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Abstract: For more fruitful discoveries of disease genes in genome-wide association

studies, it is important to know whether joint analysis of multiple markers is more

powerful than the commonly used single-marker analysis, especially in the presence

of gene-gene interactions. The existing literature has different, even conflicting,

arguments about the power of the common model selection strategies: marginal

search, exhaustive search, and forward search. Here we analytically calculate the

power of these strategies and two-stage screen search to detect binary trait loci. Our

approach incorporates linkage disequilibrium, random genotypes, and correlations

among test statistics, which are critical characteristics of model selection that are

often ignored for simplicity in the existing literature. We derive analytical results for

the power of the methods to find all the associated markers, and the power to find

at least one associated marker. We also consider two types of widely applied error

controls: the discovery number control and the Bonferroni type I error rate control.

After demonstrating the accuracy of our analytical results by simulations, we apply

them to investigate the relative performance of various model selection methods in a

broad genetic model space. Our research demonstrates the significant differences in

power calculation and power comparison between the selection methods for binary

trait and the methods for quantitative trait. Our analytical study provides rapid

computation as well as insights into the statistical mechanism of capturing genetic

signals under different genetic models including gene-gene interactions. We develop

an R package to implement our analytical methods. Even though we focus on

genetic association analysis, our results on the power of model selection procedures

are general, and applicable to other studies.

Key words and phrases: Gene-gene interaction, genome-wide association studies,

model selection, random predictors, statistical power.

1. Introduction

Marker-by-marker analyses in genome-wide association studies (GWAS) have

unraveled many genetic variants associated with a variety of complex traits. How-

ever, current progress is still limited in two aspects. First, for such diseases as

asthma and coronary heart disease, fewer novel loci have been found than those

for other diseases (McCarthy et al. (2008)). Second, the discovered genes only

http://dx.doi.org/10.5705/ss.2010.183
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account for a small proportion of genetic risk in most diseases (Kraft and Hunter

(2009)). As a result, developing more sophisticated methods to better identify

genetic variants associated with diseases has become a main focus of GWAS data

analysis after initial scanning through single marker analysis.

Because of the genetic complexity of common diseases, a joint consideration

of multiple markers is intuitively more informative when multiple genes and their

interactions are involved in disease etiology. However, joint methods often lead

to a sharp increase in the computational burden and in the stringency of statis-

tical significance control that can weaken their statistical power due to the large

amount of candidate models considered. An optimal marker selection strategy

should achieve a delicate balance between computational efficiency, satisfactory

statistical power, and low error rates. To recognize the optimal marker selection

strategy for a certain GWA study, researchers look for techniques to quickly eval-

uate possible strategies, marginal versus joint, for a variety of interesting genetic

models.

There are three fundamental marker search strategies: marginal search

chooses the best fitted single-marker models separately; exhaustive search se-

lects the best fitted multiple-marker models from all possible combinations of

predictors; forward search looks for the preferred models conditional on the best

fitted marker(s). Other marker search strategies are mostly extensions of these

three. For example, in a marginal-exhaustive two-stage search strategy, one can

first screen the marker candidates through marginal search, and then choose the

best multiple-marker models within the previously selected marker set. In the

literature, the power evaluations of these methods have been explored by either

simulations or data analyses (Marchini, Donnelly, and Cardon (2005); Evans

et al. (2006); Storey, Akey, and Kruglyak (2005); Brem et al. (2005)). Vari-

ous, even conflicting, opinions exist about the performance of different model

selection methods. Through limited simulation studies, Marchini and colleagues

concluded that exhaustive search is more powerful. On the contrary, based on the

analysis of a data set for yeast, Storey and colleagues recommended sequential

forward search. They reported that exhaustive search suffers from lower power

because of a substantial increase in the number of models. As real data are too

specific and cannot be used in experimental design, and simulations are time-

consuming and less insightful about the statistical mechanism of how genetic

signals are captured, it is desirable to have analytical results. Our theoretical

results demonstrate the conditions under which one method is better than the

others.

The analytical power calculation methods for quantitative trait have been

developed (Wu and Zhao (2009)). However, since GWAS mostly focus on binary

disease outcomes, there is a need to derive results for binary traits. Statistically,
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genetic models for quantitative and binary traits are quite different. The genetic

model for a quantitative trait is generally a linear regression model with a random

error component, whereas the genetic model for a binary trait specifies the disease

risk for each possible genotype. Searching quantitative trait loci is commonly

performed through fitting linear regression models, and the F-statistic is usually

used to measure the model goodness-of-fit. On the other hand, searching binary

trait loci is commonly performed through fitting logistic regression models, and

the log-likelihood ratio test (LRT) or a score test statistic is generally applied for

model comparisons. The distributions of the F-statistic are quite different from

the LRT or a score statistic. So it is necessary to rigorously explore whether

the marker search methods behave differently for binary traits in comparison to

quantitative traits. In the results and discussion sections, we demonstrate the

common and distinctive patterns of power comparison of model selection methods

for binary and quantitative traits.

The application of different error control criteria affects the relative perfor-

mance of different model search strategies. We investigate such effects by com-

paring and contrasting two types of error controls that have been widely applied

in practice: discovery number control and type I error rate control. With the

former, one collects a pre-specified number of models after ordering all candidate

models. With the later, one selects models that have test statistics exceeding

a critical value based on a genome-wide type I error rate. The analytic power

calculations help us to demonstrate and explain the power comparison for each

type of control.

Previous work (Wu and Zhao (2009)) assumes that markers are independent,

but it is not unusual that linkage disequilibrium (LD) exists between the geno-

typed markers and the causative but unobserved markers. To study the influence

of LD on the power of model selection methods, we take into account such LD in

our method. Besides the three basic search methods, we also consider a marginal-

exhaustive two-stage search strategy that is practically appealing because of its

computational efficiency.

Our analytical research reveals how the magnitude of interactions, research

goals to seek true model or to detect some associated markers, and the appli-

cation of different error controls systematically change the power comparison of

different model selection methods. These findings also explain the inconsistent

conclusions in the existing literature about the relative effectiveness of model

selection methods. We have implemented our analytical methods in an R pack-

age markerSearchPower that provides researchers with a convenient tool to find

proper sample size in experimental design, decide suitable strategies in data anal-

ysis, and increase the chance of true findings. Our statistical technique can also

be used to address model selection problems of binary responses with general

random predictor settings in other application areas.
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The rest of this article is organized as follows. Section 2 sets up the genetic
models to be studied, and defines marker search strategies as well as statistical
power. In Section 3, we introduce the score test statistics, derive asymptotic
distributions for score tests, and develop the power calculation formulas for four
model selection strategies. In Section 4, the accuracy of our analytical results is
demonstrated by simulation, and the power comparisons among search strategies
are illustrated in a large space of genetic parameters. In Section 5, we discuss
the advantages of the analytical approaches, compare the results for quantitative
traits and binary traits, and summarize the distinction between the performance
under discovery number control and that under Bonferroni control.

2. Genetic Model and Marker Search

2.1. Model setup

We assume that the odds of a binary trait (or hereafter described as “dis-
ease”) are specified by two loci which may or may not be directly genotyped.
A genotype data set contains n independent individuals indexed by i = 1, . . . , n,
and L candidate markers indexed by j, k = 1, . . . , L. Each marker has two alleles
A and a. The random variable of the genotype of the jth marker in the ith
individual is

Gji =


2 Genotype = AjAj , with probability p2j ,

1 Genotype = Ajaj , with probability 2pj (1− pj) ,

0 Genotype = ajaj , with probability (1− pj)
2,

where pj is the disease minor allele frequency (MAF). The most general way to
specify the underlying genetic model is through a 3-by-3 table of disease odds.
Without loss of generality, we assume the first two markers, indexed by j = 1 or
2, are the associated markers. The conditional odds of disease is

O (g1, g2) =
p (D|g1, g2)
p
(
D̄|g1, g2

) ,
where g1 and g2 are the given genotype values, D and D̄ denote disease and non-
disease, respectively. If SNPs 1 and 2 are causative factors in the disease, the
following three tables represent three commonly studied genetic models specifying
the disease odds under the combination of the genotypes (Marchini, Donnelly,
and Cardon (2005)):

Model 1:

A2A2 (g2=2) A2a2 (g2=1) a2a2 (g2=0)

A1A1 (g1=2) α (1+θ1)
2 (1+θ2)

2 α (1+θ1)
2 (1+θ2) α (1+θ1)

2

A1a1 (g1=1) α (1+θ1) (1+θ2)
2 α (1+θ1) (1+θ2) α (1+θ1)

a1a1 (g1=0) α (1+θ2)
2 α (1+θ2) α

,

(2.1)
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Model 2:

A2A2 (g2=2) A2a2 (g2 = 1) a2a2 (g2 = 0)

A1A1 (g1=2) α (1 + θ)4 α (1 + θ)2 α

A1a1 (g1=1) α (1 + θ)2 α (1 + θ) α

a1a1 (g1=0) α α α

,

(2.2)

Model 3:

A2A2 (g2=2) A2a2 (g2 = 1) a2a2 (g2 = 0)

A1A1 (g1=2) α (1 + θ) α (1 + θ) α

A1a1 (g1=1) α (1 + θ) α (1 + θ) α

a1a1 (g1=0) α α α

,

(2.3)

where, α and θ’s are parameters for baseline and additional genotypic effects,

respectively. In Model 1, the additional genetic effect of SNP j, j = 1 or 2, is

(1 + θj)
gj , which is multiplicative on the genotype value gj . Model 2 assumes

θ1 = θ2, and describes a thresholding rule – the genetic effect remains at the

baseline α, unless both g1 and g2 are non-zero. Model 3 specifies a similar

threshold except there are only two levels of disease odds. Models 2 and 3 describe

two typical gene-gene interactions, where the genetic effect of one marker depends

on the status of the other marker.

