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Abstract: Generalised Estimating Equations (GEE) are a popular method to fit

marginal models to clustered data. When the total number of members in the

cluster is informative, then inference may be for a typical member of a typical

cluster or the population of all cluster members. Applying the GEE with inde-

pendence working correlation provides inference for the population of all members,

and with additional weighting by the inverse cluster size gives inference for the

population of typical members. In earlier work an adaptation of GEE termed mod-

ified within-cluster resampling (MWCR) was proposed to give unbiased inference

for the population of typical members with increased efficiency by recognising the

correlation between measurements. We describe how bias can arise when MCWR

is used, a potential that was not clear when the method was proposed. We present

conditions on the data structure and on the choice of the working correlation that,

if satisfied, allow consistent estimation from MWCR. We illustrate the method with

an application to a dataset of AIDS-related condition events from the Delta trial

of HIV therapy.
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1. Introduction

Clustered data arise in many fields of research. The number of members in

a cluster may vary. For a given outcome variable of interest and set of covari-

ates, cluster size is informative if the relation between covariates and outcome

is different in clusters of different size. Formally, if we denote the outcome for

a cluster member by Y , the corresponding vector of covariates by X and the

size of the cluster to which the member belongs by N , then cluster size is said

to be informative if E(Y |X, N) ̸= E(Y |X). For example, in studies of factors

associated with periodontal disease (Williamson, Datta, and Satten (2003)), a

cluster corresponds to a person’s mouth, and members to the teeth. The disease

status of the teeth may be associated with the number of teeth in the mouth,

even conditional on covariates, because it is likely that genetic and environmental

factors causing periodontal disease also lead to tooth loss.
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The method of Generalised Estimating Equations (GEE - Liang and Zeger

(1986)) is widely used for the marginal regression analysis of clustered data due to

its robustness against the misspecification of correlation structure and its relative

ease of use. Several authors have examined the performance of GEE, or proposed

modifications of them, when the variation in cluster size has arisen because of

missing data and the aim is to estimate parameters of the distribution of the

complete data (e.g., Little and Rubin (2002); Preisser, Lohman, and Rathouz

(2002); Robins, Rotnitzky, and Zhao (1995)). In the present article, we are

concerned with the situation where the observed data are complete, and our

interest is in parameters of the distribution of the observed data. For example,

in a study of periodontal disease it is natural that our interest may be in inference

about the teeth that remain and not in the disease status of teeth that have fallen

out or been removed.

Williamson, Datta, and Satten (2003) suggest that there are two marginal

analyses of interest: one for the population of all cluster members (popula-

tion M), where larger clusters contribute more to inference than smaller ones;

and one for a typical member of a typical cluster, where all clusters contribute

equally. We view the latter as inference for the population of typical cluster

members (population C), which is a subpopulation of population M, formed by

selecting one member at random from each cluster. Therefore if E(.) denotes

expectation in population M (sometimes written EM (.)) and EC(.) denotes ex-

pectation in population C, then E(Y |X) = EN |XEY |X,N (Y ) and EC(Y |X) =

EN |X [1/NEY |X,N (Y )]/EN |X(1/N).

Williamson, Datta, and Satten (2003) provide a guide to the analyst as to

which population should be selected for inference according to the objective of the

analysis, and Huang and Leroux (2011) also consider further possible populations

for inference. In an economic assessment of how many, and which, teeth among

patients seen at a dental clinic require a costly intervention, the population of all

members (teeth) might be preferred, as clustering by patient may not be of direct

relevance. Conversely, in a study of patient factors linked to the disease status

of teeth, the population of typical cluster members (typical teeth for patients)

might be of more interest.

Inference for population M can be obtained by applying the standard GEE

with independence working correlation. For population C two inference meth-

ods were initially proposed: the computationally-intensive within-cluster resam-

pling method (WCR - Hoffman, Sen, and Weinberg (2001)) and the simpler

inversely-weighted-by-cluster-size GEE with independence working correlation

(WIEE - Williamson, Datta, and Satten (2003); Benhin, Rao, and Scott (2005)).

Williamson, Datta, and Satten (2003) proved that the two methods are asymp-

totically equivalent and showed through simulations that WIEE may perform
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better than WCR in terms of bias when the number of clusters is small. To

provide inference for population C, a potentially more efficient method (MWCR)

was proposed by Chiang and Lee (2008) based on the WCR method. When the

minimum cluster size, m, is greater than 1, the authors propose randomly sam-

pling m members from each cluster and then applying the GEE with a realistic

working correlation to each resampled dataset. As the intracluster correlation is

accounted for, efficiency may be gained.

Accounting for informative cluster size by adjusting for cluster size in the

marginal regression model would not be a meaningful or useful choice because,

for the scenarios considered, we assume that the scientific interest lies in the

marginal effect of X on the expected outcome and not its effect conditional on

N . For example, in toxicology where foetuses are clustered within litters, we

might want to investigate the effect of a toxin (exposure) on the weight of a

typical foetus from a typical litter. Unless cluster size is a predictor of primary

scientific interest, such as in volume-outcome studies (see, for example, French et

al. (2012)), there are two reasons why we do not wish to formulate a regression

model involving N . First, N might lie in the causal pathway between Y and X.

In the toxicology application, adjusting for the cluster size may cause misleading

inferences for the effect of the exposure if unobserved factors that contribute to

the foetal loss induced by the toxin are also associated with the foetal weight.

