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Abstract: A practical time series model is proposed with multiple shifts of levels

and volatilities to overcome the intrinsic limitations of hidden Markov models used

to capture change-point type behaviors of data. This model allows the set of level

change points to be different from the set of volatility change points. Least square

methods are then applied to the model to estimate level and volatility change points,

those levels and volatilities. Asymptotic properties of the estimators, including their

consistency, convergence rates and asymptotic distributions, are established under

relatively weak conditions. Some simulations are carried out, showing that this

model, its inference methods, and the asymptotic theory work quite well.
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1. Introduction

Hidden Markov models, first proposed by Baum and Petrie (1966), have been
widely used to model structural changes in econometric contexts and others. See
Goldfeld and Quandt (1973), Hamilton (1989), Engle and Hamilton (1990), and
Rabiner (1989) for examples. One of the hidden Markov models proposed by
Buckle, Haugh, and Thomson (2004) is

Yt = µSt + σStXt (t = 0,±1,±2, . . .)

where the states St form an unobserved stationary Markov chain that takes the
values 1, . . . , N that index the states of the system; the level µSt and the volatil-
ity σSt switch among the N pairs (µ1, σ1), . . . , (µN , σN ) according to St; the
stochastic process Xt is assumed to be a zero mean stationary Gaussian process
with unit variance independent of St, for example, the process AR(1). By using
maximum likelihood, Buckle, Haugh, and Thomson (2004) show that this model
can capture change-point type behavior of means and volatilities in a wide range
of contexts, for example, from GDP growth to asset prices to rainfall. However,
there are some intrinsic limitations to this and other hidden Markov models.
First, simulations in Buckle, Haugh, and Thomson (2004) and other papers show
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that the models may encourage the Markov chain to change states more often
than is suggested by the data. Second, it is difficult to fit the models without
making parametric assumptions about the error terms of the process Xt. How-
ever, contemporary inference for the process Xt, for example the autoregressive
process that Xt may follow, is often nonparametric insofar as the distribution of
the disturbances is concerned; the only parametric part is the structure defining
the way in which the disturbances are built into the process Xt. Third, there
seems to be no way to construct analogues of residuals when using the hidden
Markov model approach. We need residuals to do nonparametric inference, for
example, through simulating the process Yt by resampling the residuals rather
than simulating an assumed distribution of the disturbances.

This paper proposes a practical time series model with multiple changes of
means and volatilities, through which these intrinsic limitations of the hidden
Markov models can be fixed. Assume that observations y1, y2, . . . , yT are gener-
ated by a model of the form

Yt = αt(θ1) + βt(θ2)Xt, t = 0,±1,±2, . . . , (1.1)

where
αt(θ1) = αi if m0

i−1 + 1 ≤ t ≤ m0
i for i = 1, . . . , k + 1;

βt(θ2) = βi if n0
i−1 + 1 ≤ t ≤ n0

i for i = 1, . . . , l + 1;

βt(θ2) is nonnegative, m0
0 = n0

0 = 0, and m0
k+1 = n0

l+1 = T ;

θ1 = (α1, . . . , αk, αk+1,m
0
1,m

0
2, . . . ,m

0
k);

θ2 = (β1, . . . , βl, βl+1, n
0
1, n

0
2, . . . , n

0
l );

Xt is stationary and Xt =
p∑

i=1

aiXt−i + εt +
q∑

i=1

biεt−i;

εt’s are i.i.d. with zero mean and variance σ2
0.

In order to guarantee identifiability of βt(θ2), we constrain it by

T∑
t=1

β2
t (θ2) = C0, (1.2)

where C0 is a priori known constant. This paper shows that change-point type
behaviors of means and volatilities of time series data can be accurately captured
by this model without assumptions about distribution of disturbances εt, and
that residuals can be estimated. In most practice, concerns are about means and
variances of random phenomena. Thus, almost all technical analysis used in the
finance industry and by investors is about the means and variances of financial
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asset prices. Our model simultaneously considers multiple shifts of levels and
volatilities that can happen at two different sets of time points. The model is
then quite general and useful; it can be used to simultaneously capture change-
point type behaviors of levels and volatilities for a wide range of time series in
economics, finance, climatology, sociology, and more.