Based on the odds of disease, the genotypic disease risks are p (D|g1, g2) =
O (g1, g2)/(1 +O (g1, g2)), and the joint distribution of genotypes in diseased

individuals is

p (g1, g2|D) =
p (D|g1, g2) p (g1, g2)∑

g1,g2
p (D|g1, g2) p (g1, g2)

.

Similarly, we can get the joint distribution of genotypes in controls p
(
g1, g2|D̄

)
.

For any marker-pair involving one non-associated marker j, it is clear that

p (g1, gj |D) = p (g1|D) p (gj) with p (g1|D) =
∑

g2
p (g1, g2|D). For any non-

associated marker-pair, we have p (gj , gk|D) = p (gj) p (gk), k > j ≥ 3.

The odds of disease can be defined through a logistic model

log (O (g1, g2)) = b0 + b1g1 + b2g2 + b3g1g2. (2.4)

With various values of b1, b2, and b3, (2.4) defines a flexible genetic interaction

model. For example, the genetic model in (2.2) can be rewritten as in (2.4) with

b0 = log (α), b1 = b2 = 0, b3 = log (1 + θ).

The genetic model can also be defined through a disease prevalence p (D)

together with genetic relative risks GRR (g1, g2) = p (D|g1, g2) /p (D|0, 0). We
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can get the corresponding odds of disease through

p (D|g1, g2) = GRR (g1, g2) p (D|0, 0)

=
GRR (g1, g2) p (D)∑

g1,g2
GRR (g1, g2) p (g1, g2)

.

It is not unusual that the causative markers are not observed but they have

linkage disequilibrium (LD, a genetic measure of correlation) with the genotyped

markers that are not causative. In this situation, we asssume the genotyped

markers 1 and 2 are non-causative but are correlated with the causative but un-

observed markers indexed by, say -1 and -2, respectively. The negative index

represents unobserved markers. Since the observed markers 1 and 2 are indi-

rectly associated with the disease through the LD, they still are the targets to

be identified through analyzing available GWAS data. The odds of disease at

markers 1 and 2 is

O =
p (D|g1, g2)
p
(
D̄|g1, g2

) =

∑
g−1,g−2

p (D|g−1, g−2) p (g1|g−1) p (g2|g−2) p (g−1, g−2)∑
g−1,g−2

p
(
D̄|g−1, g−2

)
p (g1|g−1) p (g2|g−2) p (g−1, g−2)

.

(2.5)

p (D|g−1, g−2) is defined by a genetic model described above. The method of

calculating p (g1|g−1) and p (g2|g−2) is illustrated in the supplementary material,

which follows the LD models in the literature (Marchini, Donnelly, and Cardon

(2005)).

2.2. Model fitting and selection procedures

The above genetic models of disease susceptibility are defined by specifying

the disease odds from a perspective data-generating point of view. In case-control

retrospective studies, the samples are collected from a random sample of n1 cases

and n0 controls. For a given GWAS data set, marker search requires fitting the

following one-marker or two-marker logistic regression models:

logit
(
P̂j (Yi = 1|gji)

)
= β̂0j + β̂1jgji, (2.6)

logit
(
P̂jk (Yi = 1|gji, gki)

)
= β̂0jk + β̂1jkgji + β̂2jkgki + β̂3jkgjigki, (2.7)

where logit(p) = log (p/ (1− p)), gji and gki are the observed genotype values

of markers j and k in individual i, and Yi = 1 or 0 indicating disease or non-

disease status. The marginal search method looks for the best fitted models

(2.6) over all single markers. The exhaustive search method seeks the best fitted

models (2.7) over all marker-pairs. The forward search method first selects the

best fitted model (2.6), and then picks the best two-marker models (2.7) given
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the previously chosen marker. Extended from these approaches, a marginal-

exhaustive two-stage search method applies marginal search at the first stage

and the exhaustive search through the chosen set of markers at the second stage.

After any search procedure, the markers contained in the selected models are

treated as the putative disease-associated markers.

The significance of statistical associations, or equivalently the goodness of

model fitting, relies on either the log-likelihood ratio test (LRT) or the score test.

As shown in the simulations below, the two tests are similar for the purpose of

selecting markers when the sample size is moderately large. Because the LRT

statistic has no closed form, we used the score test statistic to calculate power.

As a model can contain none, one, or two associated markers, it is necessary

to consider both stringent and relaxed criteria to decide whether any chosen

model is what we seek. Accordingly, the following two definitions of power in

genetics literature (Marchini, Donnelly, and Cardon (2005); Storey, Akey, and

Kruglyak (2005)) are considered in any selection procedure:

(A) Power is the probability of identifying the true genetic association model (in

marginal search, it is the probability of detecting both associated markers,

as marginal search does not consider the interaction terms).

(B) Power is the probability of detecting at least one associated marker.

Note that these power definitions for model selection strategies are different

from the traditional power definition for a specific model. The power studied

here measures the effectiveness of a model selection method, while the power for

a specific model refers to the probability that this model is to be found significant

in a hypothesis test.

We study two criteria for significance level control. The first is a discovery

number control, in which one selects the top R most significant models. The

power under this control is a generalization of detection probability (DP) (Gail

et al. (2008)) into the context of model selection. The second is a type I error

rate control at a genome-wide significance level α, which applies the Bonferroni

correction according to the number of models to be compared. Specifically, in

marginal search, the correction is α/L for comparing a total of L one-marker

models, and the null distribution is χ2
1. In exhaustive search, the correction is

α/
(
L
2

)
for comparing a total of

(
L
2

)
pairwise-marker models, and the null distri-

bution is χ2
3. In the forward search, the correction of the first step is α/L with

the null distribution χ2
1, while the correction of the second step is α/ (L− 1)

with the null distribution χ2
2. In Section 3, we construct the score test statistics

for logistic regression, derive the null and alternative asymptotic distributions
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of relevant test statistics in marker search, and present the formulae of power

calculation under significance control criteria.

3. Model Selection Power

3.1. Score test statistic

We adopt a score test (Zhang (2006)) in the context of genome-wide associ-

ation case-control studies. In general, let T1
i =

(
T 1
1i, . . . , T

1
mi

)′
, i = 1, . . . , n1, be a

random sample ofm covariates of logistic regression in cases, T0
i =

(
T 0
1i, . . . , T

0
mi

)′
,

i = 1, . . . , n0, be a random sample of m covariates in controls. T1
i and T0

i have

distributions p (t1, . . . , tm|D) and p
(
t1, . . . , tm|D̄

)
, respectively. Let Tm×n=(T1,

. . . ,Tn) =
(
T1

1, . . . ,T
1
n1
,T0

1, . . . ,T
0
n0

)
represent the combined variables with to-

tal sample size n = n1+n0. To test the null hypothesis that there is no association

between the outcome and the covariates, the score statistic is

S = nU′Γ−1U,

where Um×1 = (n0n1/n
2)
(
T̄1 − T̄0

)
and Γm×m = (n0n1/n

2)((1/n)
∑n

i=1TiT
′
i

−T̄T̄
′
), with T̄1=

∑n1
i=1T

1
i /n1, T̄

0=
∑n0

i=1T
0
i /n0, and T̄ =

∑n
i=1Ti/n being the

vectors of sample averages.

In GWAS, let Zj = (Zj1, . . . , Zjn1) and Xj = (Xj1, . . . , Xjn0) be sam-

ples of genotype values for the jth marker in cases and controls, respectively.