Second, if the effect of X on Y is different in clusters of different sizes then the

effect of X conditional on N is a quantity which might not be scientifically useful.

Previous authors focused primarily on simple cases of informative cluster

size, in the sense that the covariates of interest were either cluster-constant or

cluster-size balanced (covariates are cluster-size balanced if their distribution is

independent of the cluster size). These authors have also focused on scenarios in

which the expected value of the outcome depends on cluster size and covariates,

but not on interactions between the two. In this article we consider more general

scenarios where the covariates involved are cluster-varying and non-size balanced.

We explain why MWCR may lead to biased inference in these cases, a fact

that is not clear in the original presentation of the method (Chiang and Lee

(2008)). Furthermore, bias in MWCR can arise from realistic choices of the

working correlation.

In the next section we introduce the standard notation used in GEE, present

the WIEE and MWCR methods, and explain why bias can occur with MWCR in

some cases. In Section 3, we use simulation studies to assess the performance of

MWCR in terms of bias and relative efficiency compared to WIEE. In Section 4,

we give an application of MWCR to a dataset of AIDS-related condition events

from the Delta clinical trial of HIV therapy. Finally we discuss the results and

possible future extensions of the methodology.
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2. Methods of Estimation

2.1. Standard GEE and notation

Suppose that K clusters are randomly sampled from a population of clusters

and that the values of an outcome Y and a vector (of length q) of covariatesX are

recorded for each member of each of these clusters. Let N denote the number of

members in a cluster. We use subscripts i and j for the cluster and the member,

respectively, so Ni is the number of members in cluster i, and Yij and Xij are

the values of Y and X for member j of cluster i (i = 1, . . . ,K; j = 1, . . . , Ni).

Let Y ∗
i = (Yi1, . . . , YiNi)

T and X∗
i = (Xi1, . . . ,XiNi). Let µ(X) = E(Y | X),

µij = µ(Xij), and µi = (µi1, . . . , µiNi)
T .

A marginal regression model µ(X) = h−1(XTβ) is specified, where h is

a known canonical link function and β is a q−dimensional vector of unknown

parameters of interest. Let v(µ) = dh−1(θ)/dθ, evaluated at θ = h(µ). The

working variance assumption is that Var(Y | X) = v(µ)ϕ, where ϕ is a scale

parameter. Examples: for a continuous outcome, h−1(θ) = θ and v(µ) = 1;

for a binary outcome, h−1(θ) = eθ/(1 + eθ), v(µ) = µ(1 − µ) and ϕ = 1; for

a count outcome, h−1(θ) = eθ, v(µ) = µ and ϕ = 1. A working correlation

structure is also chosen. In this paper, we assume that it is either independence,

exchangeable, auto-regressive, or fixed (Liang and Zeger (1986)). Depending on

this choice, the actual working correlation may involve unknown parameters ρ

that need to be estimated. Let ρ̂ denote the estimate of ρ. We assume that ρ̂

converges to a value ρ0 asK → ∞. Let R̂i andRi denote the working correlation

matrix for cluster i evaluated at ρ̂ and at ρ0, respectively. Note that R̂i and Ri

can depend on observed variables which may or may not be included in X∗. For

example, for an auto-regressive working correlation structure, they will depend

on the ‘times’ of the members in the clusters, and time may or may not be

included as a variable in the analysis model.

If cluster size is non-informative, E(Y | X) and EC(Y | X) are the same. If,

furthermore, the marginal model µ(X) = h−1(XTβ) is correctly specified, then

under regularity conditions the solution β̂ to the GEE

K∑
i=1

U(β;Y ∗
i ,X

∗
i ) =

K∑
i=1

∂µT
i

∂β
V̂ −1
i (Y ∗

i − µi) = 0 (2.1)

is a consistent asymptotically normally distributed estimator of β, where V̂i =

A
1/2
i R̂iA

1/2
i ϕ is the working covariance matrix for cluster i and Ai is the Ni×Ni

diagonal matrix whose jth diagonal element is v(µij). This is so even if the

working variance and correlation assumptions are false.
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The variance of β̂ is consistently estimated by the sandwich estimator(
K∑
i=1

∂µT
i

∂β
V̂ −1
i

∂µi

∂βT

)−1( K∑
i=1

∂µT
i

∂β
V̂ −1
i (Y ∗

i − µi)(Y
∗
i − µi)

T V̂ −1
i

∂µi

∂βT

)

×

(
K∑
i=1

∂µT
i

∂β
V̂ −1
i

∂µi

∂βT

)−1

.

The terms µi, ∂µ
T
i /∂β and V̂i are evaluated at β = β̂.

Let rilj denote the (l, j)th element of R−1
i , and let ri+j =

∑N
l=1 rilj and

ri++ =
∑N

j=1 ri+j . Let r̂ilj , r̂i+j and r̂i++ denote the analogous quantities for

R̂−1
i . In preparation for Section 2.4, it is useful to consider the special case in

which the identity link function h−1(θ) = θ is used and there are no covariates.

In this case, all entries of X∗ are one and β is just the population mean of Y .

Equation (2.1) then becomes

K∑
i=1

U(β;Y ∗
i ) =

K∑
i=1

Ni∑
j=1

1

ϕ
r̂i+j(Yij − β) = 0,

to which the solution is β̂ =
∑K

i=1

∑Ni
j=1 r̂i+jYij/

∑K
i=1 r̂i++. Thus, β̂ is a weighted

average of the Yij ’s in which the total weight given to the measurements in cluster

i is r̂i++.

