l/N

0
l → 1 and m̂l/m

0
l → 1 in

probability for 1 ≤ l ≤ q1.

Theorem 1 states that the cross-validated smoothing parameters for the ir-

relevant categorical and continuous regressors converge to the upper and lower

extremities of their ranges, respectively. Therefore, all irrelevant regressors are

asymptotically smoothed out, and the smoothing parameters for the relevant re-

gressors are asymptotically equivalent to the optimal smoothing parameters that

would be selected by cross-validation in the absence of the irrelevant regressors.

Theorem 2. Under (C1)−(C5), as n → ∞, supz∈D,x∈[0,1]q |ĝ(x, z)− g(x, z)| =
Oa.s.{(Kn,maxn

−1 log n)1/2 +
∑q1

l=1N
−pl
l +

∑r1
s=1 λs}.

Theorem 2 states the uniform convergence rate of the estimator ĝ(x, z) to

the true mean function g(x, z). This convergence rate is the same as that given in

Theorem 1 of Ma, Racine, and Yang (2011), when the dimension of the continuous

regressor is q = 1. See the Appendix for the proof.

A few words on the numerical optimization of (3.2) are in order. Search takes

place over N1, . . . , Nq, m1, . . . ,mq, and λ1, . . . , λr, where the λ are continuous

lying in [0, 1] and the N and m are integers. Clearly this is a mixed integer

combinatorial optimization procedure that renders exhaustive search infeasible

when facing a non-trivial number of regressors. However, in settings such as

these one can leverage recent advances in mixed integer search algorithms, and

we pursue this in the Monte Carlo simulations and the illustrative application.

In particular, we adopt the ‘Nonsmooth Optimization by Mesh Adaptive Direct

Search’ (NOMAD) approach (Abramson et al. (2011)). Given that the objective

function can be trivially computed for large sample sizes, as it involves nothing

more than computing the hat matrix for weighted least squares, it turns out that
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the computational burden is in fact nowhere near as costly as, say, cross-validated

kernel regression for moderate to large data sets, even though the optimization

space is larger.

We conducted a set of simulation experiments designed to assess the rele-

vance of our asymptotic results in finite-sample settings.

4. Monte Carlo Simulation

In this section we consider the finite-sample performance of the proposed

method for choosing the spline degree, number of interior knots, and bandwidths

for additive categorical regression splines. We consider a DGP based on the

Doppler curve given by

yi =
√

Xi1(1−Xi1) sin
{2π(1 + 2(9−4j)/5)

(Xi1 + 2(9−4j)/5)

}
+

1

20
Zi1 + εi, i = 1, . . . , n, (4.1)

and without loss of generality we set j = 4 for what follows. For the simulation

that follows we took four regressors, two continuous (X1, X2) and two categorical

(Z1, Z2) and had X2 and Z2 irrelevant though not known a priori hence included

in the regression. Simulations had X1 and X2 independent uniform, while z1
and Z2 were independent Bernoulli with P (Z = 1) = 1/2, and ε ∼ N(0, σ2)

with σ = 1/20. Code was written in R Version 2.13.2 (R Development Core

Team (2012)) and ANSI C/C++. Optimization of the cross-validation function

with respect to the spline degree vector, knot vector, and bandwidth vector was

conducted via NOMAD 3.5.0 (Abramson et al. (2011)).

We generated M = 1, 000 replications from the DGP and, for each replica-

tion, we chose the spline degree and number of knots for each of the continuous

regressors X1 and X2 and the bandwidths for the categorical regressors Z1 and

Z2 by minimizing (3.2). We report the median values of the spline degree (m̂1,

m̂2), the number of interior knots (N̂1, N̂2) for each continuous regressor, and

the bandwidths (λ̂1, λ̂2) for each categorical regressor over the M replications.

For the irrelevant continuous regressor X2 we would expect m̂2 → 0 and N̂2 → 0

in probability, while for the irrelevant categorical regressor Z2 we would expect

λ̂2 → 1 in probability. We therefore also report the proportion of m̂2 and N̂2

equal to 0 (m2 and N2 are integers) and the proportion of λ̂2 > 0.5 (λ2 is con-

tinuous lying in [0, 1]), denoted P̂m̂2=0, P̂N̂2=0, and P̂λ̂2>0.5, respectively. Results

are summarized in Table 1 (RMSE denotes ‘root mean square error’).

Table 1 reveals that the theoretical results are borne out by simulations

indicating that, indeed, cross-validated selection of the spline degree, number of

subintervals, and bandwidths can automatically remove irrelevant continuous and

categorical regressors for additive spline models without the need for pre-testing.
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Table 1. Median spline degrees (m̂1, m̂2), number of interior knots (N̂1, N̂2),

and bandwidths (λ̂1, λ̂2) for relevant X1 and Z1 and irrelevant X2 and Z2,
and relevant proportions.

n m̂1 m̂2 P̂m̂2=0 N̂1 N̂2 P̂N̂2=0 λ̂1 λ̂2 P̂λ̂2>0.5 RMSE

250 7 0 0.720 7 0 0.885 0.105 0.990 0.830 0.0189
500 7 0 0.788 8 0 0.903 0.061 1.000 0.879 0.0136
1000 9 0 0.828 8 0 0.932 0.035 1.000 0.927 0.0099
2000 9 0 0.835 8 0 0.951 0.019 1.000 0.943 0.0070
4000 9 0 0.824 8 0 0.965 0.009 1.000 0.961 0.0050
8000 10 0 0.814 7 0 0.934 0.005 1.000 0.972 0.0035

A few words about the spline orders reported in Table 1 are warranted.

Naturally, there is a trade-off between the spline order and number of knots.

A plot of the Doppler function in (4.1) reveals that quite high orders and/or

numbers of knots are necessary to approximate it. Further simulations reveal

that a very large number of knots may be needed (holding the spline degree

constant at three), clearly illustrating the trade-off involved.

4.1. Monte Carlo comparison with similar approaches

As suggested by an anonymous referee, an alternative spline-based approach

could involve treating the categorical effects as random, the smooth terms as

penalized, and then estimating the variance components and smoothing parame-

ters by maximum likelihood or restricted maximum likelihood (even though the

true model in this case is not a random effects model). This is a fairly stan-

dard approach nowadays, and has the appealing property that consistency of the

smoothing parameters and variance components does not require new proofs.

There is also software available in R (the gam function in the mgcv package,

Wood (2004)).

In Table 2 we report the median relative efficiency of the random effects

smoothing spline estimator versus our method for the Doppler DGP in (4.1). As

indicated by an anonymous referee, the default number of knots, k = 10, used

by the gam function is not appropriate for this DGP, thus placing the burden of

judicious selection of the number of knots on the researcher’s shoulders, unlike

the method proposed here. We therefore investigated the effects of changing the

number of knots on relative efficiency. Note that setting the knots deterministi-

cally reduces variability, but with an inappropriate k relative efficiency suffers;

allowing k to be stochastic naturally harms performance relative to the optimal

non-stochastic values reported in Table 2 (e.g., k = 60).

One appealing aspect of using the gam approach is that it does not involve

numeric search for the number of knots (the presumption is that the user has
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Table 2. Relative efficiency of the penalized random effects smoothing spline
estimator (gam) versus the proposed estimator. Numbers greater than one
indicate better performance of the proposed estimator.

n k = 20 k = 40 k = 60 k = 80
1000 1.16 0.98 0.98 0.99
2000 1.43 1.05 1.05 1.05
4000 1.90 1.13 1.10 1.12
8000 2.59 1.27 1.17 1.19

set them appropriately). Our approach, meanwhile, searches for the number of

knots and the spline degree and requires more computation. Cross-validation

could be used to select k for the gam approach, but it appears that our method

would dominate this approach since it dominates it for all non-stochastic values

of k used in Table 2 as n increases, n > 1, 000 in this simulation. This could well

reflect model-misspecification as the DGP is not a random effects setup. Results

not reported here indicate that the effective number of parameters for the contin-

uous and categorical predictors are essentially zero for the irrelevant components

using the random effects approach; however, additional variation is introduced

by treating this as a random effects specification, likely why, as n increases, our

method dominates even with its stochastic selection of all smoothing parameters.