That is, the vector of random genotype of marker j is Gj = (Gj1, . . . , Gjn) =

(Zj1, . . . , Zjn1 , Xj1, . . . , Xjn0). In general, the elements of T1
i and T0

i are func-

tions of random genotypes corresponding to the form of the logistic regression

model. Particularly, for a single-marker model (2.6) of marker j, j = 1, . . . , L,

there is m = 1 covariate such that T1
i = (Zji), T

0
i = (Xji), and T = Gj . So the

score test statistic is

Sj =
n

2

(
2r (1− r)

(
Z̄j − X̄j

)2
rZ2

j + (1− r)X2
j −

(
rZ̄j + (1− r) X̄j

)2
)
, (3.1)

where r = n1/n, Z̄j =
∑n1

i=1 Zji/n1, X̄j =
∑n0

i=1Xji/n0, Z2
j =

∑n1
i=1 Z

2
ji/n1 and

X2
j =

∑n0
i=1X

2
ji/n0. For a two-marker model (2.7) of markers j and k, there

are m = 3 covariate such that T1
i = (Zji, Zki, ZjiZki)

′, T0
i = (Xji, Xki, XjiXki)

′,

and T3×n=(Gj ,Gk,Gj ∗Gk)
′, where ∗ denotes the element-wise cross-product

of two vectors. Thus the score test statistic is

Sjk = nU′
jk (Γjk)

−1Ujk, (3.2)

where

Ujk =
n1n0

n

(
Z̄j − X̄j , Z̄k − X̄k, ZjZk −XjXk

)′
,
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Γjk =
n1n0

n

γ11 γ12 γ13
γ21 γ22 γ23
γ31 γ32 γ33

 , (3.3)

with Γjk being symmetric and

γ11 =
n1Z2

j + n0X2
j

n
−
(
n1Zj + n0Xj

n

)2

,

γ12 =
n1ZjZk + n0XjXk

n
−
(
n1Zj + n0Xj

n

)(
n1Zk + n0Xk

n

)
,

γ13 =
n1Z2

jZk + n0X2
jXk

n
−
(
n1ZjZk + n0XjXk

n

)(
n1Zj + n0Xj

n

)
,

γ22 =
n1Z2

k + n0X2
k

n
−
(
n1Zk + n0Xk

n

)2

,

γ23 =
n1ZjZ2

k + n0XjX2
k

n
−
(
n1ZjZk + n0XjXk

n

)(
n1Zk + n0Xk

n

)
,

γ33 =
n1Z2

jZ
2
k + n0X2

jX
2
k

n
−
(
n1ZjZk + n0XjXk

n

)2

.

Note that ZjZk =
∑n1

i=1 ZjiZki/n1 and XjXk =
∑n0

i=1XjiXki/n0; the other av-

erages functions of cross-product terms are analogously defined.

3.2. Asymptotic distributions

In GWAS, the marker genotypes of individuals are not controllable but are

randomly observed. It is crucial to consider the genotype predictors as random

variables. We apply a generalization of the Delta method to derive the null and

the alternative distributions of the score test statistics that are functions of ran-

dom predictors. Let Wi = (W1i, . . . ,Wmi), i = 1, . . . , n, be n independent and

identically distributed random vectors of dimension m. The corresponding mean

vector is θ = (θ1, . . . , θm) with θs = E (Wsi), and the covariance matrix is Σ =

Cov (Wi) with (Σ)st = Cov (Wsi,Wti), s, t = 1, . . . ,m. Let W̄ =
(
W̄1, . . . , W̄m

)
be the vector of the sample means, W̄s = (1/n)

∑n
i=1Wsi. Consider a real valued

function h
(
W̄
)
of W̄. If ∇h (θ) ≡ (∂h (θ)/∂θ1, . . . , ∂h (θ)/∂θm)′ ̸= 0,

√
n
[
h
(
W̄
)
− h (θ)

] L→ N
(
0, τ2

)
, (3.4)

where τ2 = [∇h (θ)]′Σ [∇h (θ)] and
L→ denotes convergence in law. If ∇h (θ) = 0,

n
[
h
(
W̄
)
− h (θ)

] L→ cχ2
d. (3.5)
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Let A ≡ D2h (θ) Σ, with D2h (θ) = ∂2

∂θ2
h (θ) be the Hessian matrix of h (θ). We

then have

1. c = 1/2, d = rank (A), if A is idempotent,

2. c ≈ trace
(
A2
)
/2trace (A), d ≈ trace (A)2/trace

(
A2
)
, if A is not idempotent.

Furthermore, if ∇h1 (θ) ̸= 0 and ∇h2 (θ) ̸= 0,

Cov
(√

nh1
(
W̄
)
,
√
nh2

(
W̄
)) P→ [∇h1 (θ)]

′Σ [∇h2 (θ)] . (3.6)

Clearly, the score tests in (3.1) and (3.2) are functions of the genotypic sample

means. The distribution of W̄ can be derived from the genotypic distributions in

cases or in controls determined by genetic models. For the score tests involved in

each marker search method, the following sections specify the distribution of W̄

for the given markers involved in the model fittings. When the causative loci are

not genotyped but markers 1 and 2 are in LD with them, by (2.5) we obtain the

conditional joint genotypic distribution p (gA1 , gA2 |D) in cases and p
(
gA1 , gA2 |D̄

)
in controls. We then derive the distribution of relevant score test statistics based

on the mean vector and covariance matrix involving the associated markers 1

and 2: θA1A2 = E (WA1A2) and ΣA1A2 = V ar (WA1A2).

3.3. Marginal search

Asymptotic Distribution of Test Statistic

The relevant tests and the corresponding distributions for marginal search are

as follows. For the jth single marker, j = 1, . . . , L, let Tj ≡
√

Sj , where Sj is the

score test in (3.1). We can write Tj =
√

n/2h
(
W̄j

)
with W̄j=(Z̄j , X̄j , Z2

j , X
2
j )

being a vector of sample averages over cases and controls. Let Wj = (Zj , Xj , Z
2
j ,

X2
j ) represent the random genotypic vector of any observation. For an asso-

ciated marker j = 1 (similarly for j = 2), Z1 has the distribution p (g1|D) =∑
g2
p (g1, g2|D), and X1 has the distribution p

(
g1|D̄

)
. For the non-associated

markers j = 3, . . . , L, Zj and Xj have the same distribution p (gj). The mean

vectors and variance matrices are θj=E (Wj) and Σj = Cov (Wj), respectively.

When n1 = n0, by (3.4),

Tj −
√

n

2
h (θj)

L→ N
(
0, τ2j

)
,

where τ2j = [∇h (θj)]
′Σj [∇h (θj)].

To calculate the alternative distributions, note that T1 and T2 are correlated

because the odds of disease is a function of both markers 1 and 2. The joint

distribution of (T1, T2)
′ is asymptotically multivariate normal

(T1, T2)
′ − µT1,T2

L→ MVN (0, τT1,T2) , (3.7)
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and is a part of the joint distribution in (3.8). Corresponding to the non-

associated markers j = 3, . . . , L, the null distribution for marginal search is

Tj
L→ N (0, 1) by (3.4), or consistently, Sj

L→ χ2
1 by (3.5). Further, by (3.6), the

correlations between Tj , j = 3, . . . , L, and T1 (or T2) are asymptotically 0.

Power under Discovery Number Control

For the discovery number control, the power of detecting alternative model(s)

in the top R most significantly fitted models is the probability that an alternative

model is better fitted than the Rth (or in marginal search under power definition

(A), the (R− 1)th) best fitted null models. Specifically, when the number of

discoveries is controlled by R, the power of marginal search under definition (A)

for detecting both associated markers 1 and 2 is

P
(
S1 ∧ S2 ≥ S(r)

)
=

∫∫
P
(
S(r) ≤ t21 ∧ t22

)
dG (t1, t2) ,

where S1 ∧ S2 = min {S1, S2}, r = L − 2 − R + 1, S(r) is the rth smallest (or

the Rth largest) order statistics in the set {Sj , j = 3, . . . , L}, and G (t1, t2) is the

cumulative distribution function (CDF) of (T1, T2)
′ in (3.7). Let G1 (·) be the

CDF of χ2
1. Then

P
(
S(r) ≤ x

)
= Gr

1 (x)

L−2−r∑
l=0

(
r + l − 1

l

)
(1−G1 (x))

l .

To get the power of marginal search under definition (B), that either asso-

ciated marker 1 or marker 2 is selected, we calculate the probability that either

S1 or S2 is larger than the cutoff point: P
(
S1 ∨ S2 ≥ S(r)

)
, where S1 ∨ S2 =

max {S1, S2}.

Power under Bonferroni Control

Since the null distribution of a score statistic used in marginal search is

χ2
1, the cutoff under the Bonferroni corrected type I error rate control is c =

G−1
1 (1− α/L), where G−1

1 is the quantile function of χ2
1 and α is the genome-

wide significance level. Under power definition (A) or (B), the probability of

finding both or either associated marker is P (S1 ∧ S2 ≥ c) or P (S1 ∨ S2 ≥ c),

respectively.

3.4. Exhaustive search

Asymptotic Distribution of Test Statistic

The relevant test statistic distributions for exhaustive search are based on

the score test statistics in (3.1) and (3.2). For the statistics involving associated
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markers 1 and 2, let T12 ≡
√
S12 =

√
n/2h12

(
W̄12

)
, Ti ≡

√
Si =

√
n/2hi

(
W̄12

)
,

i = 1, 2, where

W̄12=

(
Z1, X1, Z2, X2, Z1Z2, X1X2, Z2

1 , X
2
1 , Z

2
2 , X

2
2 ,

Z2
1Z2,X2

1X2, Z1Z2
2 , X1X2

2 , Z
2
1Z

2
2 , X

2
1X

2
2

)
is a vector of sample averages over cases and controls. Let W12 be the corre-

sponding genotypic vector of one random observation. We have the mean vector

θ12=E (W12) and the variance matrix Σ12 = V ar (W12). Based on the asymp-

totic distribution results in (3.4) and (3.6), when n1 = n0,

(T12, T1, T2)
′ − µT12,T1,T2

L→ MVN (0, τT12,T1,T2) , (3.8)

where

µT12,T1,T2 =

√
n

2
(h12 (θ12) , h1 (θ12) , h2 (θ12))

′ ,

τT12,T1,T2 =D′Σ12D,

with D = (∇h12 (θ12) ,∇h1 (θ12) ,∇h2 (θ12)).