2.2. Within-cluster resampling and weighted independence estimating

equations

When cluster size is informative, (2.1) will not, in general, give consistent

estimation for either population M or C. In Section 2.1, we took µ(X) = E(Y |
X) and now, analogously, take µC(X) = EC(Y | X) for the population of typical

cluster members.

The within-cluster resampling method (WCR) was proposed by Hoffman,

Sen, and Weinberg (2001) to give inference for population C. In WCR a new

dataset is created from the original dataset by sampling, at random, one mem-

ber from each of the K clusters. This is done repeatedly, say Q times, so that

Q datasets are created, each containing K members. A generalised linear model

is used to estimate β for each of these Q datasets (since the K observations

are independent), and then these Q estimates are averaged. As each cluster con-

tributes one member to each estimate regardless of its size, it is apparent that the

parameter estimated is that for the population of typical cluster members. Pro-

vided the marginal regression model µC(X) = h−1(XTβ) is correctly specified,

the WCR estimator is a consistent estimator of β.
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The weighted independence estimating equations (WIEE) approach, pro-

posed by Williamson, Datta, and Satten (2003), provides an estimator that is

asymptotically equivalent to WCR (as K,Q → ∞) but avoids the Monte Carlo

element of WCR. The WIEE are

K∑
i=1

(
∂µC

i

∂β

)T
1

Niϕ
A−1

i (Y ∗
i − µC

i ) = 0. (2.2)

Note that Aiϕ is the working covariance matrix based on an independence work-

ing correlation and the inclusion of the termN−1 means that clusters are inversely

weighted by their size. If the marginal model µC(X) = h−1(XTβ) is correctly

specified, the solution to (2.2) is a consistent estimator of β.

If, instead, the marginal model µ(X) = h−1(XTβ) is correctly specified,

inference can be made for population M by deleting N−1
i from (2.2) and replacing

µC
i by µi. Doing this gives the standard GEE, (2.1), with independence working

correlation. Note that using a non-independence working correlation in (2.2) does

not give unbiased inference for population M when cluster size is informative.

2.3. A more efficient method for the population of typical cluster

members

The MWCR method, proposed by Chiang and Lee (2008), is a modification

of the WCR method and, like it, provides inference for the population of typical

cluster members (population C). It can be more efficient than WCR when m,

the size of the smallest cluster that appears in the dataset, is greater than 1.

As is evident from its asymptotic equivalence to WIEE, WCR effectively uses

an independence working correlation. MWCR, on the other hand, allows a non-

independence working correlation to be used. We now describe this method.

For any subcluster s composed of m elements from cluster i, let V̂i(s), Y
∗
i(s)

and µC
i(s) denote, respectively, the submatrix of V̂i and the subvectors of Y ∗

i and

µC
i corresponding to those m members. There are two versions of the MWCR

method, the first of which is more intuitively understandable but also more com-

putationally intensive. The first resembles WCR, and the second, WIEE.

In the first version of MWCR, Q datasets are created from the original

dataset by each time sampling at random (and without replacement) m members

from each of theK clusters. For each of these Q datasets, β is estimated using the

standard GEE with V̂i and Y ∗
i replaced by the appropriate submatrix/subvector

V̂i(s) and Y ∗
i(s), and µi replaced by µC

i(s). The resulting Q estimates of β are then

averaged.

Since each cluster contributes m members to each estimate of β regardless

of its size, the parameter estimated is that for the population of typical cluster
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members. Also, since intracluster correlation is accounted for, MWCR may give

increased efficiency relative to WCR.

The second version of MWCR is asymptotically equivalent to the first version

as K,Q → ∞, but avoids the Monte Carlo element. In this second version, β is

estimated as the solution to the weighted GEE

K∑
i=1

1

∆i

∆i∑
s=1

(
∂µC

i(s)

∂β

)T

V̂ −1
i(s)(Y

∗
i(s) − µC

i(s)) = 0, (2.3)

where ∆i = Ni!/[m!(Ni −m)!] denotes the number of subclusters of size m that

can be formed from cluster i (no subcluster can contain the same member more

than once) and these ∆i subclusters are indexed as s = 1, . . . ,∆i. The correlation

parameters ρ are estimated using the method outlined in Williamson, Datta,

and Satten (2003). The weighted GEE (2.3) can then be seen to be the sum

of the contributions to standard GEE from each of the subclusters, with each

subcluster inversely weighted by the number of subclusters that can be formed

from its cluster. This weighting ensures that each of the K clusters contribute

equally to the GEE, regardless of its size.

An easily computed variance estimator for β̂ is given by H−1BH−1, where

H =

K∑
i=1

1

∆i

∆i∑
s=1

(
∂µC

i(s)

∂β

)T

V̂ −1
i(s)

∂µC
i(s)

∂βT
and

B =
K∑
i=1

1

∆i

∆i∑
s=1

(
∂µC

i(s)

∂β

)T

V̂ −1
i(s)(Y

∗
i(s) − µC

i(s))(Y
∗
i(s) − µC

i(s))
T V̂ −1

i(s)

∂µC
i(s)

∂βT

are evaluated at β̂ and ρ̂. This variance estimator was not clearly described by

Chiang and Lee (2008).

Finally, we note that when the MWCR method is applied with independence

working correlation matrices, it provides estimates with the same asymptotic

distribution as the WCR and WIEE methods. This is shown by Chiang and Lee

(2008).