The rest of this paper is organized as follows. Section 2 provides estimates
of θ1, θ2, and the other parameters defining the model. Section 3 contains results
on the consistency, convergence rates, and asymptotic distributions of estimates
of parameters related to level shifts. Section 4 describes results on the consis-
tency, convergence rates, and asymptotic distributions of estimates of parameters
related to volatility shifts. It also provides brief proofs of some lemmas and the-
orems. Section 5 uses simulations to show that our model, its estimates, and
asymptotic theories work quite well; it also contains some discussions and con-
clusions. Appendix A gives proofs of lemmas and theorems in Section 3.

2. Estimation Methodologies

Change-point problems may be estimated by maximum likelihood or least
squares. Hinkley (1970), Bhattacharya (1987) and Yao (1987) use maximum like-
lihood in their change point problems having independent data. Picard (1985)
uses maximum likelihood to estimate a shift in a Gaussian autoregressive process
with a known order. Yao (1989) and Bai (1994) use least squares to estimate
change points in independent and dependent data, respectively. Unlike maximum
likelihood, least squares does not need to specify the error distribution function
and is computationally much simpler. Least squares also allows a broader spec-
ification of correlation structure in the data than maximum likelihood method
can typically permit. We use least squares to estimate parameters related to the
multiple changes of levels and volatilities. The numbers k and l of change points
of levels and volatilities are assumed to be known; however, they can be conve-
niently estimated by penalized least squares. Note that determination of number
of change points is model selection problem, so various model selection criteria,
such as those based on penalized likelihood, can be put to use. Interested readers
may refer to Yao (1989), Yao (1988), and Schwarz (1978) for the use of penalized
least squares and penalized likelihood in estimating the number of change points.
We employ penalized least squares to estimate the numbers k and l of change
points. Specifically, the estimates of k and l are obtained by minimizing L+αT k

and M + βT l, respectively, where L and M are given at (3.1) and (4.1), αT and
βT are positive and tend to zero as T tends to infinity. There is much literature
on estimating parameters in ARMA processes, see Chapter 8 of Brockwell and
Davis (1991), for example.
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First consider estimation of the means α1, . . . , αk+1 and their shift points
m0

1, . . . ,m
0
k. For any mean change point configuration (m1, . . . ,mk) satisfying

0 = m0 < · · · < mk < mk+1 = T , let

α̃j =
1

mj − mj−1

mj∑
t=mj−1+1

Yt for j = 1, . . . , k + 1. (2.1)

Then estimates m̂1, . . . , m̂k of the mean change points m0
1, . . . ,m

0
k are given by

(m̂1, . . . , m̂k) = argmin
0=m0<···<mk+1=T

k+1∑
j=1

mj∑
i=mj−1+1

(yi − α̃j)2. (2.2)

Replacing m1, . . . ,mk with m̂1, . . . , m̂k in (2.1) gives estimates α̂1, . . . , α̂k+1 of
means α1, . . . , αk+1 by

α̂j =
1

m̂j − m̂j−1

m̂j∑
t=m̂j−1+1

Yt for j = 1, . . . , k + 1. (2.3)

Next consider estimation of the vector parameter θ2 of volatility shifts. Let
σ2 = E(X2

t ). Since β2
t (θ2)σ2 is the mean of (Yt − αt(θ1))2, a similar method

is adopted to estimate θ2 using (Yt − α̂t(θ̂1))2, t = 1, . . . , T . For any volatility
change point configuration 0 = n0 < n1 < · · · < nl+1 = T , let

β̃j =
1

nj − nj−1

nj∑
t=nj−1+1

(Yt − α̂t(θ̂1))2 for j = 1, . . . , l + 1. (2.4)