Because S12 has 3 degrees of freedom, the convergence in (3.8) is relatively

slower than that in (3.7). In the following we describe an approximation for the

mean of T12, in the case that sample size is small (e.g. n1 < 1, 000) and genetic

effect is weak (e.g. θ < 0.2 in model (2.2)). Note that if we consider an observed

(and thus fixed) data design matrix t = (g1,g2,g1 ∗ g2) of a logistic regression in

the form (2.7), where gj = (zj1, . . . , zn1j , xj1, . . . , xjn0)
′, j = 1 or 2, ∗ represents

pair-wise product, it has been shown that (Zhang (2006))

S12 ∼ χ2
3,δn(t)

where δn(t) = nb′Γ12 (t)b, with Γ12 (t) given in the form (3.3) and b = (b1, b2, b3)
′

being the vector of coefficients in (2.4). Now we define δn = δn (E (T)) in our

set-up for random genotype T =(G1,G2,G1 ∗G2) with Gj = (Zj1, . . . , Zjn1 ,

Xj1, . . . , Xjn0)
′, j = 1 or 2. We can use a weighted Chi-square with one de-

gree of freedom to approximate S12, i.e. S12
∼= anχ

2
1,λn

. Solving the equations

assuming equal mean and variance (Scheffé (1959)) an (1 + λn) = 3 + δn and

a2n (2 + 4λn) = 6+4δn, we get an = (3 + δn)/(1 + λn), λn = 2tn−1+
√

4t2n − 2tn,

and tn = (3 + δn)
2/(6 + 4δn). So we can apply the approximation for weak ge-

netic effects

E (T12) ∼=
√

anλn.

By (3.5), the score test statistic Sjk for model (2.7) of two non-associated

markers j and k, 3 ≤ j < k ≤ L, has an asymptotic distribution

Sjk
L→ χ2

3. (3.9)
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Let Sk|j denote the score test statistic for the extra terms in model (2.7) over

model (2.6). The following is a useful decomposition

Sjk = Sj + Sk|j . (3.10)

So the correlation between the score test statistics Sjk1 and Sjk2 , sharing the

same marker j, can be captured by Sj , while Sk1|j and Sk2|j can be treated

independently. Furthermore, by (3.5), for k ≥ 3,

Sk|j
L→ χ2

2. (3.11)

Power under Discovery Number Control

With test statistic distributions derived, we can calculate the probability

of identifying the whole associated genetic model through exhaustive search

under power definition (A). Let A1 ≡ {Sij , i = 1, 2, j = 3, . . . , L} and A2 ≡
{Sjk, 3 ≤ j < k ≤ L}. Let SA,[R] denote the Rth largest score test statistics in

a set A. When controlling the false discovery number by R, the probability of

detecting the associated marker-pair is

P
(
S12 ≥ SA1∪A2,[R]

)
=

∫∫∫
P
(
t212 ≥ SA′

1∪A2,[R]

)
dG (t12, t1, t2) ,

where G (t12, t1, t2) is the CDF of (3.8), A′
1 =

{
t2i + Sj|i, i = 1, 2, j = 3, . . . , L

}
is from the decomposition (3.10), and

P
(
t212 ≥ S

A
′
1∪A2,[R]

)
=

R−1∑
r=0

∑
{r1,r2,r3}∈Sr

P1P2P3,

where

Sr =
{
{r1, r2, r3} :

∑
ri = r, 0 ≤ r1, r2 ≤ (L− 2) , 0 ≤ r3 ≤ N

}
,

P1 =

(
L− 2

r1

)[
1−G1

(
t212 − t21

)]r1 G1

(
t212 − t21

)L−2−r1 ,

P2 =

(
L− 2

r2

)[
1−G1

(
t212 − t22

)]r2 G1

(
t212 − t22

)L−2−r2 ,

P3 =

(
N

r3

)[
1−G3

(
t212
)]r3 G3

(
t212
)N−r3 ,

N =
(
L−2
2

)
is the number of variables in S2, G1 (·) is the CDF of (3.11), and G3 (·)

is the CDF of (3.9). With the same argument given in the literature (Wu and

Zhao (2009)), the test statistics within the sets A∗ ≡
{
Sj|1, Sj|2, j = 3, . . . , L

}
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and S2 ≡ {Sjk, 2 < j < k ≤ L} can be treated as asymptotically independent as

L → ∞.

To simplify the heavy computation needed above, we can use the following

approximations of the integrands. Simulations (results not presented for space

limit) illustrated that these approximations are fairly accurate in the context

of Monte Carlo integration. Let m = 2 (L− 2) + N be the total number of the

elements in A′
1∪A2. Q denotes the quantile function of mixed distribution of these

elements. For a given (t12, t1, t2), P
(
t212 ≥ SA′

1∪A2,[R]

)
can be approximately

replaced with

I

{
t212 > Q

(
m−R+ 0.5

N

)}
∼= I

{
t212 > Rth largest value in A3

}
,

where I {E} denotes the indicator function of event E, and the set

A3 =
{
Q1 (r) + t21, Q1 (r) + t22, Q3 (r) , r = 1, . . . , R

}
,

with Q1 (r) = G−1
1 (1− (r − 0.5)/(L− 2)) and Q3 (r) = G−1

3 ((N − r + 0.5)/N).

According to power definition (B), the probability for exhaustive search to

detect either associated marker is

P
(
max ({S12} ∪A1) > SA2,[R]

)
= 1−

∫∫∫
Pt12,t1,t2dG (t12, t1, t2) ,

where

Pt12,t1,t2 = P
(
max

({
t212
}
∪A′

1

)
≤ SA2,[R]

)
=

∫
P
(
max

({
t212
}
∪A′

1

)
≤ x

)
g3(N−R+1)

(x) dx

=

∫ ∞

t212

[
G1

(
x− t21

)
G1

(
x− t22

)]L−2
g3(N−R+1)

(x) dx,

g3(N−R+1)
(·) is the PDF of the (N −R+ 1)th order statistics distribution with

the density function

g3(N−R+1)
(x) =

N !

(N −R)! (R− 1)!
G3 (x)

N−R [1−G3 (x)]
R−1 g3 (x) ,

G3 (c) and g3 (·) are the CDF and PDF of (3.9), respectively.

If R/N → c, 0 < c < 1, as N → ∞, we can use quantiles to replace the

order statistics in order to simplify the calculation (David and Nagaraja (2003,

Chap. 4.6)), i.e. SA2,[R] → G−1
3 ((N −R+ 0.5)/N) ≡ Q. So for given (t12, t1, t2) ,

we can approximate the integrand Pt12,t1,t2 with

I
{
t212 ≤ Q

} [
G1

(
Q− t21

)
G1

(
Q− t22

)]L−2
.
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Power under Bonferroni Control

Traditional type I error control for exhaustive search does not consider the

models with one associated and one non-associated markers, so the null distribu-

tion is from non-associated two-marker models (Marchini, Donnelly, and Cardon

(2005); Storey, Akey, and Kruglyak (2005)). Let G−1
3 be the quantile functions

of χ2
3 in (3.9). The cutoff is c = G−1

3

(
1− α/

(
L
2

))
. The probability of finding the

whole associated genetic model under power definition (A) is

P (S12 ≥ c) =

∫
P
(
t212 ≥ c

)
dG (t12) .

With a similar argument for the power under discovery number control, the

probability of finding either associated marker under power definition (B) is

P (max ({S12} ∪A1) ≥ c) = 1−
∫∫∫

Pt12,t1,t2 (c) dG (t12, t1, t2)

where

Pt12,t1,t2 (c) = P
(
max

({
t212
}
∪A′

1

)
≤ c
)

= I
{
t212 ≤ c

} [
G1

(
c− t21

)
G1

(
c− t22

)]L−2
,

with G1 (·) being the CDF of distribution (3.11).