2.4. Bias in MWCR for general covariate patterns

Chiang and Lee (2008) focus on scenarios in which the covariates X are

either cluster-constant or cluster-size balanced. In these special cases MWCR

give consistent estimation, but only with certain choices of working correlation.

In general MWCR is biased, a fact that is not evident in their paper. Here we

state conditions under which (2.3) are consistent estimating equations for β.

We assume a correctly specified marginal model µC(X) = h−1(XTβ) for

population C. Consider the following sampling mechanism. A cluster is chosen
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at random from the population of clusters, a subcluster of size m is sampled at

random (without replacement) from this cluster and, finally, a member is chosen

at random from this subcluster. Let N denote the size of the chosen cluster and

X∗ denote the covariate values for all members of the cluster. Let Y and X

denote the outcome and covariate values for the chosen member of the chosen

subcluster, and X̃ denote the covariate values for all the other m − 1 members

of the chosen subcluster. Let R̃ denote the working correlation for the chosen

subcluster when ρ = ρ0.

Theorem. The solution to the MWCR estimating equations (2.3) is a consistent

estimator of β for population C if:

1. either (a) Y ⊥⊥ X̃ | X or (b) the independence working correlation is used;

2. N ⊥⊥ R̃ | X, X̃;

3. Y ⊥⊥ R̃ | N,X, X̃.

A proof of the Theorem is provided in Appendix A.

Condition 1a is closely related to the assumption that Y ⊥⊥ X∗ | X, a

condition identified by Pepe and Anderson (1994) as necessary for consistent es-

timation when cluster size is constant and GEE are used with a non-independence

working correlation. Note that when the cluster size is informative and X in-

volves cluster-varying and non-size balanced covariates, this condition is violated.

Whether Conditions 2 and 3 are satisfied depends on the choice of work-

ing correlation structure. Condition 2 is not satisfied, for example, if an auto-

regressive structure is used and the time intervals between members of larger

clusters tend to be longer (or shorter) on average than the intervals between

members of smaller clusters, even after taking into account the values of X in

the subcluster. Condition 3 is the requirement that the working correlation for a

randomly chosen subcluster be conditionally independent of the outcome, Y , of

a randomly chosen member from that subcluster given the size of the cluster to

which that member belongs and the covariate values of the members of the sub-

cluster. It is not satisfied, for example, if an auto-regressive structure is used and

a member’s Y value tends to be higher (or lower) in subclusters with longer time

intervals between members than in subclusters with shorter intervals, even after

taking into account the X values in the subcluster and the size of the cluster from

which the subcluster came. However, if an auto-regressive structure is used and

time is one of the covariates X in the analysis model, then Conditions 2 and 3

are satisfied. The independence and exchangeable working correlation structures

are guaranteed to satisfy Conditions 2 and 3.

The necessity of Conditions 2 and 3 can be appreciated by considering the

special case introduced at the end of Section 2.1: h−1(θ) = θ and there are no
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covariates. In this case, it can be shown, analogously to the result at the end

of Section 2.1 (see proof of the Theorem for full details), that the population

mean β is estimated by a weighted average of the Yij ’s in which the total weight

given to cluster i is the average, over each of the ∆i (m × m) submatrices of

R̂i, of the sum of the elements of its inverse matrix. Therefore, if Condition 2 is

not satisfied, clusters of different sizes may, on average, be given different total

weights. Likewise, if Condition 3 is not satisfied, two clusters of the same size

but with different expectations for Y receive different total weights.

If Conditions 1–3 are not satisfied, MWCR may not give consistent estima-

tion of β. For this reason, one is restricted in the choice of possible working

correlations, a restriction that limits the potential for improving efficiency by

using MWCR rather than WIEE.

Note that Conditions 1a and 3 are required for unbiased estimation when us-

ing a non-independence matrix even if cluster size is non-informative. Condition

1a is more likely to be violated in datasets with informative cluster size than in

datasets with constant or non-informative cluster size. This is because informa-

tive cluster size indicates that there is important heterogeneity between clusters.

If underlying cluster characteristics affect both the cluster size and the distri-

bution of cluster-varying covariates then the condition is violated. Conversely,

informative cluster size does not convey any additional likelihood of Condition

3 being violated. For example, in longitudinal datasets where an auto-regressive

working correlation is selected for the application of MWCR or standard GEE,

then Condition 3 is violated if the timing of measurements is associated with the

expected outcome, after adjusting for covariates, irrespective of the total number

of measurements.

3. Simulation Study

In this section we assess the performance of MWCR in terms of bias and

efficiency in scenarios where cluster size is informative. We simulated clustered

normal responses Y and a binary cluster-varying covariate X. We induced in-

formative cluster size through an underlying ‘susceptibility’ that did not vary

within the cluster. Each simulated dataset contained 100 clusters. Data were

generated independently for cluster i as follows.

1. Generate Bi ∼ N(0, 0.52) as the underlying susceptibility.

2. GenerateNi ∼ Poisson{exp(α0+α1Bi)}+m, wherem is the minimum cluster

size.

3. Generate Xij∼Bernoulli{λ0+λ1logit
−1(Bi)} independently for j=1, . . . , Ni.

Note that if λ1 = 0 then X is size balanced, while if 0 < λ1 ≤ 1 it is non-size

balanced.
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4. Calculate the linear predictor ηij = γ0 + γ1Xij + γ2Bi + γ3BiXij , and write

ηi = (ηi1, . . . , ηiNi)
T . Parameter γ2 determines the association between the

underlying susceptibility (and consequently cluster size) and the outcome,

while γ3 determines how this association changes with X.