Then estimates n̂1, . . . , n̂l of volatility change points n0
1, . . . , n

0
l are given by

(n̂1, . . . , n̂l) = argmin
0=n0<···<nk+1=T

l+1∑
j=1

nj∑
i=nj−1+1

[(yi − α̂i(θ̂1))2 − β̃j ]2. (2.5)

Replacing n1, . . . , nl with n̂1, . . . , n̂l in (2.4) gives quantities β̌1, . . . , β̌l+1 as

β̌j =
1

n̂j − n̂j−1

n̂j∑
t=n̂j−1+1

(Yt − α̂t(θ̂1))2 for j = 1, . . . , l + 1. (2.6)

Then we estimate σ2 by

σ̂2 =
1
C0

l+1∑
j=1

(n̂j − n̂j−1)β̌j ,



TIME SERIES WITH MULTIPLE CHANGE POINTS 1669

where n̂0 = 0, n̂l+1 = T. Thus estimate βt(θ2) by

β̂t(θ̂2) =
( β̌i

σ̂2

)1/2
, for n̂i−1 + 1 ≤ t ≤ n̂i, i = 1, . . . , l + 1.

Finally we have the estimated data set X̂t = (Yt−α̂t(θ̂1))/β̂t(θ̂2), t = 1, . . . , T
for the estimations of parameters in the ARMA model that Xt follows. This is
not of interest here.

3. Asymptotic Theory for Mean Shifts

The problem of multiple structural changes and its theory have received some
attention, mostly in the context of regression without any change of variances.
Yao (1989) provides a comprehensive treatment of multiple changes of means,
and uses penalized least squares to estimate their number. Liu, Wu, and Zidek
(1997) consider multiple structural changes in the context of a general threshold
model and propose an information criterion for the selection of the number of
changes. Our analysis of multiple changes of means differs from existing literature
because it is affected by the multiple changes of variances; furthermore, analysis
of multiple variance changes is affected by fourth-order moments having multiple
changes. Because of the multiple changes of variance, direct proofs of Lemmas
1 and 4 are difficult. We use induction, as in Móricz, Serfling, and Stout (1982),
to obtain these important results. Because of the multiple changes of variances,
the results in Sections 4 and 5 require some adjustments not found in existing
literatures. This section builds asymptotic theory concerning mean shifts; the
next section builds asymptotic theory about variance shifts.

Let λ0
i = m0

i /T and λ̂i = m̂i/T for i = 1, . . . , k, and λi = mi/T for 0 <

m1 < · · · < mk < T. Note that the true break fractions λ0
i , i = 1, . . . , k, are

supposed to be constants here. Define m̃ij = [mi−1+1,mi−1+2, . . . ,mi]∩[m0
j−1+

1,m0
j−1 + 2, . . . ,m0

j ], and let mij be the number of observations in {Yt|t ∈ m̃ij},
mi· the number of observations in {Yt|t ∈ [mi−1,mi]}, and m·j the number of
observations in {Yt|t ∈ [m0

j−1, m
0
j ]}. Define

L =
1
T

k+1∑
j=1

mj∑
i=mj−1+1

(yi − α̃j)2 −
1
T

k+1∑
j=1

m0
j∑

i=m0
j−1+1

(yi − αj)2; (3.1)

L1 =
1
T

k+1∑
j=1

k+1∑
i=1

mji(αi − α̃j)2; (3.2)

L2 =
1
T

k+1∑
j=1

k+1∑
i=1

[(−2α̃j

∑
t∈m̃ji

βt(θ2)Xt) − (−2αi

∑
t∈m̃ji

βt(θ2)Xt)]. (3.3)
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It is straightforward to show that L = L1 + L2. The following result is a type of
Hájek-Rényi inequality for this model, and Lemma 2 provides a lower bound for
L1.