3.5. Forward search

Asymptotic Distribution of Test Statistic

For forward search, first we derive the distributions of test statistics that are

used to calculate the power of this search procedure. For the score tests involving

the associated markers 1 and 2, let Ti|j ≡
√

Si|j , where Si|j follows (3.10), i = 1, 2,

j = 3, . . . , L. We can rewrite Ti|j =
√

n/2hi|j
(
W̄12j

)
, Ti =

√
n/2hi

(
W̄12j

)
,

where

W̄12j=


Z1, X1, Z2, X2, Z1Z2, X1X2, Z2

1 ,X
2
1 , Z

2
2 , X

2
2 , Z

2
1Z2, X2

1X2,

Z1Z2
2 , X1X2

2 , Z
2
1Z

2
2 , X

2
1X

2
2 , Zj , Xj , Z1Zj , X1Xj , Z2

j , X
2
j , Z

2
1Zj ,

X2
1Xj , Z1Z2

j , X1X2
j , Z

2
1Z

2
j ,X

2
1X

2
j , Z2Zj , X2Xj , Z2

2Zj , X2
2Xj ,

Z2Z2
j , X2X2

j , Z
2
2Z

2
j , X

2
2X

2
j


is a vector of sample averages over cases and controls. Let W12j be the cor-

responding random genotypic vector of any observation. The mean vector is

θ12j=E (W12j) and the variance matrix is Σ12j = V ar (W12j). Following (3.4)

and (3.6), we have the asymptotic joint distribution(
T1, T2, T1|j , T2|j

)′ − µT1,T2,T1|j ,T2|j
L→ MVN

(
0, τT1,T2,T1|j ,T2|j

)
, (3.12)
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where

µT1,T2,T1|j ,T2|j =
√

n/2
(
h1 (θ12j) , h2 (θ12j) , h1|j (θ12j) , h2|j (θ12j)

)′
,

τT1,T2,T1|j ,T2|j =D′Σ12jD,

with D =
(
∇h1 (θ12j) ,∇h2 (θ12j) ,∇h1|j (θ12j) ,∇h2|j (θ12j)

)
. Through calcula-

tion (Wolfram (1999)), we have ∇hi|j (θ12j) = ∇hi (θ12j), i = 1, 2. By (3.4) and

(3.6) it is clear that

V ar (Ti) = (∇hi (θ12j))
′Σ12j∇hi (θ12j)

= (∇hi (θ12j))
′Σ12j∇hi|j (θ12j) = Cov

(
Ti, Ti|j

)
.

So Ti and Ti|j have correlation coefficient converging to 1. This explains why

forward selection has similar power as marginal search for detecting either asso-

ciated marker: if a genetic effect cannot stand out in a marginal scan, it does not

likely show a strong signal in the following step either. Furthermore, Tj and Ti|j
are asymptotically independent

Cov
(
Tj , Ti|j

)
→ 0, i = 1, 2, j = 3, . . . , L.

When comparing a model involving two incorrect markers j and k (3 ≤ j <

k ≤ L) in (2.7) with a model for marker j in (2.6), by (3.5), the corresponding

score test statistic Sk|j has the asymptotic chi-square distribution:

Sk|j
L→ χ2

2. (3.13)

Power under Discovery Number Control

In the forward search procedure, we first apply marginal search to find the

most significant marker among models in (2.6). Based on the selected marker,

we then fit models in (2.7) in the second step to find the markers that have

strong joint association. When controlling for R total discoveries, under power

definition (A) for finding the whole associated model, we need to calculate the

probability that the forward search chooses marker 1 or 2 in the first step, and

then picks the genetic model in the second step. Define i∗ ≡ argmaxi=1,2 {Si},
Ai∗ ≡ {Si∗3, . . . , Si∗L}, as L → ∞. The power can be written as

P
(
Si∗ ≥ S(L−2) ∩ S12 > SAi∗ ,[R]

)
=

∫∫∫
P
(
t2i∗ > S(L−2) ∩ t212 > SA′

i∗ ,[R]

)
dG (t12, t1, t2)

→
∫∫∫

P
(
t2i∗ > S(L−2)

)
P
(
t212 ≥ SA′

i∗ ,[R]

)
dG (t12, t1, t2) ,
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where G (t12, t1, t2) is the CDF of (T12, T1, T2)
′ given in (3.8), S(L−2) = maxj≥3

{Sj}, A′
i∗ =

{
t2i∗ + Sj|i∗ , j = 3, . . . , L

}
by the decomposition (3.10), and

P
(
t2i∗ > S(L−2)

)
=
(
G1

(
t21 ∨ t22

))L−2
,

P
(
t212 ≥ SA′

i∗ ,[R]

)
= G2 (u)

r
L−2−r∑
l=0

(
r + l − 1

l

)
[1−G2 (u)]

l ,

where u = t212− t2i∗ , r = L−2−R+1, G1 (·) is the CDF of χ2
1 for the distribution

of Sj , and G2 (·) is the CDF of χ2
2 for the distribution of Sj|i∗ . i

∗ is fixed for an

observed value (t1, t2)
′ of the random vector (T1, T2)

′, so it is easy to implement

the power calculation with Monte Carlo integration.

Note that S(L−2) and SA′
i∗ ,[R] are asymptotically independent. This is be-

cause corr
(
Sj , Sj|i∗

)
< 1 for each j ≥ 3. So as L → ∞,

P
(
j∗ ̸= k∗ : Sj∗ = S(L−2), Sk∗|i∗ = SA′

i∗ ,[R]

)
→ 1.

When j∗ ̸= k∗, Sj∗ and Sk∗|i∗ are always independent.

When R and L are large, we can simplify the formula for P (t212 ≥ SA′
i∗ ,[R])

by approximating the Rth largest variable in {Sj|i∗ , j = 3, . . . , L} with G−1
2 (1−

(R− 0.5)/(L− 2)), where G−1
2 is the quantile function of Sj|i∗ . So, we can ap-

proximately replace P (t212 ≥ SA′
i∗ ,[R]) with I{u > G−1

2 (1 − (R− 0.5)/(L− 2))}
to calculate the integration.

Under power definition (B) for finding either associated marker, the power

of the forward search is the sum of PA: the probability of detecting marker 1 or

2 in the 1st step, and PB: the probability that step 1 fails but step 2 picks up at

least one associated marker. When controlling for R total discovered models, it

is straightforward that

PA = P
(
Si∗ > S(L−2)

)
=

∫∫ (
G1

(
t21 ∨ t22

))L−2
dG (t1, t2) ,

where G (t1, t2) is the CDF of the joint distribution of (T1, T2)
′ given in (3.7). De-

fine j∗ ≡ argmaxk≥3 {Sk}, Aj∗ ≡
{
Sk|j∗ , k ≥ 3, k ̸= j∗

}
. The second probability

is

PB = P
(
(S1 ∨ S2) < Sj∗ ∩

(
S1|j∗ ∨ S2|j∗

)
≥ SAj∗ ,[R]

)
.

For any k ≥ 3, Si|k and Sk are independent, so Si|j∗ and Sj∗ are independent.

By the results in (3.12) and (3.13), the distribution of Si|j∗ does not depend on

j∗. Hence, Si|j∗ has the same distribution of Si|j , j = 3, . . . , L. Then

PB =

∮
Pt1t2Pt1|jt2|jdG

(
t1, t2, t1|j , t2|j

)
,



1058 ZHEYANG WU AND HONGYU ZHAO

where G
(
t1, t2, t1|j , t2|j

)
is the CDF of

(
T1, T2, T1|j , T2|j

)′
given in (3.12), and

Pt1t2 = P
(
S(L−2) >

(
t21 ∨ t22

))
= 1−

(
G1

(
t21 ∨ t22

))L−2
,

Pt1|jt2|j = P
((

t21|j ∨ t22|j

)
≥ SAj∗ ,[R]

)
= G2

(
t21|j ∨ t22|j

)r L−3−r∑
l=0

(
r + l − 1

l

)[
1−G2

(
t21|j ∨ t22|j

)]l
,

with r = L− 3−R+1, G2 (·) is the CDF of Sk|j , k ≥ 4, given in (3.13). We can

approximate SAj∗ ,[R] through the quantile function G−1
2 (1− (R− 0.5)/(L− 3))

to simplify the calculation.

Power under Bonferroni Control

When we utilize the Bonferroni control in forward search, the first step selects

the most significant single marker only if the test is larger than the cutoff c1 =

G−1
1 (1− α/L), where G−1

1 is the quantile function of χ2
1. In the second step,

the null distribution is always χ2
3 no matter which marker is first selected. Let

the cutoff be c2 = G−1
2 (1− α/ (L− 1)), where G−1

2 is the quantile function of

χ2
2. For finding the true genetic model under power definition (A), the analytical

power calculation is

P
(
Si∗ > S(L−2) ∩ Si∗ > c1 ∩ S12 − Si∗ > c2

)
=

∫∫∫ (
G1

(
t21 ∨ t22

))L−2 {(
t21 ∨ t22

)
> c1

}{
t212 −

(
t21 ∨ t22

)
> c2

}
dG (t12, t1, t2) .

As in the calculation under discovery number control, the power of forward

search for finding either associated marker is PA + PB, where

PA = P
(
Si∗ > S(L−2) ∩ Si∗ > c1

)
=

∫∫ (
G1

(
t21 ∨ t22

))L−2 {(
t21 ∨ t22

)
> c1

}
dG (t1, t2) ,

PB = P
(
Sj∗ > Si∗ ∩ Sj∗ > c1 ∩

(
S1|j∗ ∨ S2|j∗

)
≥ c2

)
=

∮
Pt1t2t1|jt2|jdG

(
t1, t2, t1|j , t2|j

)
,

and

Pt1t2t1|jt2|j = P
(
Sj∗ >

(
t21 ∨ t22

)
∩
(
t21|j ∨ t22|j

)
≥ c2 ∩ Sj∗ > c1

)
.