5. Generate Y ∗
i ∼ MVN(ηi,Σ), where Σ is an exchangeable correlation matrix

with parameter (pairwise correlation) ρ.

We selected γ0 = γ1 = γ2 = 1 and either γ3 = 0 or γ3 = 1. We se-

lected ρ=0.2, 0.5, or 0.8, which correspond to small, medium, or high correla-

tion/autocorrelation. For each scenario we generated 2,000 simulated datasets.

When α1 ̸= 0 and either γ2 ̸= 0 or γ3 ̸= 0, the cluster size is informative. For size

balanced X we selected λ0 = 0.4 and λ1 = 0 and for non-size balanced, λ0 = 0

and λ1 = 1. For population C the correctly specified analysis model was of the

form EC(Yij) = β0 + β1Xij . The true values of β0 and β1 were calculated using

numerical integration.

We applied the WIEE and MWCR methods. For scenarios in which MWCR

is unbiased we calculated its efficiency relative to WIEE. For each scenario we

present the mean estimated values of the parameters over the 2,000 simulated

datasets and their empirical standard errors (ese). We also present coverage

probabilities. The working correlation selected was the same as that used to

generate the data at Step 5 above, though we note this is not generally the

correct correlation because, at Step 5, the term ηi gives E(Y ∗
i |Bi,X

∗
i ) while our

regression models condition only on X.

The correlation structure at Step 5 was exchangeable and the minimum

cluster size was m = 2. The parameters for the cluster size model were selected

to be α0 = α1 = 1 and these resulted in a mean cluster size of approximately 4.

As shown in Table 1, MWCR led to unbiased inference with increased efficiency

relative to WIEE when X was size balanced, but resulted in bias when X was

non-size balanced, due to violation of Condition 1a. For scenarios in which

MWCR is unbiased, we would expect slightly greater efficiency gains had the

working correlations been correctly specified. The variance estimator we have

presented for the MWCR method is seen to have good coverage when the method

is unbiased. Similar simulation studies were carried out for binary responses with

a cluster-varying size balanced or non-size balanced covariate. The results were

generally consistent with those (reported above) for the corresponding scenarios

with Normal responses.

Additional simulation studies demonstrating bias from the violation of Con-

ditions 2 and 3 are presented in Appendix B. These scenarios concern longitudinal

data and the correlation between measurements depends on the times at which

they are obtained. Bias is seen when we apply the MWCR approach using an
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Table 1. Application of WIEE and MWCR for the population of typical
members. The cluster size is informative and the working correlation is
exchangeable.

No Interaction: γ3 = 0

X non-size balanced X size balanced

TRUE (β0, β1) = (0.88, 1.23) TRUE (β0, β1)=(1.00,1.00)

ρ Method β̂0(ese(β̂0)) β̂1(ese(β̂1)) CVRa(β̂0,β̂1) β̂0(ese(β̂0)) β̂1(ese(β̂1)) CVRa(β̂0,β̂1) REb(β̂0,β̂1)

0.2

WIEE 0.88(0.099) 1.23(0.115) (0.95,0.95) 1.00(0.093) 1.00(0.112) (0.95,0.94) -

MWCR 0.92(0.096) 1.15(0.104) - 1.00(0.090) 1.00(0.101) (0.95,0.95) (1.05,1.22)

0.5

WIEE 0.88(0.111) 1.23(0.118) (0.95,0.95) 1.00(0.105) 1.00(0.113) (0.96,0.95) -

MWCR 0.95(0.103) 1.08(0.087) - 1.00(0.100) 1.00(0.084) (0.95,0.95) (1.10,1.80)

0.8

WIEE 0.88(0.122) 1.23(0.122) (0.95,0.94) 1.00(0.115) 1.00(0.113) (0.95,0.95) -

MWCR 0.97(0.110) 1.04(0.058) - 1.00(0.107) 1.00(0.054) (0.95,0.95) (1.15,4.30)

With Interaction: γ3 = 1

X non-size balanced X size-balanced

TRUE (β0, β1)=(0.88,1.35) TRUE (β0, β1)=(1.00,1.00)

ρ Method β̂0(ese(β̂0)) β̂1(ese(β̂1)) CVRa(β̂0,β̂1) β̂0(ese(β̂0)) β̂1(ese(β̂1)) CVRa(β̂0,β̂1) REb(β̂0,β̂1)

0.2

WIEE 0.88(0.099) 1.35(0.139) (0.95,0.96) 1.00(0.093) 1.01(0.138) (0.95,0.94) -

MWCR 1.95(0.096) 1.21(0.121) - 1.00(0.089) 1.00(0.120) (0.95,0.95) (1.06,1.32)

0.5

WIEE 0.88(0.111) 1.35(0.142) (0.95,0.95) 1.00(0.105) 1.01(0.138) (0.94,0.95) -

MWCR 0.98(0.104) 1.14(0.105) - 1.00(0.099) 1.00(0.103) (0.95,0.95) (1.10,1.77)

0.8

WIEE 0.88(0.122) 1.35(0.144) (0.95,0.95) 1.00(0.113) 1.01(0.140) (0.95,0.94) -

MWCR 1.01(0.110) 1.08(0.083) - 1.00(0.108) 1.00(0.080) (0.95,0.94) (1.14,2.95)

a. Empirical Coverage Probability.

b. Relative efficiency compared to WIEE.

auto-regressive working correlation. For Condition 2, the selected scenario is one

in which the size of the cluster is associated with the times of observation of the

measurements. For Condition 3, in order to isolate the problem, we selected a

scenario with constant cluster size but where the times of observation of the mea-

surements differ between clusters. The condition is violated if, after adjusting

for covariates, the outcome tends to be higher when members are more widely

spaced in time.