The model suggested by the anonymous referee for (4.1) has an additive

nonparametric function for the continuous variables and random effects for the

categorical variables. If we replace the random effects for the categorical variables

by a linear parametric function of the categorical variables, which is actually the

correct and true model, it is an additive partially linear model (APLM). The

APLM is a special case of our model and, coincidentally, at (4.1) we generated

the data by an APLM of the form g(x1)+z1; the anonymous referee’s suggestion

is certainly justifiable in this context.

If we generated the data from g(x1, z1) and not from g(x1)+ z1, the alterna-

tive approach can no longer be justified though, as pointed out by the anonymous

referee, the natural comparison in this case would be with a random effects model

in which the smooths are also dependent on the categorical predictors. Of course,

the practitioner would not know this a priori and the burden of whether to allow

the smooths to depend on the categorical predictors is placed on the practitioner,

unlike the method proposed here.

In Table 3 we report the median relative efficiency of the random effects

smoothing spline estimator versus our method for the Doppler curve with j =

3+ z1, z1 = {0, 1}. Hence now we generated data with g(x1, z1) ̸= g(x1)+ z1 and

yi =
√

Xi1(1−Xi1) sin
{2π(1 + 2(9−4(3+Zi1))/5)

(Xi1 + 2(9−4(3+Zi1))/5)

}
+ εi, i = 1, . . . , n.



524 SHUJIE MA AND JEFFREY S. RACINE

Table 3. Relative efficiency of the penalized random effects smoothing spline
estimator (gam) versus the proposed estimator. Numbers greater than one
indicate better performance of the proposed estimator.

n k = 20 k = 40 k = 60 k = 80
1000 1.22 1.19 1.18 1.18
2000 1.38 1.25 1.24 1.23
4000 1.57 1.35 1.33 1.32
8000 1.83 1.51 1.42 1.42

For the gam model we allowed the smooths to be dependent on the categorical

predictors as suggested by the anonymous referee. Relative efficiency is reported

in Table 3.

5. Illustrative Application

We consider Wooldridge’s (2002) ‘wage1’ data set that involves n = 526

observations. We consider modeling expected (log) hourly wages (‘lwage’) based

on the following regressors:

‘educ’: years of education,

‘exper’: years potential experience,

‘tenure’: years with current employer,

‘female’: “Female” if female, “Male” otherwise,

‘nonwhite’: “Nonwhite” if nonwhite, “White” otherwise,

‘married’: “Married” if Married, “Nonmarried” otherwise.

We treat the regressors educ, exper and tenure as continuous, the others

as categorical. The regressors ‘nonwhite’ and ‘married’ are smoothed out by

cross-validation, hence automatically removed from the resulting estimate. The

additive regression spline model has an R-squared of 0.52, a degree vector (3, 4, 1),

and a number of interior knots vector (3, 0, 2) for regressors ‘educ’, ‘exper’, and

‘tenure’, respectively, and bandwidth vector (0.039, 1.00, 1.00) for regressors ‘fe-

male’, ‘nonwhite’, and ‘married’, respectively. We use quantile knots rather than

uniform knots in this application given the non-uniform nature of the regressors.

Of course, one could also use cross-validation to select whether to use uniform or

quantile knots, and here the cross-validation score is lower for the quantile knots

(0.1497 versus 0.1511).

A linear regression model that is additive and quadratic in the continuous

regressors and additive in the categorical regressors produces a model, with an
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Table 4. Linear regression model summary.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.7643 0.1963 3.89 0.0001

educ -0.0312 0.0296 -1.05 0.2932
I(educˆ2) 0.0047 0.0012 3.82 0.0002

exper 0.0283 0.0053 5.37 0.0000
I(experˆ2) -0.0006 0.0001 -5.21 0.0000

tenure 0.0303 0.0068 4.48 0.0000
I(tenureˆ2) -0.0005 0.0002 -2.35 0.0193
femaleMale 0.2745 0.0359 7.64 0.0000

nonwhiteWhite 0.0385 0.0573 0.67 0.5016
marriedNotmarried -0.0505 0.0404 -1.25 0.2118

R-squared of 0.46, summarized in Table 4. Note that Table 4 indicates that the

regressors ‘nonwhite’ and ‘married’ are deemed insignificant in this specification,

they remain in the model after estimation, and re-estimating the model would

raise serious issues surrounding pre-testing that many would like to avoid. The

additive regression spline model appears to produce a fit that is more faithful to

the data than the additive parametric model while automatically removing the

irrelevant regressors without the need for pre-testing.

A plot of the additive regression surfaces appears in Figure 1.

6. Concluding Remarks

Regression splines constitute a particularly appealing approach to nonpara-

metric and semiparametric modeling as they are simple to implement, simple to

interpret, and fast to compute, requiring nothing more than least squares fitting.

The curse-of-dimensionality afflicts many nonparametric approaches, while semi-

parametric additive models strike a reasonable balance between flexibility and

the curse-of-dimensionality. We have extended semiparametric additive regres-

sion spline models to admit categorical regressors, adopting cross-validation to

concurrently select the smoothing parameters in the model (degree vector, knot

vector, and bandwidth vector). We have demonstrated that cross-validation can

remove irrelevant regressors by smoothing them out of the model completely

thereby avoiding the need for pre-testing. These features are potentially ben-

eficial in applied settings. An R (R Development Core Team (2012)) package

that implements these methods is available to facilitate further investigation and

application.
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Appendix

For positive numbers an and bn, n ≥ 1, let an ∼ bn mean that limn→∞ an/bn
= c, where c is some nonzero constant. We denote by the same letters c, C, any

positive constants without distinction. Let D̃= Dr1+1 × · · · ×Dr. Denote by Ik
the k×k identity matrix and 0k1×k2 the k1×k2 zero matrix. LetKn =

∑q1
l=1Kn,l,

K̃n =
∑q

l=q1+1Kn,l, Kn,max = max(Kn,l)
q1
l=1, and K̃n,max = max(Kn,l)

q
l=q1+1.

For any s×s symmetric matrixA, denote its Lr norm as ∥A∥r = maxζ∈Rs,ζ ̸=0

∥Aζ∥r ∥ζ∥
−1
r . Let ∥ A∥∞ = max1≤i≤s

∑s
j=1

|Aij |. In particular, if A is non-

negative definite, ∥A∥2 = λmax(A) and, if A is also nonsingular,
∥∥A−1

∥∥
2
=

λ−1
min(A). For any vector ζ = (ζ1, . . . , ζs) ∈ Rs, set the norm ∥ζ∥r = (|ζ1|r+· · ·+

|ζs|r)1/r, 1 ≤ r < +∞, ∥ζ∥∞ = max(|ζ1| , . . . , |ζs|). For any functions ϕ, φ, define

the empirical inner product and norm as ⟨ϕ, φ⟩n,Lz
=n−1

∑n
i=1 ϕ(Xi,Zi)φ(Xi,Zi)

L(Zi, z, λ), ∥ϕ∥2n,Lz
= n−1

∑n
i=1 ϕ

2(Xi,Zi)L(Zi, z, λ). If functions ϕ, φ are L2-

integrable, we have the theoretical inner product and the corresponding norm as

www.sharcnet.ca
www.sharcnet.ca
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⟨ϕ, φ⟩Lz
= E{ϕ(X,Z)φ(X,Z)L(Z, z, λ)}, ∥ϕ∥2Lz