Lemma 1. For any 0 ≤ T1 ≤ t1 < t2 ≤ T2 ≤ T , let d(t2, t1) be a positive
function which is non-increasing in t2 and non-decreasing in t1. For any constant
0 ≤ C0 ≤ T2 − T1 − 1, and any δ > 0, there exists a constant C < ∞ such that

Pr

(
max

T1+C0≤t1+C0<t2≤T2

d(t2, t1)
∣∣∣ t2∑

i=t1+1

βi(θ2)Xi

∣∣∣ > δ
)

≤ C
C0 + 1

δ2

T2∑
i=T1+1

d(i, T1)2. (3.4)

Define

α = min
1≤i≤k

|αi+1 − αi|, α = max
1≤i≤k

|αi+1 − αi|, λ = (λ1, . . . , λk);

λ̂ = (λ̂1, λ̂2, . . . , λ̂k), λ0 = (λ0
1, . . . , λ

0
k), 40

λ = min
1≤i≤k

|λ0
i+1 − λ0

i |;

‖λ − λ0‖∞ = max
1≤i≤k

|λi − λ0
i |, ‖λ̂ − λ0‖∞ = max

1≤i≤k
|λ̂i − λ0

i |;

‖α̃ − α‖2
∞ = max

1≤i≤k+1
|α̃i − αi|2.

Lemma 2. There exists a constant C > 0 such that, for all T ≥ 1 and all
0 < m1 < m2 < · · · < mk < T , we have L1 ≥ C‖λ − λ0‖∞.

A first result establishes the consistency of the estimates of mean break
fractions, a second shows that their convergence rates are of order T . Then, with
the convergence rates, we derive the asymptotic distributions of the estimates
(α̂1, . . . , α̂k+1) of means.

Theorem 1. The estimated break fractions of means converge to their true values
in probability, λ̂i

p→ λ0
i for i = 1, . . . , k.

Theorem 2. Suppose that Xt is a stationary ARMA model, then we have for
every η > 0, there exists a positive number δ < ∞ such that, for all large T ,
Pr(|T (λ̂j − λ0

j )| > δ) < η for j = 1, . . . , k.

Theorem 3. Suppose that Xi is stationary ARMA process, then
√

T (α̂j −αj)
d→

Nj(0, υ2
j ), independently in the limit, and where υ2

j is defined at (A.10), j =
1, . . . , k + 1.

When the mean shift is constant independent of T , the results of Hinkley
(1970) and Hinkley and Hinkley (1970) for the i.i.d. case indicate that the limiting
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distribution of the mean break fraction depends on the underlying distribution
of the innovations and also on the mean shift, in an intricate way; the limit
distributions are of little practical use. In order to obtain useful asymptotic
distributions of mean break fractions, consider the following.

Assumption 1. Let δj = αj+1 − αj for j = 1, . . . , k. Then δj → 0 and
T 1/2δj → ∞ as T → ∞, for all j = 1, . . . , k.

Theorem 4. Under Assumption 1, (i) λ̂j
p−→ λ0

j for j = 1, . . . , k. (ii) for every
η > 0, there exists a C < ∞ such that for all large T , Pr(|Tδ2

j (λ̂j −λ0
j )| > C) < η

for j = 1, . . . , k.

The conclusion (i) can be proved in a way similar to Theorem 1, and (ii)
can be proved in a way similar to Theorem 2. We omit these proofs to avoid
repetition.

Let

L3 =
k+1∑
j=1

mj∑
i=mj−1+1

(
αi(θ1) −

1
mj − mj−1

mj∑
t=mj−1+1

αt(θ1)
)2

,

L4 =
k+1∑
j=1

[
1

m0
j − m0

j−1

( m0
j∑

i=m0
j−1+1

βi(θ2)Xi

)2
− 1

mj − mj−1
(

mj∑
i=mj−1+1

βi(θ2)Xi)2],

L5 = 2
k+1∑
j=1

[( m0
j∑

i=m0
j−1

βi(θ2)Xi

)
αj−

( mj∑
i=mj−1+1

βi(θ2)Xi

) 1
mj−mj−1

mj∑
t=mj−1+1

αt(θ1)
]
.