4. Illustration

To illustrate the methodology we analyse data from the Delta trial (Delta Co-

ordinating Committee (1996)), a three arm international randomised controlled

trial designed to test whether combinations of zidovudine (AZT) with zalcitabine

(ddC) or with didanosine (ddI) are more effective than AZT alone in extending

survival and delaying disease progression for HIV infected patients.

AIDS-Related Condition (ARC) events experienced during follow-up were

recorded. We investigate how the immune status of a patient (of which CD4

count is an indicator) at the times of ARC events is related to the randomisation



802 MENELAOS PAVLOU, SHAUN R. SEAMAN AND ANDREW J. COPAS

arm and time since entry to the trial. Since CD4 count had a skewed distribution

we model its square root, Y . Events are clustered by patient and we let N denote

the number of events experienced by a patient. Let subscript i denote patient

(cluster), and let j index the Ni events experienced by patient i. Let X1 and

X2 be indicator variables of randomisation to the drug combinations AZT+ddC

and AZT+ddI, respectively (cluster-constant), and let T be the time to the event

from entry to the study in units of 60 days. As interactions between T and X1

and X2 were found non-significant, the model we considered was

EC(Yij) = β0 + β1X1i + β2X2i + β3Tij + β4T
2
ij . (4.1)

MWCR can only be applied to datasets where the minimum cluster size is 2

or more. While a thorough examination of immune status at the time of events

would clearly involve all events, for the purposes of comparison between methods

in our illustration we excluded all patients with one episode. After excluding

clusters of size one, 657 clusters remained; the maximum cluster size was 15, the

median 3. Among the 657 clusters 32% were of size 2 (cluster size group 1), 39%

of size 3 or 4 (group 2) and 29% of size 5 to 15 (group 3). The mean square root

CD4 count was 9.25, 8.01, and 6.2, for groups 1, 2, and 3, respectively. This is an

initial indication that the cluster size might be informative; patients with more

episodes tend to have lower CD4 count than patients with fewer episodes.

We fit a regression model analogous to (4.1), but for population M and

including cluster size alongside the covariates of main interest:

E(Yij) = β0 + β1X1i + β2X2i + β4T
2
ij + βNNi. We used independence estimating

equations to fit this model. The effect of cluster size was found significant

(β̂N = −0.47, se(β̂N ) = 0.09, p < 0.001), supporting the initial indication for

informative cluster size. We tested for interactions between the cluster size and

covariates and these were not found statistically significant.

Model (4.1) was fitted using WIEE and MWCR. WIEE is known to pro-

vide consistent inference. So, although the true value of parameters is unknown,

parameter estimates and standard errors from MWCR are compared to the cor-

responding ones from WIEE to assess the evidence of bias in MWCR and possible

efficiency gains. MWCR was applied using either (a) an exchangeable working

correlation (MWCR(EX)) or (b) an auto-regressive type working correlation with

lag 1. The choice (b) is the AR(1) correlation corresponding to treating consecu-

tive events as occurring one time unit apart, e.g. at times 1, 2, and 3 if cluster size

is 3. We considered the application of MWCR with the more conventional auto-

regressive correlation structure based on the actual times of episodes, but this

was not possible because of computational problems. Specifically, because of the

highly irregular times of the episodes, for many clusters the working correlation

matrix was non-invertible.
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Table 2. Application of WIEE and MWCR for population C using data from
the Delta trial.

Model: EC(Yij) = β0 + β1X1i + β2X2i + β3Tij + β4T
2
ij

Method β̂0(se(β̂0)) β̂1(se(β̂1)) β̂2(se(β̂2)) β̂3(se(β̂3)) β̂4(se(β̂4))

WIEE 10.96(0.472) 0.71(0.412) 0.97(0.421) -0.73(0.095) 0.027(0.0053)
MWCR(EX) 11.16(0.353) 0.73(0.414) 0.98(0.426) -0.63(0.065) 0.016(0.0039)
MWCR(AR-1) 10.95(0.369) 0.70(0.410) 0.96(0.423) -0.62(0.071) 0.017(0.0042)

The results from the application of the methods are presented in Table 2.

Interestingly, CD4 count at ARC events is on average higher for a typical patient

who receives the combination treatment AZT+ddI, compared to a typical patient

receiving AZT alone. Also, as would be expected, CD4 count at ARC events for

a typical patient decreases over time.

In terms of the performance of MWCR(EX) and MWCR(AR-1), there is

some evidence of bias in the estimation of the effects of T and T 2. In particu-

lar, for the effect of T 2, the difference between the estimates from MWCR and

WIEE is approximately three times the standard error of the estimates when

using MWCR(EX) or MWCR(AR-1). The differences between the estimates

from WIEE and MWCR of the effects of X1 and X2 are negligible. For the

intercept term the difference is small when using MWCR(EX) and negligible for

MWCR(AR-1). For the intercept term and the effect of T and T 2, the standard

errors of the estimates are considerably smaller for MWCR(EX) and MWCR(AR-

1) compared to WIEE.