= E{ϕ2(X,Z)L(Z, z, λ)}. Let

V =E(Vn) =

{
v00 01×Kn

0Kn×1 vjll,j′l′ l
′

}
(1+Kn)×(1+Kn)

, (A.1)

where v00 = EL(Z, z, λ), vjll,j′l′ l
′ = EBjl,l(Xl,Z)Bj′

l′ ,l
′(Xl′ ,Z)L(Z, z, λ). Let

L(Z, z, λ) =
∏r1

s=1 λ
1(Zs ̸=zs)
s and L̃(Z̃, z̃, λ̃) =

∏r
s=r1+1 λ

1(Zs ̸=zs)
s . For 1 ≤ l ≤

q1, q1 + 1 ≤ l′ ≤ q, vjll,j′l′ l
′ = {EBjl,l(Xl,Z)L(Z, z, λ)}{EBj′

l′ ,l
′(Xl′ ,Z)L̃(Z̃, z̃, λ̃)}

= 0. Similarly, for q1 + 1 ≤ l ≤ q, 1 ≤ l′ ≤ q1, vjll,j′l′ l
′ = 0. Then V is block

diagonal with

V11 =

{
v00 01×Kn

0Kn×1 (vjll,j′l′ l
′)jl,j′l′ ,1≤l,l′≤q1

}
(1+Kn)×(1+Kn)

,

V22 = {(vjll,j′l′ l′)jl,j′l′ ,q1+1≤l,l′≤q}K̃n×K̃n
.

Since for 1 ≤ l ≤ q1, the spline function Bjl,l(xl, z) defined in (3.1) only de-

pends on (xl, z), then it can be written as Bjl,l(xl, z) = Bjl,l(xl, z). Simi-

larly, we have for q1 + 1 ≤ l ≤ q, Bjl,l(xl, z) = Bjl,l(xl, z̃). Then B(x, z) =

{B(x, z)T, B̃(x̃, z̃)T}T, where B(x, z) = [{1, Bjl,l(xl, z)}1≤jl≤Kn,l,1≤l≤q1 ]
T
(1+Kn)×1

,

B̃( x̃, z̃) = [{Bjl,l(xl, z̃)}1≤jl≤Kn,l,q1+1≤l≤q]
T
K̃n×1

. Thus B =(B(Xi,Zi)
T, B̃(X̃i,

Z̃i)
T)ni=1. Take

β̂0
ε (z) =V−1(n−1BTLzE), ĝ0ε(x, z) = B(x, z)Tβ̂0

ε (z),
(A.2)

β̂ε(z) =V−1
n (n−1BTLzE), β̂g(z) = V−1

n (n−1BTLzg),

where E ={σ(X,Z)ε1, . . . , σ(X,Z)εn}T and g={g(X1,Z1), . . . , g(Xn,Zn)}T.
Thus

ĝ(x, z) = ĝε(x, z) + ĝg(x, z), for ĝε(x, z)

= B(x, z)Tβ̂ε(z), ĝg(x, z) = B(x, z)Tβ̂g(z). (A.3)

Lemma A.1. Under (C2) and (C4), as n → ∞,

sup
z∈D

sup
jl,j

′
l′ ,l

∣∣∣∣⟨Bjl,l, Bj′
l′ ,l

⟩
n,Lz

−
⟨
Bjl,l, Bj′

l′ ,l

⟩
Lz

∣∣∣∣ = Oa.s

(√Kn,max logn

n

)
,

sup
z∈D

sup
jl,j

′
l′ ,l ̸=l′

∣∣∣∣⟨Bj,l, Bj′
l′ ,l

′

⟩
n,Lz

−
⟨
Bjl,l, Bj′

l′ ,l
′

⟩
Lz

∣∣∣∣ = Oa.s

(√ log n

n

)
.
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Proof. The results can be proved by Bernstein’s inequality as in Theorem 1.2
of Bosq (1998) and the Borel Cantelli Lemma, see Lemma A.5 of Ma and Yang
(2011).

We take

ĝ0ε(x, z) = {B(x, z)T, B̃(x̃, z̃)T}

{
V−1

11 0
(1+Kn)×K̃n

0
(1+Kn)×K̃n

V−1
22

}
(n−1BTLzE)

= (B(x, z)TV−1
11 + B̃(x̃, z̃)TV−1

22 )

{
n−1

(
B(Xi,Zi)

B̃(X̃i, Z̃i)

)n

i=1

LzE

}

= n−1
n∑

i=1

{B(x, z)TV−1
11 B(Xi,Zi) + B̃(x̃, z̃)TV−1

22 B̃(X̃i, Z̃i)}

×L(Zi, z, λ)σ(X,Z)εi. (A.4)

It is pointed out at (4.30) of Li and Racine (2007) that the leading term of
CV (N,m, λ) is related to the pointwise MSE by CV (N, m, λ) ∼ χ, where

χ =
∑
z

∫
MSE{ĝ(x, z)}f(x, z)dx (A.5)

=
∑
z

∫
Var{ĝε(x, z)}f(x, z)dx+

∑
z

∫
E{ĝg(x, z)− g(x, z)}2f(x, z)dx.

We find the smoothing parameters Nl, ml, 1 ≤ l ≤ q and λs, 1 ≤ s ≤ r, that
minimize χ. From (A.4), we have∑

z

∫
Var(ĝ0ε(x, z))f(x, z)dx

= n−1
∑
z

∫
E[{B(x, z)TV−1

11 B(X,Z) + B̃(x̃, z̃)TV−1
22 B̃(X̃, Z̃)}2

×L2(Z, z, λ)σ2(X,Z)]f(x, z)dx

= n−1
∑
z

∫
E[{B(x, z)TV−1

11 B(X,Z)B(X,Z)TV−1
11 B(x, z)}

×L2(Z, z, λ)σ2(X,Z)]f(x, z)dx

+n−1
∑
z

∫
E[{B̃(x̃, z̃)TV−1

22 B̃(X̃, Z̃)B̃(X̃, Z̃)TV−1
22 B̃(x̃, z̃)}

×L2(Z, z, λ)σ2(X,Z)]f(x, z)dx

=Π1 +Π2.

For 1 ≤ jl, j
′
l′ ≤ Nn,l, 1 ≤ l, l′ ≤ q1, let

v00 = EL(Z, z, λ), vjll,j′l′ l
′ = EBjl,l(Z, Xl)Bj′

l′ ,l
′(Z, Xl′)L(Z, z, λ), (A.6)
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Then V11 = {EL̃(Z̃, z̃, λ̃)}V11, where

V11 =

{
v00 01×Kn

0Kn×1 vjll,j′l′ l
′

}
(1+Kn)×(1+Kn)

.