It is then straightforward to show that

TL +
k+1∑
j=1

[
1

m0
j − m0

j−1

(
m0

j∑
i=m0

j−1+1

βi(θ2)Xi)2] = L3 + L4 + L5.

Let

Ωi,1 = lim
T→∞

E[
1

m0
i − m0

i−1

(
m0

i∑
t=m0

i−1+1

[yt − αt(θ1)])2],

Ωi,2 = lim
T→∞

E[
1

m0
i+1 − m0

i

(
m0

i+1∑
t=m0

i +1

[yt − αt(θ1)])2].
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For any i = 1, . . . , k, let Wij(s), j = 1, 2 be two independent standard Wiener
processes defined on [0,∞), starting at the origin when s = 0. Let

Z(i)(s) =

Ω1/2
i,1 Wi1(−s) − |s|

2 , if s ≤ 0

Ω1/2
i,2 Wi2(s) − |s|

2 , if s > 0.

Lemma 3. For j = 1, . . . , k,

δj

m0
j+sjδ−2

j∑
i=m0

j+1

βi(θ2)Xi ⇒ Ω1/2
j,2 Wi2(sj), (3.5)

δj

m0
j∑

i=m0
j−sjδ−2

j

βi(θ2)Xi ⇒ Ω1/2
j,1 Wi1(sj), (3.6)

where 0 ≤ sj ≤ D, a constant, and “⇒” denotes weak convergence in the space
of continuous function on [0, D] equipped with the uniform metric.

Theorem 5. Under Assumption 1, δ2
i (m̂i − m0

i )
d→ argmax s Z(i)(s) for i =

1, . . . , k.

4. Asymptotic Theory for Volatility Shifts

Let τ0
i = n0

i /T and τ̂i = n̂i/T for i = 1, . . . , l, and λi = mi/T for 0 < m1 <

· · · < mk < T. Note that the true break fractions τ0
i , i = 1, . . . , l, are supposed

to be constants here. Define ñij = [ni−1 + 1, ni−1 + 2, . . . , ni] ∩ [n0
j−1 + 1, n0

j−1 +
2, . . . , n0

j ], and let nij be the number of observations in {Yt|t ∈ ñij}, ni· the
number of observations in {Yt|t ∈ [ni−1, ni]}, and n·j the number of observations
in {Yt|t ∈ [n0

j−1, n
0
j ]}. Define

β̃0
j =

1
nj − nj−1

nj∑
i=nj−1+1

β2
i (θ2)X2

i for j = 1, . . . , l + 1;

M =
1
T

l+1∑
j=1

nj∑
i=nj−1+1

[(yi − α̂i(θ̂1))2 − β̃j ]2

− 1
T

l+1∑
j=1

n0
j∑

i=n0
j−1+1

[(yi − α̂i(θ̂1))2 − β2
j σ2]2; (4.1)

M1 =
1
T

l+1∑
j=1

l+1∑
i=1

nji(β2
i σ2 − β̃0

j )2;
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M2 =
1
T

l+1∑
j=1

l+1∑
i=1

[(
−2β̃0

j

∑
t∈ñji

β2
t (θ2)(X2

t −σ2)
)
−

(
−2β2

i σ2
∑
t∈ñji

β2
t (θ2)(X2

t −σ2)
)]

.

With our assumptions, we have

M =
1
T

l+1∑
j=1

nj∑
i=nj−1+1

[(βi(θ2)Xi)2−β̃0
j ]2− 1

T

l+1∑
j=1

n0
j∑

i=n0
j−1+1

[(βi(θ2)Xi)2−β2
j σ2]2+op(1),

so M = M1 + M2 + op(1). The following lemma gives a type of the Hájek-Rényi
inequality for this model, while Lemma 5 provides a lower bound on M1.