In our illustration, Condition 2 and 3 of our Theorem are satisfied when

using MWCR(EX). Condition 2 is not satisfied for MWCR(AR-1) because the

correlations specified between members of subclusters are typically smaller for

subclusters of larger clusters than for subclusters of smaller clusters. Condition

3 may not be satisfied for MWCR(AR-1) if the gaps between ARC events are

associated with the CD4 at events. Condition 1 is not met for either MWCR(EX)

or MWCR(AR-1) because the covariates T and T 2 are not size balanced. The

mean time in days from entry to the trial for events in cluster size groups 1, 2,

and 3 (see earlier) was 495, 465, and 502 respectively, indicating some deviation

from size balance. This we view as the main reason for the probable bias in the

application of MWCR seen in our results, as Conditions 2 and 3 were satisfied

for MWCR(EX) but the bias seems as large for MWCR(EX) as MWCR(AR-1).

5. Discussion

In this paper we have drawn attention to bias in the MWCR method in

scenarios where the covariates are non-size balanced, a bias that was not men-

tioned by Chiang and Lee (2008). Importantly, even for size-balanced covariates
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we clarify that an exchangeable working correlation is the only safe choice when

using MWCR, and we present a variance estimator.

Three conditions have been identified for the consistency of MWCR. Condi-

tion 1a relates to the structure of the covariates. If the cluster size is informative

and the cluster varying-covariate X is non-size-balanced, Condition 1a is vio-

lated. For this reason it is important to consider in advance the likelihood of

non-size balanced covariates given the study design and scientific setting. Where

size-balance of covariates is assured, MWCR may be a good choice of analy-

sis method, and where non-size-balanced covariates are likely, WIEE will be a

natural choice. In scenarios where non-size-balanced covariates are unlikely, but

possible, it may be appropriate to explore whether deviations from size-balance

have occurred in the data and then select MWCR or WIEE accordingly. One way

to empirically check the size-balance assumption is to plot the cluster size against

the cluster mean of each component of the vector X. Although the definition

of size-balance refers to distributions of X rather than expectations, any clear

relationship in the plot would be an indication of departure from size-balance.

Alternatively, the cluster size could be regressed on the cluster mean of X. A

significant effect of the cluster mean of X is evidence against size-balance.

Conditions 2 and 3 relate to the choice of working correlation. Even when

Condition 1a is satisfied, Conditions 2 and 3 are necessary for the consistency

of MWCR. Exchangeable working correlation satisfies both conditions. Simula-

tion results (see Appendix B) based on a longitudinal data scenario suggest that

MWCR(EX) can provide consistent and more efficient estimation than WIEE,

even when the true correlation structure is not exchangeable but rather depends

on the times of measurement for the members. MWCR(AR) provided biased es-

timation in both scenarios, due to violation of Conditions 2 and 3. The efficiency

gain shown for MWCR(EX) is, however, not guaranteed when the true corre-

lation differs greatly from exchangeability, although other authors (e.g., Park

and Sin (1999)) have found that when cluster size is not informative, the use of

standard GEE with exchangeable correlation can provide more efficient estimates

that IEE when the true correlation is auto-regressive.

When there is a mixture of cluster-constant, cluster-varying size balanced,

and cluster-varying non-size balanced covariates, MWCR should not be used;

WIEE should be used instead. As was seen in the data example, even where

cluster-varying covariates (T and T 2) have means that differ modestly across

cluster sizes, the bias from the use of MWCR for the effects of these covariates

appeared to be appreciable.

Huang and Leroux (2011) consider further populations for inference when

cluster size is informative. MWCR could be extended to these populations.

Though the range of scenarios in which MWCR is unbiased is somewhat lim-

ited, and there are restrictions on the choice of working correlation, the method is
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simple to implement. Due to the possibility of increased efficiency it is worthy of

consideration alongside the more generally applicable method (WIEE) based on

an independence working correlation. The conditions we have identified for con-

sistent estimation from MWCR can form a useful basis for considering whether

the method is appropriate for specific data examples.
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Appendix A

In preparation for the proof, note that (2.1) can be rewritten as

K∑
i=1

U(β;Y ∗
i ,X

∗
i ) =

K∑
i=1

Ni∑
j=1

1

ϕ
gij(Yij − µij) = 0, (A.1)

where

gij =

Ni∑
l=1

∂µil

∂β
v(µil)

−1/2r̂iljv(µij)
−1/2 =

Ni∑
l=1

Xil v(µil)
1/2r̂iljv(µij)

−1/2 (A.2)

is an implicit weighting for the jth measurement. As mentioned in Section 2.1,

when h−1(θ) = θ and there are no covariates, gij = r̂i+j .

Proof of Theorem. We show that the expectation of the contribution from a

single cluster to estimating equations (2.3), evaluated at ρ0 and the true value

of β, is zero. Hence, estimating equations (2.3) are consistent.

Analogously to (A.1), (2.3) can be written as

K∑
i=1

1

∆i

Ni∑
j=1

∑
s∈Λij

1

ϕ
g̃ij(s){Yij − µC

ij}, (A.3)

where g̃ij(s), analogously to gij in (A.2), is the implicit weighting for the jth

member of cluster i when it is in subcluster s, and Λij denotes the set of indices

of the ∆imN−1
i subclusters containing the jth member of cluster i. Note that

the total weight given to cluster i in (A.3) is ∆−1
i

∑Ni
j=1

∑
s∈Λij

g̃ij(s), the average

of ∆im values of mg̃ij(s). In the special case h−1(θ) = θ and no covariates, the

average value of mg̃ij(s) is a scalar and is the average, over each of the ∆i (m×m)

submatrices of R̂i, of the sum of the elements of its inverse matrix.
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For the sampling mechanism described immediately before the Theorem, let

g̃ denote the resulting implicit weighting for the chosen member when it is in

the chosen subcluster (see (A.3)). Denote expectations of the distributions of Y ,

X, X̃ and g̃ under this sampling mechanism by ES(.). Note that ES(Y |X) =

EC(Y |X).