Take p(z) and p̃(z̃) as the probability distribution functions of z and z̃, respec-

tively, and let f(x, z) and f̃(x̃, z̃) be the density functions of (x, z) and (x̃, z̃),

respectively. Then

Π1 = n−1(
∑
z̃

R̃(z̃)p̃( z̃))
∑
z

∫
B(x, z)TV

−1
11 W (z)V

−1
11 B(x, z)f(x, z)dx, (A.7)

where R̃(z̃) = E{L̃2(Z̃, z̃, λ̃)}/{EL̃(Z̃, z̃, λ̃)}2 and W (z) = E{B(X,Z)B(X,Z)T

L
2
(Z, z, λ)σ2(X,Z)}. Let ṽjll,j′l′ l

′ = EBjl,l(Xl, Z̃)Bj′
l′ ,l

′(Xl′ , Z̃)L̃(Z̃, z̃, λ̃) for 1 ≤
jl, j

′
l′ ≤ Nn,l, q1 + 1 ≤ l, l′ ≤ q. Then V22 = {EL(Z, z, λ)}Ṽ22, where Ṽ22 =

(ṽjll,j′l′ l
′)K̃n×K̃n

. Thus

Π2 = n−1(
∑
z

R(z)p(z))
∑
z̃

∫
B̃(x̃, z̃)TṼ−1

22 W̃ (z̃)Ṽ−1
22 B̃(x̃, z̃)f(x̃, z̃)dx̃, (A.8)

where R(z) = E{L2
(Z, z, λ)σ2(X,Z)}/{EL(Z, z, λ)}2 and W̃ (z̃) = E{B̃(X̃, Z̃)

B̃(X̃, Z̃)TL̃2(Z̃, z̃, λ̃)}.

Lemma A.2. Under (C2)−(C4), there exist constants 0 < cV < CV < ∞,

0 < c
Ṽ
< C

Ṽ
< ∞, 0 < cW < CW < ∞ and 0 < c

W̃
< C

W̃
< ∞, such that for

all z ∈D, cV IKn+1 ≤ V11 ≤ CV IKn+1, cṼ ≤ Ṽ22 ≤ C
Ṽ
I
K̃n

, cW IKn+1 ≤ W (z) ≤
CW IKn+1 and c

W̃
I
K̃n

≤ W̃ (z̃) ≤ C
W̃
I
K̃n

.

Proof. For any a =(a0, ajl.l) ∈ RKn+1, by Theorem 5.4.2 of DeVore and Lorentz

(1993), we have

sup
z∈D

( aV11a
T
) = sup

z∈D
E[E[{a0 +

q1∑
l=1

Kn,l∑
jl=1

ajl.lBjl,l(Xl,Z)}2
∣∣ Z ]L(Z, z, λ)]

≤ Ca(a
2
0 +

∑
a2jl,l) sup

z∈D
E{L(Z, z, λ)} ≤ CV aa

T,

inf
z∈D

(aV11a
T)≥ inf

z∈D
E[E[{a0+

q1∑
l=1

Kn,l∑
jl=1

ajl.lBjl,l(Xl,Z)}2
∣∣ Z ]L(Z, z, λ)] ≥ cV aa

T,

for some constant 0 < cV < CV < ∞ that do not depend on z ∈D. Thus we

have, for all z∈D, cV IKn+1 ≤ V11 ≤ CV IKn+1. Following the same reasoning we

can prove the inequalities for Ṽ22, W (z) and W̃ (z̃).
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A special case of Theorem 13.4.3 in DeVore and Lorentz (1993) plays an

essential role in the proof of Lemma A.5. Letting m be a positive integer, a

matrix A = (aij) is said to be a band matrix with bandwidth m if aij = 0 when

|i− j| ≥ m, and m is the smallest integer with this property.

Lemma A.3. If a matrix with bandwidth m has bounded inverse A−1 on l2
and κ = κ(A) ≡ ∥A∥2

∥∥A−1
∥∥
2
is the condition number of A, then

∥∥A−1
∥∥
∞ ≤

2c0(1− ν)−1, with c0 = ν−2m
∥∥A−1

∥∥
2
and ν = (κ2 − 1)1/4m(κ2 + 1)−1/4m.

Lemma A.4. Let V0
11 = {(v0jll,j′l′ l′

)
Kn,l,q1
jl,j

′
l′=1,l,l′=1

}Kn×Kn
, where v0jll,j′l′ l

′ = vjll,j′l′ l
′

as at (A.6) for l = l′, and v0jll,j′l′ l
′ = 0 for l ̸= l′, where 1 ≤ l, l′ ≤ q1. Under (C2)

and (C4), there exist constants, 0 < cV 0 < CV 0 < ∞ and 0 < C0
V −1 < ∞, such

that for all z ∈D, cV 0IKn
≤ V0

11 ≤ CV 0IKn
and supz∈D

∥∥(V0
11)

−1
∥∥
∞ ≤ C0

V −1 .

Proof. For any a =(ajl.l) ∈ RKn , by Theorem 5.4.2 of DeVore and Lorentz

(1993), we have

sup
z∈D

( aV0a
T
) = sup

z ∈D
E[E[

q1∑
l=1

{
Kn,l∑
jl=1

ajl.lBjl,l(Xl, Z)}2
∣∣Z ]L(Z, z, λ)]

≤ Ca(
∑

a2jl,l) sup
z∈D

E{L(Z, z, λ)} ≤ CV 0aaT,

inf
z∈D

( aV0
11a

T) ≥ inf
z∈D

E[E[

q1∑
l=1

{
Kn,l∑
jl=1

ajl.lBjl,l(Xl,Z)}2
∣∣Z ]L(Z, z, λ)] ≥ cV 0aaT,

for some constant 0 < cV 0 < CV 0 < ∞ that do not depend on z∈D. Thus

we have for all z∈D, cV 0IKn
≤ V0

11 ≤ CV 0IKn
and C−1

V 0 IKn
≤ (V0

11)
−1 ≤

c−1
V 0IKn

. By the properties of B-splines, V0
11 is a band matrix with bandwidth

m = max(ml)
q1
l=1 + 1. For all z∈D

∥∥V0
11

∥∥
2
= sup

w

{(V0
11w)T(V0

11w)

∥w∥22

}1/2

≤ sup
w

{c−1
V 0(V

0
11w)T(V0

11)
−1(V0

11w)

∥w∥22

}1/2

= C
1/2
V 0 sup

w

{wTV0
11w

∥w∥22

}1/2
≤ CV 0 .

Similarly,
∥∥(V0

11)
−1
∥∥
2
≤ c−1

V 0 . Thus, κ ≡
∥∥V0

11

∥∥
2

∥∥(V0
11)

−1
∥∥
2
≤ CV 0c−1

V 0 < ∞.

Meanwhile, let wjll be the Kn ×1 vector with all zeros except the jllth ele-

ment being 1, 1 ≤ jl ≤ Kl, 1 ≤ l ≤ q1. Then clearly wT
jll
V0

11wjll= ∥Bjl,l∥
2
2,
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∥wjll∥2 = 1, and in particular wT
jll
V0

11wjll ≤ λmax ∥w11∥22 = λmax, w
T
11V

0
11w11 ≥

λmin ∥w11∥22 = λmin. Thus

κ = λmaxλ
−1
min ≥

wT
m11

V0
11wm11

w T
11V

0
11w11

.

By the definition of the B-spline and (C1), one has ∥Bm11∥
2
2 ≥ C0 ∥B1,1∥22 for

some constants C0 > 1 when n is large, so κ > 1. Next, applying Lemma A.3

with ν = (κ2 − 1)1/4m(κ2 + 1)−1/4m and c0 = ν−2m
∥∥(V0

11)
−1
∥∥
2
, one obtains∥∥(V0

11)
−1
∥∥
∞ ≤ 2ν−2mc−1

V 0(1−ν)−1. Let C0
V −1 = supz∈D 2ν−2mc−1

V 0(1−ν)−1, then

0 < C0
V −1 < ∞ by the above results, and supz∈D

∥∥(V0)−1
∥∥
∞ ≤ C0

V −1 .

Lemma A.5. Under (C2) and (C4), there exists a constant 0 < CV −1 < ∞, such

that for V
−1
11 at (A.6), with probability approaching 1 as n → ∞, supz∈D

∥∥∥V−1
11

∥∥∥
∞

≤ CV −1.