As shown above, Ti and Ti|j have large correlation coefficient converging to 1.

Furthermore, Sj∗
∼= G−1

1 (1− (1− 0.5)/(L− 2)) < c2 , so

P
(
Sj∗ >

(
t21 ∨ t22

)
∩
(
t21|j ∨ t22|j

)
≥ c2

)
∼= 0,
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and thus PB
∼= 0.

3.6. Marginal-exhaustive two-stage search

We also study the power of a marginal-exhaustive two-stage method (Mar-

chini, Donnelly, and Cardon (2005)). In the first stage for screening, it selects

a set of single markers I1 ∈ {1, 2, . . . , L} with a liberal type I error-rate cutoff

c1 = G−1
1 (1− α1), where G

−1
1 is the quantile function of χ2

1. Then, in the second

stage, it applies exhaustive search to the selected markers set. In the context

of score test statistics, we adopt the approach of Marchini, Donnelly, and Car-

don (2005) to define the statistic in the second stage. Specifically, the statistic

is S′
lm = Slm − 2c1, where Slm is the score test statistic for the marker-pair

(l,m) ⊂ I1. We select markers l and m if S′
lm ≥ c2 ≡ G−1

3

(
1− α/

(
α1L
2

))
, where

G−1
3 is the quantile function of χ2

3. To find the associated genetic model, the first

stage has to find both associated markers marginally. So under definition (A),

the power of the two-stage search is

P
(
S1 ∧ S2 ≥ c1 ∩ S′

12 > c2
)

=

∫∫∫
I
((
t21 ∧ t22

)
> c1 ∩

(
t212 − 2c1

)
> c2

)
dG (t12, t1, t2) .

4. Results

4.1. Comparison between analytical and simulation results

In order to demonstrate the accuracy of our analytical power calculation,

we compared the power values from calculations with those from simulations.

For the feasibility of simulation, we considered L = 300 candidate markers with

minor allele frequency (MAF) pj = 0.3, j = 1, . . . , L, n1 = 1, 000 cases, n0 =

1, 000 controls, the baseline effect α = 0.007 and the genotypic effect θ = 0.3

for genetic model in (2.2). These set-ups lead to a disease prevalence close to

0.01. Table 1 shows the power of marker search procedures under discovery

number control. Table 2 shows the power under the Bonferroni corrected type

I error rate control with similar set-ups as in Table 1, except that sample size

n1 = n0 = 5, 000 and genotypic effect θ = 0.2 in (2.2). These parameters were

chosen to get the power values that are in a spectrum of values of practical

interests. We simulated 1, 000 data sets and ran search procedures for each. The

empirical power is the proportion of successful detections. In simulations, we

used both the score and the log likelihood ratio tests for model comparisons.

With various parameter set-ups, more comparisons between the simulated and

the calculated power values can be found in the supplementary material. The

consistent closeness between the analytical and simulation results demonstrates
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Table 1. Under the control of the discovery number R, the comparisons of
the power values between simulations (based on the score test and the log-
likelihood ratio test) and analytical calcualtions (based on the score test).
Power definitions (A) and (B) are considered. n1 = n0 = 1, 000, α = 0.007,
θ = 0.3. (*R = 2 in marginal search under power definition (A)).

Strategy Source R = 1∗ R = 5 R = 10 R = 15 R = 20 R = 30
Power definition (A)
Marginal Score Simu. 0.14 0.38 0.51 0.58 0.64 0.71
search LRT Simu. 0.14 0.38 0.51 0.58 0.64 0.71

Score Calcu. 0.15 0.38 0.50 0.58 0.65 0.72
Exhaustive Score Simu. 0.32 0.50 0.57 0.61 0.65 0.70
search LRT Simu. 0.33 0.52 0.61 0.64 0.69 0.72

Score Calcu. 0.32 0.50 0.59 0.63 0.65 0.69
Forward Score Simu. 0.28 0.42 0.48 0.50 0.52 0.55
search LRT Simu. 0.29 0.43 0.48 0.50 0.53 0.55

Score Calcu. 0.28 0.44 0.48 0.51 0.52 0.54
Power definition (B)
Marginal Score Simu. 0.55 0.83 0.90 0.92 0.95 0.96
search LRT Simu. 0.55 0.83 0.90 0.92 0.95 0.96

Score Calcu. 0.55 0.83 0.91 0.94 0.95 0.98
Exhaustive Score Simu. 0.57 0.80 0.87 0.91 0.93 0.95
search LRT Simu. 0.59 0.81 0.87 0.81 0.93 0.95

Score Calcu. 0.62 0.77 0.84 0.88 0.90 0.93
Forward Score Simu. 0.64 0.76 0.83 0.87 0.91 0.94
search LRT Simu. 0.64 0.76 0.83 0.87 0.91 0.94

Score Calcu. 0.64 0.74 0.82 0.88 0.90 0.94

that our power calculation methods perform well, and that the score test and the

LRT have similar performance for model selection.

4.2. Power comparisons of marker search methods

We applied the analytical power calculations to compare different marker

search methods in a hypothetical GWAS that contains n1 = 1, 000 cases, n0 =

1, 000 controls, and L = 300, 000 candidate markers with minor allele frequency

pj = 0.3, j = 1, . . . , L. Assume the true genetic model is a logistic model of

form (2.4) with the baseline intercept b0 = log (0.007). Let the main effect

b1 = b2 and the interaction effect b3 both vary from -1 to 1 by a step size

of 0.1. Figures 1 and 2 show the 3-D plots of statistical power over a set of

main and interaction effects under the discovery number control R = 20 and the

Bonferroni corrected type I error rate α = 0.05, respectively. As demonstrated

by the pink “trenches” in Figures 1 and 2, marginal search and forward search

will unavoidably fail when a disease susceptibility is controlled by interactions

that show no marginally detectable signal. Exhaustive search, on the other hand,
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Figure 1. 3-D plots of statistical power under discovery number control over
genetic effect space. Model selection methods: marginal search in the left
column, exhaustive search in the middle column, and forward search in the
right column. Two definitions of power: (A) detecting the joint association
(or both associated markers in marginal search) in row 1, and (B) detecting
either associated marker in row 2. The genetic models are logistic with main
effect b1 = b2 and epistatic effect b3, both varying from -1 to 1. The MAF
pj = 0.3, j = 1, . . . , L. The total discovery number R is set to be 20.

can avoid this problem and detect the full signal in two dimensions as long as

the effect size is large enough. Researchers can benefit from exhaustive search

to discover new genes that are missed by marginal search and forward search, as

these genes are associated with the diseases only through gene-gene interactions.

In order to contrast one marker search method with another, we subtracted

the power values of one method from those of another method. The differences

between the power values of two methods are plotted in Figures 3 and 4. Shown

as the left column of Figure 3, the marginal search is more effective than the

exhaustive search to find both associated markers in areas where the interac-

tion is weak with small b3, but the main effects are modest with moderate b1
and b2. The disadvantage of exhaustive search in considering more false models

overwhelms its advantage when the interaction effect is not large enough. This
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Figure 2. 3-D plots of statistical power under Bonferroni control over genetic
effect space. Model selection methods: marginal search in the left column,
exhaustive search in the middle column and forward search in the right
column. Two definitions of power: (A) detecting the joint association (or
both associated markers in marginal search) in row 1, and (B) detecting
either associated marker in row 2. The genetic models are logistic with main
effect b1 = b2 and epistatic effect b3, both varying from -1 to 1. The MAF
pj = 0.3, j = 1, . . . , L. The genome-wide significance level α is set to be
0.05.

superiority of marginal search over exhaustive search is even enhanced when only

one marker is required to be found, which is shown by the bigger superior areas

of marginal search in the lower left panel. Based on the middle column, forward

search is more powerful in finding both markers than marginal search by model-

ing interactions that are not close to zero. However, forward search is uniformly

beaten by marginal search in finding at least one marker through the whole ge-

netic model space. This is because its restricted first step (selecting only one

marker) constrains the probability to find a correct marker at this step while, in

the second step, a wrongly chosen marker highly reduces the probability of find-

ing a correct marker. From the right column, we can see that exhaustive search

is always better than or similar to forward search in finding true epistatic models;

it performs worse than the forward search in finding at least one marker by con-
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Table 2. Under the Bonferroni corrected type I error with family-wise sig-
nificance level α, the comparisons of the power values between simulations
(based on the score test and the log-likelihood ratio test) and analytical
calcualtions (based on the score test). Power definitions (A) and (B) are
considered. n1 = n0 = 5, 000, α = 0.007, θ = 0.2.