Lemma 4. Assume that E(ε3t ) and E(ε4t ) exist for any t. For any 0 ≤ T1 ≤ t1 <

t2 ≤ T2 ≤ T , let d(t2, t1) be a positive function that is non-increasing in t2, and
non-decreasing in t1. For any constant C0 with 0 ≤ C0 ≤ T2 − T1 − 1, and any
δ > 0, there exists a constant C < ∞ such that

Pr

(
max

T1+C0≤t1+C0<t2≤T2

d(t2, t1)|
t2∑

i=t1+1

β2
i (θ2)(X2

i − σ2)| > δ
)

≤ C
C0 + 1

δ2

T2∑
i=T1+1

d(i, T1)2.

Proof. Since E(ε3i ) and E(ε4i ) exist, there exists a constant C1 such that

E[(
t2∑

i=t1+1

β2
i (θ2)(X2

i − σ2))2] ≤ C1(t2 − t1)

for any 0 ≤ t1 < t2 ≤ T . The rest of this proof is similar to that of Lemma 1.

Let

β = σ2 min
1≤i≤l

|β2
i+1 − β2

i |, β = σ2 max
1≤i≤l

|β2
i+1 − β2

i |, τ = (τ1, . . . , τl);

τ̂ = (τ̂1, τ̂2, . . . , τ̂l), τ0 = (τ0
1 , . . . , τ0

l ), 40
τ = min

1≤i≤l
|τ0

i+1 − τ0
i |;

‖τ − τ0‖∞ = max
1≤i≤l

|τi − τ0
i |, ‖τ̂ − τ0‖∞ = max

1≤i≤l
|τ̂i − τ0

i |;

‖β̃0 − β‖2
∞ = max

1≤i≤l+1
|β̃0

i − β2
i σ2|2.

Lemma 5. There exists a positive constant C such that, for all T ≥ 1 and all
0 < n1 < n2 < · · · < nl < T , we have M1 ≥ C‖τ − τ0‖∞.

This proof is similar to that of Lemma 2, and is omitted here.
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A first result establishes the consistency of the estimates of volatility break
fractions, a second shows that their convergence rates are of order T . Then, with
the convergence rates, we derive the asymptotic distributions of the estimates
(β̌1, . . . , β̌l+1) of volatility shifts.

Theorem 6. The estimated break fractions of volatilities converge to their true
values in probability, τ̂i

p→ τ0
i for i = 1, . . . , l.

The proof here is similar to that of Theorem 1, and is omitted here.

Theorem 7. Suppose Xt is a stationary ARMA process. For every η > 0, there
exists a positive number δ < ∞ such that for all large T , Pr(|T (τ̂j − τ0

j )| > δ) <

η for j = 1, . . . , l.

This proof is similar to that of Theorem 2, we omit it here.

Theorem 8. Assume Xi is a stationary ARMA process. Then
√

T (β̌j−β2
j σ2) d→

Nj(0, ν2
j ), independently in the limit, and where ν2

j is defined at (4.2).

Proof. For j = 1, . . . , l + 1, formula manipulations give that

√
T (β̌j − β2

j σ2) =
√

T{ 1
n̂j − n̂j−1

n̂j∑
t=n̂j−1+1

β2
t (θ2)X2

t − 1
n0

j − n0
j−1

n0
j∑

t=n0
j−1

β2
t (θ2)X2

t

+
1

n0
j − n0

j−1

n0
j∑

t=n0
j−1+1

β2
t (θ2)(X2

t − σ2)}

=
√

T
1

n0
j − n0

j−1

n0
j∑

t=n0
j−1+1

β2
j (X2

t − σ2) + op(1).

Let

ν2
j = lim

T→∞
(τ0

j − τ0
j−1)

−1E
[
(n0

j − n0
j−1)

−1
( n0

j∑
i=n0

j−1+1

β2
j (X2

i − σ2)
)2]

. (4.2)

Then methods similar to those in the proof of Lemma 6 can finish the proof.