Proof. LetV00
11=

{ v00 01×Kn

0Kn×1 V0
11

}
(1+Kn)×(1+Kn)

, (V00
11)

−1=
{ (v00)−1 01×Kn

0Kn×1 (V0
11)

−1

}
.

By Lemma A.4, supz∈D
∥∥(V00

11)
−1
∥∥
∞ ≤ max(C0

V −1 , (v00)
−1). By the proper-

ties of B-splines, supz∈D
∥∥V11 −V00

11

∥∥
∞ = Oa.s.(

∑q1
l=1K

−1
n,l ). Let ξ = V00 η for

any given vector η with dimension (Kn + 1) × 1. Then for any given z ∈ D,∥∥(V00
11)

−1 ξ
∥∥
∞ ≤

∥∥(V00
11)

−1
∥∥
∞ ∥ξ∥∞ ≤ CV −1 ∥ξ∥∞ by Lemma A.4, and thus∥∥V00

11η
∥∥
∞ ≥ CV −1 ∥η∥∞. Since

∥∥(V11 −V00
11)η

∥∥
∞ ≤

∥∥V11 −V00
11

∥∥
∞ ∥η∥∞, one

has for n large enough
∥∥V11η

∥∥
∞ ≥ (1/2)CV −1 ∥η∥∞. If ξ1= V11η, then∥∥∥V−1

11 ξ1

∥∥∥
∞

≤ CV −1 ∥ξ1∥∞ for any given z ∈ D and n large enough. The result

follows.

Lemma A.6. Under (C2)−(C4), there exist constants 0 < c1 < C1 < ∞ and

0 < c2 < C2 < ∞ such that, for Π1 and Π2 defined in (A.7) and (A.8),

c1n
−1Kn,max ≤ Π1 ≤ C1n

−1Kn,max, c2n
−1K̃n,max ≤ Π2 ≤ C2n

−1K̃n,max.

Proof. By Lemma A.2 and (A.7),

Π1 ≤ n−1CW c−2
V

∑
z

∫
B(x, z)TB(x, z)f(x, z)dx

= n−1CW c−2
V

{1 +
∑
z

p(z)

Kn,l,q1∑
jl=1,l=1

∫
B2

jl,l
(xl, z)f(x |z)dx}

= n−1CW c−2
V

(1 +
∑
z

p(z)

q1∑
l=1

Kn,l) ≤ C1n
−1Kn,max
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for some constant 0 < C1 < ∞. Similarly we can prove that Π1 ≥ c1n
−1Kn,max

for some constant 0 < c1 < ∞. Following the same reasoning, we have c2n
−1

K̃n,max ≤ Π2 ≤ C2n
−1K̃n,max, for some constants 0 < c2 < C2 < ∞.

The ĝ0g(x, z) at (3.3) can be written as ĝ0g(x, z)=B(x, z)TV−1E(n−1BTLzg),

and Π0 (C5) can be written as

Π0=
∑
z

∫
[B(x, z)TV

−1
11 E{B(X,Z)L(Z, z, λ)g(X,Z)} − g(x, z)]2f(x, z)dx.

(A.9)

Apparently, Π0 contains only relevant regressors (x, z), so that it depends only

on the smoothing parameters associated with relevant regressors. The following

lemma shows that (C5) implies that as n → ∞, Nl → ∞ for 1 ≤ l ≤ q1, and

λs → 0 for 1 ≤ s ≤ r1.

Lemma A.7. Under (C1), (C2), (C4) and (C5), as n → ∞,

Π0 = O{(
∑q1

l=1
N−pl

l +
∑r1

s=1
λs)

2}.

Proof. For 1 ≤ s ≤ r1, let Z−s be the leave-one out vector of Z, so

L(Z, z,λ) =

r1∏
s=1

λ1(Zs ̸=zs)
s = 1(Z = z) +

r1∑
s=1

λs1(Zs ̸= zs,Z−s = z−s) + o(

r1∑
s=1

λs).

(A.10)

E{B(x, z)TV
−1
11 B(X,Z)L(Z, z, λ)g(X,Z)− g(x, z)} = Ξ1 + Ξ2 + Ξ3,

where

Ξ1 = E{B(x, z)TV
−1
11 B(X,Z)1(Z = z)g(X,Z)} − g(x, z),

Ξ2 = E[B(x, z)TV
−1
11 B(X,Z){

∑r1

s=1
λs1(Zs ̸= zs,Z−s = z−s)g}g(X,Z)],

Ξ3 = E{B(x, z)TV
−1
11 B(X,Z)g(X,Z)}o(

∑r1

s=1
λs).

By de Boor (2001, p. 149) for any given z∈D, there exists {βg(z)}(1+Kn)×1, such

that supx∈[0,1]q1
∣∣B(x, z)Tβg(z)− g(x, z)

∣∣ = O(
∑q1

l=1N
−pl
l ) and

sup
x∈[0,1]q1 , z∈D

|Ξ1|

= sup
x∈[0,1]q1 ,z∈D

∣∣∣∣B(x, z)T{V−1
11

∫
B(x, z)g(x, z)f(x, z)dx− βg( z)}

+B(x, z)Tβg(z)− g(x, z)
∣∣

≤ sup
x∈[0,1]q1 ,z∈D

∣∣∣∣B(x, z)T{V−1
11

∫
B(x, z)B(x, z)Tβg(z)f(x, z)dx} − βg(z)

∣∣∣∣
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+ sup
x∈[0,1]q1 , z∈D

∣∣∣∣B(x, z)T{V−1
11

∫
B(x, z)f(x, z)dx}

∣∣∣∣O(
∑q1

l=1
N−pl

l )

= O(
∑q1

l=1
N−pl

l ).

By the properties of B-splines and Lemma A.2, we have supx∈[0,1]q1 ,z∈D |Ξ2| =
O(
∑r1

s=1 λs) and supx∈[0,1]q1 ,z∈D |Ξ3| = o(
∑r1

s=1 λs). Thus, Π0 = O{(
∑q1

l=1N
−pl
l +∑r1

s=1 λs)
2}.

Lemma A.8. Under (C2)−(C4), as n → ∞,

sup
z∈D

max
jl,l

∣∣∣∣∣n−1
n∑

i=1

Bjl,l(Xil,Zi)L(Zi, z, λ)σ(Xi,Zi)εi

∣∣∣∣∣
+ sup

z∈D

∣∣∣∣∣n−1
n∑

i=1

L(Zi, z, λ)σ(Xi,Zi)εi

∣∣∣∣∣ = Oa.s.{(n−1 log n)1/2}.

Proof. Let Dn = nϑ with ϑ < 1/2, ϑ(2+ δ) > 1 and ϑ(1+ δ) > 1/2, satisfied by
δ > 0. We decompose the noise variable εi into a truncated part and a tail part
εi = εDn

i,1 + εDn
i,2 + εDn

i,3 , where εDn
i,1 = εiI(|εi| > Dn), ε

Dn
i,2 = εiI(|εi| ≤ Dn)− εDn

i,3

and εDn
i,3 = E{εiI(|εi| ≤ Dn) |Xi,Zi }. Since

∣∣∣εDn
i,3

∣∣∣ ≤ (E |εi|2+δ |Xi,Zi )/D
1+δ
n =

o(n−1/2), then

sup
jl,l,z∈D

∣∣∣n−1
∑n

i=1
Bjl,l(Xil,Zi)L(Zi, z, λ)σ(Xi,Zi)ε

Dn
i,3

∣∣∣ = o(n−1/2).

The tail part vanishes almost surely, since
∑∞

n=1 P (|εn| > Dn) ≤ Mδ
∑∞

n=1

n−ϑ(2+δ) < ∞. The Borel Cantelli Lemma shows

sup
jl,l,z∈D

∣∣∣n−1
∑n

i=1
Bjl,l(Xil,Zi)L(Zi, z, λ)σ(Xi,Zi)ε

Dn
i,l

∣∣∣=O(n−k), for any k>0.