Strategy Source α = 0.01 α = 0.05 α = 0.10 α = 0.15
Power definition (A)
Marginal Score Simu. 0.20 0.37 0.46 0.51
search LRT Simu. 0.20 0.37 0.46 0.51

Score Calcu. 0.19 0.34 0.42 0.48
Exhaustive Score Simu. 0.86 0.92 0.94 0.95
search LRT Simu. 0.87 0.92 0.94 0.94

Score Calcu. 0.86 0.92 0.93 0.95
Forward Score Simu. 0.55 0.73 0.79 0.82
search LRT Simu. 0.56 0.73 0.80 0.83

Score Calcu. 0.51 0.70 0.76 0.80
Power definition (B)
Marginal Score Simu. 0.68 0.83 0.88 0.91
search LRT Simu. 0.68 0.83 0.88 0.91

Score Calcu. 0.66 0.82 0.87 0.89
Exhaustive Score Simu. 0.87 0.93 0.94 0.96
search LRT Simu. 0.87 0.92 0.94 0.95

Score Calcu. 0.87 0.93 0.95 0.96
Forward Score Simu. 0.69 0.82 0.88 0.89
search LRT Simu. 0.69 0.82 0.88 0.89

Score Calcu. 0.67 0.82 0.86 0.89

sidering many more false models, the weak interaction effect close to zero does

not play a dominant role in improving its power. Type I error control with the

Bonferroni correction leads to notably different patterns of power comparisons.

By examining the left and right columns of Figure 3 together with those of Figure

4, we can see that exhaustive search increases its advantage so as to uniformly

beat both marginal search and forward search in finding the true genetic model

over the whole genetic model space. Under Bonferroni control, the forward search

improves its performance to match over that of marginal search to find at least

one marker, which is demonstrated by comparing the middle column of Figure 3

with that of Figure 4. For both control criteria, when we relax the control level

of R or α, marginal search becomes relatively more powerful than exhaustive and

forward searches. This is shown in the supplementary material which contains

more maps of comparisons under different genetic parameter set-ups.

4.3. Power comparisons when marginal effects are fixed

As illustrated above, the interaction effect is crucial for the statistical power
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Figure 3. Power differences with the discovery number R = 10, and with
varying main and interaction effects. Row 1 illustrates power comparison
results under power definition (A), row 2 illustrates the results under power
definition (B). Left column: marginal search vs. exhaustive search; middle
column: marginal search vs. forward search; right column: forward search
vs. exhaustive search. Main effect b1 = b2 and epistatic effect b3 both vary
from -1 to 1. The allele frequency pj = 0.3, j = 1, . . . , L.

of marker selection. However, because there is usually a lack of knowledge

of interaction effects from real studies, it is meaningful to compare the search

methods when the marginal association, possibly revealed from different inter-

action patterns, is fixed. Assume the genetic models in (2.1)−(2.3) have the

same marginal association, represented by the heterozygote odds ratio λ at each

causative marker. When the values of λ and the population disease prevalence

p (D) are fixed, we can calculate α and θ (letting θ1 = θ2 in model (2.1)). It is

interesting to study the influence of LD when the true disease-causing loci are

not observed but are linked with genotyped markers. We adopted the squared

correlation coefficient r2 to measure LD (Pritchard and Przeworski (2001)) while

deriving the analytical power calculation to find the linked markers. The as-

sumptions for the fixed marginal effect and the constraints of LD follow Marchini,

Donnelly, and Cardon (2005). Technical details are given in the supplementary

material.
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Figure 4. Power differences with Bonferroni type I error rate α = 0.05, and
with varying main and interaction effects. Power definition (A) is applied
in row 1 and (B) is applied in row 2. Left column: marginal search vs.
exhaustive search; middle column: marginal search vs. forward search; right
column: forward search vs. exhaustive search. Main effect b1 = b2 varies
from -1 to 1 with epistatic effect b3. The allele frequency pj = 0.3, j =
1, . . . , L.

Let λ = 1.5, p (D) = 0.01, n1 = n0 = 2, 000, the MAF pj = 0.05, 0.1, 0.2,

and 0.5, the LD strength r2 = 0.5, 0.7, and 1, the LD constraint p (Ai|A−i) = 1

and p (Ai|a−i) = q, i = 1, 2, where A−i is the disease-causing allele at the

unobserved locus indexed by −i, Ai is the disease allele at the genotyped locus

of marker i, which is in LD with the causative locus −i.

In general, the power definition, genetic model, allele frequency, and sample

size influence the relative performance of search strategies. Under the discovery

number control R = 5, Figure 5 shows the power comparisons for finding the

joint association. Here, marginal search is the best for detecting Model (2.1).

For detecting Models (2.2) and (2.3), exhaustive search is the best and marginal

selection is the worst. The forward search is similar (for detecting Model (2.1))

or better than marginal search (for detecting Models (2.2) and (2.3)). This is

not surprising because Model (2.1) is additive in the log scale of odds, whereas

Models (2.2) and (2.3) are interactive, and accommodate those strategies facili-
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Figure 5. Power of finding the joint association with the discovery number
R = 5. Solid lines, marginal search; dashed lines, exhaustive search; dot-
dashed lines, forward search. The marginal odds ratio at both loci is 1.5,
disease prevalence is 0.01, case and control numbers are both 2,000. Columns
of panels show genetic Models 1, 2, 3, respectively; rows show LD strength
r2 = 0.5, 0.7, and 1. The minor allele frequencies are 0.05, 0.1, 0.2, and 0.5
on the x-axis of each penal.

tated by interaction effects. The increase of MAF shrinks the differences in the

performance of the three model selection methods.

Figure 6 shows the power comparisons in finding either associated marker.

For Model (2.1), marginal selection still performs the best, and forward search

is better than exhaustive search. For Model (2.2), exhaustive search is the most

powerful, while marginal search is better than forward search. Such performance

differences also apply to Model (2.3) with small MAF. However, the rise of MAF

improves the power of marginal search and forward search faster than the power
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Figure 6. Power of finding either associated marker with the discovery
number R = 5. Solid lines, marginal search; dashed lines, exhaustive search;
dot-dashed lines, forward search. The marginal odds ratio at both loci is
1.5, disease prevalence is 0.01, case and control numbers are both 2,000.
Columns of panels show genetic Models 1, 2, 3, respectively; rows show LD
strength r2 = 0.5, 0.7, and 1. The minor allele frequencies are 0.05, 0.1, 0.2,
and 0.5 on the x-axis of each penal.

of exhaustive search, which is the worst with large MAF for Model (2.3). Further-

more, with sample size increasing, exhaustive search increases its power faster

than marginal search and forward search for the interaction Models (2.2) and

(2.3) (see the supplementary material for the figures of a smaller sample size

n1 = n0 = 1, 000). This indicates that exhaustive search has a more stringent

requirement for sample size, but it provides greater potential to detect a small

interactive effect when one has enough observations.

Under the Bonferroni corrected type I error rate control, Figure 7 (or 8)
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shows the power comparisons for finding the joint association Model (or either

associated marker). The genetic parameter set-up is the same as that in Figures

5 and 6. To find the joint association model, Figure 7 shows that exhaustive

search is uniformly the best for all models, over all allele frequencies. Compared

with forward search, marginal search is a more favored method for Model (2.1),

but not for Models (2.2) and (2.3). As shown in Figure 8, marginal search and

forward search are very similar for finding either associated marker. To find

either marker, exhaustive search is the worst for Model (2.1), but the best for

Model (2.2), and for Model (2.3) with small MAF.

We calculated the statistical power of a marginal-exhaustive two-stage method

for finding joint association. The first stage screens single markers at a liberal

type I error control level α1. The second stage then carries out exhaustive search

within the selected set of markers, at a Bonferroni corrected type I error level

α/
(
α1L
2

)
. This method is appealing for its potential of reducing the computa-

tional burden in exhaustive search, while still with high power. Figure 9 shows

the comparisons among the powers of marginal search in finding either or both

associated markers, the power of exhaustive search in finding the joint associa-

tion, and the power of the two-stage method in finding the joint association. The

genetic parameters are the same as those for Figures 5−8. The two-stage method

performs similarly as, or even slightly better than, exhaustive search. However,

this result is valid only under the moderate marginal association that guarantees

a high probability of picking the associated markers in the screening stage. As

shown in Figure 2, it is possible, at least in theory, that the marginal associa-

tion from particular interactions may totally vanish. In this case, the two-stage

method is certainly not able to surpass exhaustive search. Note that we only

used minutes of computational time to analytically calculate power for generat-

ing Figure 9, which reproduces the similar comparison patterns as that shown

by heavy simulations (Figure 2 in Marchini, Donnelly, and Cardon (2005)).

5. Discussion

5.1. Analytical power calculation

To measure the performance of model selection methods, we define power

as the probability of model selection methods to find the models that contain

all or some of associated markers. Therefore, our power definition differs from

the traditional power of a specific model, the latter calculates the probability

to reject the null hypothesis that the covariates have no association with the

response.