It can be seen that the expectation of the contribution of a single cluster to

(A.3), at ρ = ρ0 and the true value of β, is ϕ−1mES
Y,X,X̃,g̃,N

[g̃{Y − µC(X)}].
Now,

ES
Y,X,X̃,g̃,N

[g̃{Y −µC(X)}]=ES
X,X̃,g̃

ES
N |X,X̃,g̃

ES
Y |X,X̃,g̃,N

[g̃{Y − µC(X)}]

=ES
X,X̃,g̃

[g̃ES
N |X,X̃,g̃

{ES(Y |X, X̃, g̃, N)−µC(X)}].

From Conditions 2 and 3, respectively, it follows that N ⊥⊥ g̃ | X, X̃ and

Y ⊥⊥ g̃ | N,X, X̃. So,

ES
Y,X,X̃,g̃,N

[g̃{Y − µC(X)}] = ES
X,X̃,g̃

[g̃ES
N |X,X̃

{ES(Y |X, X̃, N)− µC(X)}]

= ES
X,X̃,g̃

[g̃{ES(Y | X, X̃)− µC(X)}].

Then, using Condition 1a,

ES
Y,X,X̃,g̃,N

[g̃{Y − µC(X)}] = ES
X,X̃,g̃

[g̃{ES(Y | X)− µC(X)}]

= ES
X,X̃,g̃

[g̃{EC(Y | X)− µC(X)}]

= ES
X,X̃,g̃

[g̃ × 0] = 0.

Appendix B

We used two simulation scenarios to demonstrate bias from the application

of MWCR with an auto-regressive working correlation (MWCR(AR)) when Con-

ditions 2 and 3 are violated.

Bias from violation of Condition 2.

We considered a simple longitudinal scenario where the timing of the mea-

surements is associated with the size of the clusters, so Condition 2 is violated if

auto-regressive is selected as the working correlation.

We conducted 1,000 simulations and, for each simulation, generated 100

clusters. Date were generated for cluster i as follows.

(1) Generate Bi ∼ N(0, 1) and Vi = logit−1(Bi).

(2) Generate Ni ∼ Binomial(2, Vi) + 2. So, Ni = 2, 3 or 4.

(3) The times of observations are Ti = (1, 6)T if Ni = 2, Ti = (1, 3, 5)T if Ni = 3

and Ti = (1, 2, 3, 4)T if Ni = 4.
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Table 3. Bias in MWCR(AR) from the violation of Condition 2.

Method β̂0(ese(β̂0)) β̂1(ese(β̂1)) RE(β̂0, β̂1) CVR(β̂0, β̂1)

WIEE 0.50 (0.146) 1.00 (0.241) - (0.95,0.94)
MWCR(EX) 0.50 (0.139) 1.00 (0.175) (1.11,1.90) (0.95,0.94)
MWCR(AR) 0.35 (0.133) 1.06 (0.165) - (0.83,0.86)

Table 4. Bias in MWCR(AR) from the violation of Condition 3.

Method β̂0(ese(β̂0)) β̂1(ese(β̂1)) RE(β̂0, β̂1) CVR(β̂0, β̂1)

WIEE 0.50 (0.148) 1.00 (0.234) - (0.96,0.94)
MWCR(EX) 0.50 (0.138) 1.00 (0.150) (1.16,2.41) (0.96,0.95)
MWCR(AR) 0.76 (0.139) 0.74 (0.144) - (0.54,0.56)

(4) Generate Xij ∼ Bernouli(0.5).

(5) Calculate µij = γ0 + γ1Xij + γ2Bi + γ3BiXij .

(6) Generate yi ∼ MVN(µi,Σi(ρ)), where Σi(ρ) is the matrix with (k, l)th

element equal to ρ|Til−Tik| and Tik, Til are the times of the kth and lth mea-

surements in cluster i.

We chose the simulation parameters as γ0 = 0.5, γ1 = γ2 = γ3 = 1 and

ρ = 0.7. We fit the model E(Y | X = x) = β0+β1x for the population of typical

members, using WIEE, MWCR(AR), and MWCR(EX). Table 3 shows the re-

sults. It can be seen that MWCR(AR) gave biased estimation. MWCR(EX) pro-

vided unbiased estimation and efficiency gains compared to WIEE even though

the working correlation assumption was false.

Bias from violation of Condition 3.

In this scenario, to isolate Condition 3 we considered constant cluster sizes.

The times of measurements were allowed to be different for different clusters

and, after adjusting for X, the outcome was higher, on average, when members

were more widely spread in time. So, Condition 3 is violated if auto-regressive is

selected as the working correlation. The simulation steps were as follows.

(1) Same as step (1) earlier.

(2) Ni=3.

(3) There are two measurement-time patterns. If Bi < 0, Ti = (1, 2, 3)T , and if

Bi > 0, Ti = (1, 3, 6)T .

(4)-(6) Same as steps (4)-(6) earlier.

The values of parameters were the same as in the scenario above. Again,

MWCR(AR) was biased, while MWCR(EX) provided unbiased estimates with

increased efficiency compared to WIEE (see Table 4).
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