For the truncated part, using Bernstein’s inequality in Theorem 1.2 of Bosq
(1998) one has, as n → ∞,

sup
jl,l,z∈D

∣∣∣n−1
∑n

i=1

∑n

i=1
Bjl,l(Xil,Zi)L(Zi, z, λ)σ(Xi, Zi)ε

Dn
i,2

∣∣∣
= Oa.s.{(n−1 log n)1/2}.

Thus

sup
jl,l,z∈D

∣∣∣n−1
∑n

i=1

∑n

i=1
Bjl,l(Xil,Zi)L(Zi, z, λ)σ(Xi,Zi)εi

∣∣∣
= Oa.s.{(n−1 log n)1/2}.

Similarly, we can prove
∣∣n−1L(Zi, z, λ)σ(Xi,Zi)εi

∣∣=Oa.s.{(n−1 logn)1/2}. There-
fore the result in Lemma A.8 follows directly.



534 SHUJIE MA AND JEFFREY S. RACINE

Lemma A.9. Under (C2)−(C4), as n → ∞,

sup
z∈D

∥∥n−1BTLzE
∥∥
∞ = Oa.s.{(n−1 log n)1/2},

sup
z∈D

∥∥n−1BTLzE
∥∥
2
= Oa.s.{(Kn,maxn

−1 log n)1/2}.

Proof. The results follow from Lemma A.8 directly.

Lemma A.10. Under (C2)−(C4), as n → ∞ for ĝ0ε as at (A.3), one has

supz∈D,x∈[0,1]q
∣∣ĝ0ε(x, z)∣∣ = Oa.s.{(Kn,maxn

−1 logn)1/2}.

Proof. From (A.3), similar to the decomposition in ( A.4), ĝ0ε(x, z) can be

written as ĝ0ε(x, z) = Ψ1,ε +Ψ2,ε, where

Ψ1,ε = n−1
n∑

i=1

B(x, z)TV
−1
11 B(Xi,Zi)L(Zi, z, λ)σ(Xi,Zi)εi,

Ψ2,ε = n−1
n∑

i=1

B̃(x̃, z̃)TṼ−1
22 B̃(X̃i, Z̃i)L̃(Z̃i, z̃, λ)σ(Xi,Zi)εi.

Following the same reasoning as in Lemma A.8, we can prove that, as n → ∞,

sup
z∈D

∥∥∥n−1
n∑

i=1

B(Xi,Zi)L(Zi, z, λ)σ(Xi,Zi)εi

∥∥∥
∞

= Oa.s.{(n−1 log n)1/2},

sup
z̃∈D̃

∥∥∥n−1
n∑

i=1

B̃(X̃i, Z̃i)L̃(Z̃i, z̃, λ)σ(Xi,Zi)εi

∥∥∥
∞

= Oa.s.{(n−1 log n)1/2}.

This, with Lemmas A.5 and A.2, one has, as n → ∞,

sup
z∈D

∣∣∣β̂0
ε (z)

∣∣∣
∞

= Oa.s.{(n−1 log n)1/2 + K̃n,max(n
−1 log n)1/2},

sup
z∈D,x∈[0,1]q1

|Ψ1,ε| ≤ sup
z∈D,x∈[0,1]q1

∥∥B(x, z)
∥∥ sup
z∈D

∥∥∥V−1
11

∥∥∥
∞

× sup
z∈D

∥∥∥n−1
n∑

i=1

B(Xi,Zi)L(Zi, z, λ)σ(Xi,Zi)εi

∥∥∥
∞

= Oa.s.{(Kn,maxn
−1 log n)1/2}.

sup
z̃∈D̃, x̃∈[0,1]q−q1

|Ψ2,ε| ≤ C ′K̃n,max sup
z∈D,x∈[0,1]q−q1

∥∥∥B̃(x̃, z̃)
∥∥∥

× sup
z̃∈D̃

∥∥∥n−1
n∑

i=1

B̃(X̃i, Z̃i)L̃(Z̃i, z̃, λ)σ(Xi,Zi)εi

∥∥∥
∞

= Oa.s.{K̃3/2
n,max(n

−1 logn)1/2}.
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Then from Theorem 1 one has, as n → ∞,

sup
z∈D,x∈[0,1]q

∣∣ĝ0ε(x, z)∣∣ = Oa.s.{(Kn,maxn
−1 log n)1/2}.

Lemma A.11. Under (C1), (C2), (C4) and (C5), as n → ∞, for ĝ0g as at (A.3),

one has supz∈D,x∈[0,1]q
∣∣ĝ0g(x, z)− g(x, z)

∣∣ = O(
∑q1

l=1N
−pl
l +

∑r1
s=1 λs).

Proof. From (A.3), similar to the decomposition in (A.4), ĝ0g(x, z)− g(x, z) can

be written as

E{B(x, z)TV−1
11 B(X,Z) + B̃(x̃, z̃)TV−1

22 B̃(X̃, Z̃)L(Z, z, λ)g(X,Z)} − g(x, z)

= B(x, z)TV
−1
11 E{B(X,Z)L(Z, z, λ)g(X,Z)} − g(x, z).

From de Boor (2001, p. 149), for any given z∈D there exists {βg(z)}(1+Kn)×1

such that supx∈[0,1]q1
∣∣B(x, z)Tβg(z)− g(x, z)

∣∣ = O(
∑q1

l=1N
−pl
l ). By (A.10),

V11 = E{B( X, z)B(X, z)T}+
∑

z′ ̸=z
E{B(X, z′)B(X, z′)T}O(

∑r1

s=1
λs)

= E{B(X, z)B(X, z)T}{1 +O(
∑r1

s=1
λs)}.

Thus ĝ0g(x, z)− g(x, z) = Γ1 + Γ2, where

Γ1 = B(x, z)T[E{B(X, z)B(X, z)T}]−1E{B(X, z)g(X, z)}{1 +O(
∑r1

s=1
λs)}

−g(x, z) = B(x, z)Tβg(z)− g(x, z) +O(
∑q1

l=1
N−pl

l +
∑r1

s=1
λs),

Γ2 =
∑

z′ ̸=z
B(x, z)TV

−1
11 E{B(X, z′)g(X, z′)}O(

∑r1

s=1
λs).

Thus supz∈D, x∈[0,1]q1 |Γ1| = O(
∑q1

l=1N
−pl
l +

∑r1
s=1 λs).

sup
z∈D,x∈[0,1]q1

|Γ2| ≤ C sup
z∈D,x∈[0,1]q1

∥∥B(x, z)
∥∥
∞

∥∥∥V−1
11

∥∥∥
∞

× sup
z′∈D,x∈[0,1]q1

∥∥E{B(X, z′)g(X, z′)}
∥∥
∞O(

∑r1

s=1
λs)

= O(
∑r1

s=1
λs).

Therefore, supz∈D,x∈[0,1]q
∣∣ĝ0g(x, z)−g(x, z)

∣∣ ≤ supz∈D,x∈[0,1]q |Γ1|+supz∈ D,x∈[0,1]q

|Γ2| = O(
∑q1

l=1N
−pl
l +

∑r1
s=1 λs).