The analytical power calculation for marker search strategies offers valuable

tools for GWAS. Because the underlying genetic model is often not known, it

is important to efficiently evaluate power so that researchers can explore a wide
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Figure 7. Power of finding the joint association with Bonferroni type I error
rate α = 0.05. Solid lines, marginal search; dashed lines, exhaustive search;
dot-dashed lines, forward search. The marginal odds ratio at both loci is
1.5, disease prevalence is 0.01, case and control numbers are both 2,000.
Columns of panels show genetic Models 1, 2, 3, respectively; rows show LD
strength r2 = 0.5, 0.7, and 1. The minor allele frequencies are 0.05, 0.1, 0.2,
and 0.5 on the x-axis of each penal.

range of possibilities. Our analytical power calculation significantly reduces the

computational burden of simulations. With sophisticated consideration of LD

and flexible genetic models with or without interactions, the R package enables

researchers to calculate the proper sample size and the statistical power at the

experimental design stage, and investigate the performance of different marker

search strategies at the data analysis stage.

It is generally hypothesized that complex diseases are jointly influenced by

multiple markers with potential interactions. Therefore, we view the underlying



1070 ZHEYANG WU AND HONGYU ZHAO

Figure 8. Power of finding either associated marker with Bonferroni type I
error rate α = 0.05. Solid lines, marginal search; dashed lines, exhaustive
search; dot-dashed lines, forward search. The marginal odds ratio at both
loci is 1.5, disease prevalence is 0.01, case and control numbers are both
2,000. Columns of panels show genetic Models 1, 2, 3, respectively; rows
show LD strength r2 = 0.5, 0.7, and 1. The minor allele frequencies are
0.05, 0.1, 0.2, and 0.5 on the x-axis of each penal.

genetic models as multivariate models with joint effects and interactions, not

as the oversimplified single marker models studied in the literature (Gail et al.

(2008)). The genetic model studied here can be extended to more complex mod-

els with higher order interactions. Moreover, for the multivariate joint marker

models, our study of the distributions and the correlation structures among test

statistics provides the understanding of how joint genetic signals can be picked

up by various statistical model selection procedures.
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Figure 9. Power of four marker search methods controlled by Bonferroni type
I error rate α = 0.05. Dashed lines, marginal search for either association;
Solid lines, marginal search for joint association; long-dashed lines, exhaus-
tive search for joint association; dot-dashed lines, two-stage search for joint
association. The marginal odds ratio at both loci is 1.5, disease prevalence
is 0.01, case and control numbers are both 2,000. Columns of panels show
genetic Models 1, 2, 3, respectively; rows show LD strength r2 = 0.5, 0.7,
and 1. The minor allele frequencies are 0.05, 0.1, 0.2, and 0.5 on the x-axis
of each penal.

5.2. Binary trait versus quantitative trait

Comparing the results obtained here for the binary trait with those for the

quantitative trait (Wu and Zhao (2009)), the patterns of the relative perfor-

mances of marginal search, exhaustive search, and forward search have both

common and distinguishable characteristics. In common, the strength of interac-

tion effect is a key factor to the performance. Both marginal and forward searches
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fail when markers have interactions that mask the marginal effects. Our calcu-

lation shows that this happens when the expectation of marginal test statistics

(such as these in (3.1)) is 0. To find joint genetic association, the strong inter-

action effect benefits exhaustive and the forward search, as they are carried out

in a higher dimensional model space. Also in common is the practical context

in which each marker-search method is preferred. Forward search is not the best

choice in most circumstances, as it is usually matched or outperformed either by

exhaustive search in finding the genetic model, or by marginal search in finding

one of the genetic factors. Exhaustive search is generally recommended for find-

ing the genetic model when interactions are believed to exist. Marginal search

is recommended for finding at least one genetic factor in the preliminary study

of a new trait, because of its simplicity as well as its acceptable power in most

parts of the genetic parameter spaces.

As to distinctions, exhaustive search is relatively more powerful for binary

traits than for quantitative traits, especially in finding the joint association. For-

ward search is relatively less powerful for binary traits than for quantitative

traits, especially in finding at least one associated marker. Based on the analyti-

cal study, this distinction is caused by the correlation between the test statistics

of single-marker model fittings in (2.6), and the test statistics of the extra terms

in (2.7) over (2.6). The correlation is stronger among score test statistics for

binary traits than that among F test statistics for quantitative traits. Thus an

exhaustive search that finds one associated marker has a greater chance to find

the other associated marker for binary traits than for quantitative traits. On the

other hand, if the selected marker at the first step is not associated, it is much

harder for forward search in the second step to discover the associated markers

for binary traits than for quantitative traits.

Another difference is the symmetry of the influence of genetic effects on

power. If the total genetic effect can be represented by b1g1 + b2g2 + b3g1g2, the

search power is the same for quantitative traits when the main effects b1 = b2 = 0

and the interaction effect b3 = ±c. This is because the underlying quantitative

trait genetic model is linear (Wu and Zhao (2009)), and the regression models

have the same goodness-of-fit for signals with opposite directions but the same

magnitude. This is no longer true for binary traits because the total genetic

effects with the same magnitude but opposite directions lead to different disease

risks, as shown in (2.4). Thus, the heat maps in Figures 3-4 are not symmetric.

5.3. The R-control versus the Bonferroni control

We studied two different types of statistical significance controls: the total

discovery number R-control, related to false discovery number or false discovery
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proportion control, and the type I error rate α-control with the Bonferroni ad-

justment. These two have different crucial effects on the power of model selection

methods. First, the α-control is more stringent than R-control, and R-control

leads to higher statistical power. So even if we do not have many “significant”

results with Bonferroni control, we can still include the top ranked genetic vari-

ations into the validation stage with R-control, as long as resources permit. Sec-

ond, because GWAS are mostly used to screen for candidate genes, the type

I error rate control is not the number one aim. R-control is more commonly

adopted in phased designs by researchers who want to control the number of

markers for the follow-up validation study. Third, with Bonferroni control, we

expect more joint associations to be found when applying exhaustive scan in

GWAS data analysis, since Bonferroni control enhances the power superiority of

exhaustive search relative to marginal search, especially for finding joint asso-

ciations. Lastly, for finding either associated marker, R-control favors forward

selection less than marginal search, whereas α-control makes the two methods

very similar.

The widely applied Bonferroni control procedure provides an intuitively sim-

ple rule for model selection. Nevertheless, it does not provide an accurate type I

error rate control for the whole model selection process. For example, if exhaus-

tive search aims to find all associated markers (Marchini, Donnelly, and Cardon

(2005); Evans et al. (2006); Storey, Akey, and Kruglyak (2005); Brem et al.

(2005)), the models with partially associated markers should contribute to the

null distribution. However, the Bonferroni correction procedure only applies χ2
3

as the null distribution, which ignores these ”wrong” models. As for forward

selection, applying type I error rate control in each step does not necessarily lead

to the overall family-wise type I error rate control.

Our power calculation can be extended to more general situations where

more than two genetic factors are involved, with potentially higher-order inter-

actions. For a given genetic model, the asymptotic distributions of the relevant

test statistics can be easily derived by computer because of the general formula

for the score test statistic in (3.2) and the asymptotic results given in Section 3.2.

Nevertheless, the power calculation would be more tedious because of more com-

plicated correlation structures among the test statistics, caused by the various

overlappings of fitted models. Furthermore, more situations need be considered

for the “partially correct” models that contain one or more true SNPs.

Acknowledgement

We are grateful to the Yale University Biomedical High Performance Com-

puting Center and the WPI Computing and Communications Center for compu-

tational support.



1074 ZHEYANG WU AND HONGYU ZHAO

References

Brem, R. B., Storey, J. D., Whittle, J. and Kruglyak, L. (2005). Genetic interactions between

polymorphisms that affect gene expression in yeast. Nature 436, 701–703.

David, H. A. and Nagaraja, H. N. (2003). Order Statistics. Third Edition. Wiley, New York.

Evans, D. M., Marchini, J., Morris, A. P. and Cardon, L. R. (2006). Two-stage two-locus models

in genome-wide association. PLoS Genet 2, e157.

Gail, M. H., Pfeiffer, R. M., Wheeler, W. and Pee, D. (2008). Probability of detecting disease-

associated single nucleotide polymorphisms in case-control genome-wide association stud-

ies. Biostatistics 9, 201-215.

Kraft, P. and Hunter, D. J. (2009). Genetic Risk Prediction – Are We There Yet? N. Engl. J.

Med. 360,1701-1703.

Marchini, J., Donnelly, P. and Cardon, L. R. (2005). Genome-wide strategies for detecting

multiple loci that influence complex diseases. Nat Genet 37, 413-417.

McCarthy, M. I., Abecasis, G. R., Cardon, L. R., Goldstein, D. B., Little, J., Ioannidis, J.

P. A. and Hirschhorn, J. N. (2008). Genome-wide association studies for complex traits:

consensus, uncertainty and challenges. Nature Reviews Genetics 9, 356-369.

Pritchard, J. K. and Przeworski, M. (2001). Linkage disequilibrium in humans: models and

data. Am. J. Hum. Genet. 69,1-14.
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