Lemma A.12. Under (C2)−(C4), as n → ∞,

supz∈D,x∈[0,1]q
∣∣ĝε(x, z)− ĝ0ε(x, z)

∣∣ = Oa.s.(K
3/2
n,maxn

−1 logn).
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Proof. By Lemma A.2, one has supz∈D
∥∥V−1

22

∥∥
∞ ≤ C ′K̃n,max for some constant

0 < C ′ < ∞. By Lemma A.5, one has with probability approaching 1, as
n → ∞, supz∈D

∥∥V−1
11

∥∥
∞ ≤ C ′

V −1 for some constant 0 < C ′
V −1 < ∞. From

(A.1), sup z∈D
∥∥V−1

∥∥
∞ ≤ max(C ′

V −1 , C
′K̃n,max). By Lemma A.1, following the

reasoning in Lemma A.5, one has, with probability approaching 1, as n → ∞,

supz∈D
∥∥ V−1

n

∥∥
∞ ≤ max(C ′

V −1 , C
′K̃n,max). Thus

sup
z∈D

∥∥∥β̂ε(z)− β̂0
ε (z)

∥∥∥
∞

= sup
z∈D

∥∥V−1
n (V −Vn)V

−1(n−1BTLzE)
∥∥
∞

≤ sup
z∈D

∥∥V−1
n

∥∥
∞ ∥V −Vn∥∞

∥∥V−1
∥∥
∞
∥∥n−1BTLzE

∥∥
∞

= Oa.s.(1 + K̃2
n,max)Oa.s.{(Kn,maxn

−1 log n)1/2}Oa.s.{(n−1 log n)1/2}.

Following the reasoning in Lemma A.2, we can prove that there exist constants

0 < cV < CV < ∞ such that, for all z ∈D, cV IKn+1 ≤ V ≤ CV IKn+1, and with
probability approaching 1, as n → ∞ for all z ∈D,

cV IKn+1 ≤ Vn ≤ CV IKn+1. (A.11)

The second result follows from the first together with Lemma A.1. According to
(A.2), one has Vnβ̂ε(z) = Vβ̂0

ε (z), which implies (V −Vn)β̂
0
ε (z) = Vn{β̂ε(z) −

β̂0
ε (z)}. For all z ∈ D, one has, with probability approaching 1, as n → ∞, for

β̂0
ε (z) as at (A.2)∥∥∥β̂0

ε (z)
∥∥∥
2

∥∥n−1BTLzE
∥∥
2
≥ β̂0

ε (z)
T(n−1BT LzE)= β̂0

ε (z)
TVβ̂0

ε (z)≥cV

∥∥∥β̂0
ε (z)

∥∥∥2
2
.

Thus

sup
z∈D

∥∥∥β̂0
ε (z)

∥∥∥
2
≤ sup

z∈D
c−1
V

∥∥n−1BTLzE
∥∥
2
= Oa.s.{(Kn,maxn

−1 log n)1/2} (A.12)

by Lemma A.9 and Theorem 1. Then by Lemma A.1 and (A.12),

sup
z∈D

∥∥∥Vn{β̂ε(z)− β̂0
ε (z)}

∥∥∥
2
= sup

z∈D

∥∥∥(V −Vn)β̂
0
ε (z)

∥∥∥
2

≤ Oa.s.{Kn,max(n
−1 log n)1/2}

∥∥∥β̂0
ε (z)

∥∥∥
2

= Oa.s.{K
3/2
n,maxn

−1 log n}.

Thus by (A.11), supz∈D

∥∥∥β̂ε(z)− β̂0
ε (z)

∥∥∥
2
= Oa.s.{K

3/2
n,maxn

−1 log n} and this re-

sult, together with Lemma A.9, yields

sup
z∈D

∥∥∥β̂ε(z)− β̂0
ε (z)

∥∥∥
∞

= sup
z∈D

∥∥(V−1
n −V−1)(n−1BTLzE)

∥∥
∞
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= sup
z∈D

∥∥V−1
n (V −Vn)V

−1(n−1BTLzE)
∥∥
∞

≤ sup
z∈D

c−2
V

∥∥(V −Vn)(n
−1BTLzE)

∥∥
∞

≤ c−2
V sup

z∈D
∥V − Vn∥∞ sup

z∈D

∥∥n−1BTLzE∞
∥∥

= Oa.s.(Kn,maxn
−1 log n).

sup
z∈D,x∈[0,1]q

∣∣ĝε(x, z)− ĝ0ε(x, z)
∣∣ = sup

z∈D,x∈[0,1]q

∣∣∣B(x, z)T{β̂ε(z)− β̂0
ε (z)}

∣∣∣
≤ sup

z∈D,x∈[0,1]q
∥B(x, z)∥ sup

z∈D

∥∥∥β̂ε(z)− β̂0
ε (z)

∥∥∥
∞

= Oa.s.(K
3/2
n,maxn

−1 log n).

Lemma A.13. Under (C1), (C2), (C4) and (C5), as n → ∞,∑
z∈D

∫
E{ĝg(x, z)− ĝ0g(x, z)}2f(x, z)dx = O(n−1 log n),∑

z∈D

∫
E
∣∣{ĝg(x, z)− ĝ0g(x, z)}{ĝ0g(x, z)− g(x, z)}

∣∣ f(x, z)dx
= o(Kn,maxn

−1) + o(1)Π0 .

Proof. By Bernstein’s inequality in Theorem 1.2 of Bosq (1998), it can be proved

that supz∈D supjl,l

∣∣∣⟨Bjl,l, g⟩n,Lz
−⟨Bjl,l, g⟩Lz

∣∣∣ = Oa.s(
√
n−1 log n). supz∈D supjl,l∣∣∣⟨Bjl,l, g⟩Lz

∣∣∣ = Oa.s(K
−1/2
n,max). Thus supz∈D

∥∥n−1BTLzg
∥∥
∞ = Oa.s(K

−1/2
n,max) and

this result, together with Lemma A.1, yields∑
z∈D

∫
E{ĝg(x, z)− ĝ0g(x, z)}2f(x, z)dx

≤ 2
∑
z∈D

{E
∥∥V−1

n (V −Vn)V
−1(n−1BTLzg)

∥∥2
∞

+E
∥∥V−1{(n−1BTLzg)−E(n−1BTLzg)}

∥∥2
∞}
∫

∥B(x, z)∥2∞ f(x, z)dx

≤ C[c−4
V E{sup

z∈D
∥V −Vn∥2∞ sup

z∈D

∥∥n−1BTLzg
∥∥2
∞}

+c−2
V E{sup

z∈D

∥∥(n−1BTLzg)− E(n−1BTLzg)
∥∥2
∞}] = O(n−1 log n).

Then Lemma A.11, for some constant ζ > 0,

2
∑
z∈D

∫
E{ĝg(x, z)− ĝ0g(x, z)}{ĝ0g(x, z)− g(x, z)}f(x, z)dx
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≤Kn,max(log n)
−1−ζ

∑
z∈ D

∫
E{ĝg(x, z)− ĝ0g(x, z)}2f(x, z)dx

+K−1
n,max(log n)

1+ζ
∑
z∈ D

∫
{ĝ0g(x, z)− g(x, z)}2f(x, z)dx

= o(Kn,maxn
−1) + o(1)Π0 .

Proof of Theorem 1. By the definitions of χ, Π1,Π2, and Π0 in (A.5), (A.7),
(A.8) and condition (C5), and lemmas A.10, A.12, and A.13, one has

|χ−Π1 +Π2 +Π0|
≤ E{supz∈D,x∈[0,1]q

∣∣ĝε(x, z)− ĝ0ε(x, z)
∣∣}2

+2E{supz∈D,x∈[0,1]q
∣∣ĝε(x, z)− ĝ0ε(x, z)

∣∣}{supz∈D,x∈[0,1]q
∣∣ĝ0ε(x, z)∣∣}

+2
∑

z∈D

∫
E
∣∣{ĝg(x, z)− ĝ0g(x, z)}{ĝ0g(x, z)− g(x, z)}

∣∣ f(x, z)dx
+
∑

z∈D

∫
E{ĝg(x, z)− ĝ0g(x, z)}2f(x, z)dx

= O(K3
n,maxn

−2 log2 n+K2
n,maxn

−3/2 log3/2 n+ n−1 logn) + o(Kn,maxn
−1)

+o(1)Π0

= o(Kn,maxn
−1) + o(1)Π0.

By Lemma A.6 and (C4), one has cn−1Kn,max ≤ Π1 + Π2 ≤ Cn−1Kn,max for
some constants 0 < c < C < ∞. Thus, as n → ∞,

CV (N,m, λ) ∼ {1 + o(1)}(Π1 +Π2 +Π0).

In (A.9), Π0 does not contain the irrelevant variables (x̃, z̃), the vector of con-
tinuous regressors x̃ is only contained in Π2. From Lemma A.6, we know that
Π2 ∼ n−1K̃n,max. In order to minimize CV (N,m, λ), we have N̂l → 0 and
m̂l → 0 in probability for q1 + 1 ≤ l ≤ q, as n → ∞. Thus Π2 is asymptotically
smoothed out. In (A.7) the irrelevant variable z̃ appears in R̃(z̃). By Hölder’s
inequality, R̃(z̃) ≥ 1 for all choices of z̃ and λr1+1, . . . , λr. Also R̃(z̃) → 1 as
λs → 1, for r1 + 1 ≤ s ≤ r. It is proved in Hall, Li, and Racine (2007) that
R̃(z̃) = 1 if and only if λs = 1, for r1 + 1 ≤ s ≤ r. In order to minimize
CV (N,m, λ), we have λ̂s → 1 for r1 + 1 ≤ s ≤ r. Thus the irrelevant compo-
nents are asymptotically smoothed out, and the smoothing parameters for the
relevant regressors N̂l, m̂l for 1 ≤ l ≤ q1, and λ̂s for 1 ≤ s ≤ r1 converge in
probability to the smoothing parameters minimizing Π′

1 +Π0, where

Π′
1 = n−1

∑
z

∫
B(x, z)TV

−1
11 W (z)V

−1
11 B(x, z)f(x, z)dx, (A.13)

which does not contain the irrelevant components (x̃, z̃).
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Lemma A.14. Under (C1), (C2), (C4) and (C5), as n → ∞, for ĝg as at (A.3),

one has supz∈D,x∈[0,1]q |ĝg(x, z)− g(x, z)| = Oa.s.(
∑q1

l=1N
−pl
l +

∑r1
s=1 λs).

Proof. For 1 ≤ i ≤ n, 1 ≤ s ≤ r1, if Z−is is the leave-one out vector of Zi, then

L(Zi, z, λ) =

r1∏
s=1

λ1(Zis ̸=zs)
s = 1(Zi = z) +O(

∑r1

s=1
λs).

Let Lz=diag{L(Z1, z, λ), . . . , L(Zn, z, λ)}, L̃z=diag{L̃(Z̃1, z̃, z̃), . . . , L̃(Z̃n, z̃, z̃)},
so Lz = LzL̃z. Let Lz = Lz,1 + Lz,2, where Lz,1 = diag{1(Z1 = z), . . . ,1(Zn =

z)}, and Lz,2 = O(
∑r1

s=1 λs)In. Thus by (A.3) and

ĝg(x, z)− g(x, z) = B(x, z)TV−1
n (n−1BTLzL̃zg)− g(x, z) = Ψ1 +Ψ2,

where

Ψ1 = B(x, z)TV−1
n (n−1BTLz,1L̃zg)− g(x, z),

Ψ2 = B(x, z)TV−1
n (n−1BTLz,2L̃zg).

By Theorems 12.8 and 13.69 of de Boor (2001), for any z ∈D there exists

β(z) ∈ RKn+1 such that supx∈[0,1]q1
∣∣B(x, z)Tβg(z)− g(x, z)

∣∣ = O(
∑q1

l=1N
−pl
l ).

If βg(z)={βg(z)
T,0

1×K̃n
}T, then supx∈[0,1]q

∣∣B(x, z)Tβg(z)− g(x, z)
∣∣=O(

∑q1
l=1

N−pl
l ). Let gz = {g(X1, z), . . . , g(Xn, z)}T, Ψ1 = B(x, z)TV−1

n (n−1BTLz,1L̃zgz)

−g(x, z) = Ψ11 +Ψ12, where

Ψ11 = B(x, z)TV−1
n [n−1BTLz,1L̃z{gz −Bβg(z)}],

Ψ12 = B(x, z)TV−1
n {n−1BTLz,1L̃zBβg(z)} − g(x, z).

one has

sup
z∈D

∥∥∥V−1
n n−1 BTLz,1L̃z{gz −Bβg(z)}

∥∥∥
∞

≤ sup
z∈D

∥∥V−1
n

∥∥
∞

∥∥∥n−1BTLz,1L̃z{gz −Bβg(z)}
∥∥∥
∞

≤ sup
z∈D

∥∥V−1
n

∥∥
∞

∥∥∥n−1BTLz,1L̃z

∥∥∥
∞

sup
x∈[0,1]q

∣∣gz −B(x, z)Tβg(z)
∣∣

= Oa.s.{K−1/2
n,max(

q1∑
l=1

N−pl
l )},

sup
x∈[0,1]q ,z∈D

|Ψ11| ≤ sup
x∈[0,1]q ,z∈D

∥B(x, z)∥∞
∥∥∥V−1

n n−1BTLz,1L̃z{gz −Bβg(z)}
∥∥∥
∞

= Oa.s.(
∑q1

l=1
N−pl

l ),
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supx∈[0,1]q ,z∈D |Ψ12|
≤ supx∈[0,1]q ,z∈D

∣∣B(x, z)Tβg(z)− g(x, z)
∣∣

+supx∈[0,1]q ,z∈D

∣∣∣B(x, z)TV−1
n {n−1BTLz,2L̃zBβg(z)}

∣∣∣
≤ O(

∑q1

l=1
N−pl

l )

+ sup
x∈[0,1]q ,z∈D

∥B(x, z)∥∞
∥∥ V−1

n

∥∥
∞
∥∥n−1BTBβg(z)

∥∥
∞O(

∑r1

s=1
λs)

= Oa.s.(
∑q1

l=1
N−pl

l +
∑r1

s=1
λs).

Thus supx∈[0,1]q ,z∈D |Ψ1| ≤ supx∈[0,1]q ,z∈D(|Ψ11| + |Ψ12|) = Oa.s.(
∑q1

l=1N
−pl
l +∑r

s=1 λs), and

supz∈D

∥∥∥V−1
n (n−1BTLz,2L̃zg)

∥∥∥
∞

≤ supz∈D
∥∥V−1

n

∥∥
∞ supz∈D

∥∥∥n−1BTLz,2L̃zg
∥∥∥
∞

= sup
z∈D

∥∥V−1
n

∥∥
∞ sup

z∈D

∥∥n−1BTg
∥∥
∞O(

∑r1

s=1
λs)

= Oa.s.{K−1/2
n,max(

∑r1

s=1
λs)}.

Thus, supx∈[0,1]q ,z∈D |Ψ2| = Oa.s.(
∑r1

s=1 λs). Therefore,

sup
x∈[0,1]q ,z∈D

|ĝg(x, z)− g(x, z)| ≤ sup
x∈[0,1]q ,z∈D

(|Ψ1|+ |Ψ2|)

= Oa.s.(
∑q1

l=1
N−pl

l +
∑r1

s=1
λs).

Proof of Theorem 2. Theorem 2 follows from Lemmas A.10, A.12 and A.14.
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