Assumption 2. If ηj = (β2
j+1 − β2

j )σ2 for j = 1, . . . , l, then ηj → 0 and
T 1/2ηj → ∞ as T → ∞, for all j = 1, . . . , l.

Theorem 9. Under Assumption 2, (i) τ̂j
p−→ τ0

j for j = 1, . . . , l, (ii) for every
η > 0, there exists a C < ∞ such that for all large T , Pr(|Tη2

j (τ̂j −τ0
j )| > C) < η

for j = 1, . . . , l.
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Proof. (i) can be proved similarly to Theorem 1, (ii) can be proved similarly to
Theorem 2. We omit details.

Let

M3 =
l+1∑
j=1

nj∑
i=nj−1+1

(β2
i (θ2)σ2 − 1

nj − nj−1

nj∑
t=nj−1+1

β2
t (θ2)σ2)2,

M4 =
l+1∑
j=1

[ 1
n0

j − n0
j−1

(
n0

j∑
i=n0

j−1+1

β2
i (θ2)(X2

i − σ2))2

− 1
nj − nj−1

( nj∑
i=nj−1+1

β2
i (θ2)(X2

i − σ2)
)2]

,

M5 = 2
l+1∑
j=1

[
(

n0
j∑

i=n0
j−1

β2
i (θ2)(X2

i − σ2))β2
j σ2

−
( nj∑

i=nj−1+1

β2
i (θ2)(X2

i − σ2)
) 1

nj − nj−1

nj∑
t=nj−1+1

β2
t (θ2)σ2

]
.

Under Assumption 2, it is straightforward to show that

TM +
l+1∑
j=1

[ 1
n0

j − n0
j−1

( n0
j∑

i=n0
j−1

β2
i (θ2)(X2

i − σ2)
)2]

= M3 + M4 + M5 + op(1).

Let

Πi,1 = lim
T→∞

E
[ 1
n0

i − n0
i−1

( n0
i∑

t=n0
i−1+1

β2
t (θ2)(X2

t − σ2)
)2]

,

Πi,2 = lim
T→∞

E
[ 1
n0

i+1 − n0
i

( n0
i+1∑

t=n0
i +1

β2
t (θ2)(X2

t − σ2)
)2]

.

For any i = 1, . . . , l, let Wij(s), j = 1, 2 be independent standard Wiener pro-
cesses defined on [0,∞), starting at the origin when s = 0, and let

Q(i)(s) =

Π1/2
i,1 Wi1(−s) − |s|

2 , if s ≤ 0,

Π1/2
i,2 Wi2(s) − |s|

2 , if s > 0.

Lemma 6. Suppose E(ε3t ) and E(ε4t ) exist for any t, and that there is some
constant K2 such that for any interger j, E{(ε2j−σ2

0)
2} = K2σ

4
0. For 0 ≤ sj ≤ D,
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j = 1, . . . , l,

ηj

n0
j+sjη−2

j∑
i=n0

j+1

β2
j+1(X

2
i − σ2) ⇒ Π1/2

j,2 Wj2(sj), (4.3)

ηj

n0
j∑

i=n0
j−sjη−2

j

β2
j (X2

i − σ2) ⇒ Π1/2
j,1 Wj1(sj). (4.4)

Proof. We just give a brief proof because it is similar to that of Lemma 3. First
we have

ηj

n0
j+sjη−2

j∑
i=n0

j+1

β2
j+1(X

2
i − σ2) =

√
Dβ2

j+1

n0
j+(sj/D)(

√
D/ηj)

2∑
i=n0

j+1

ηj√
D

(X2
i − σ2),

so that sj/D ∈ [0, 1]. Using Theorem 3.1.3 in Brockwell and Davis (1991),
Corollary 2 in Truong-Van (1995) gives (4.3). Equation (4.4) can be proved in a
similar fashion.

Next we prove the independence between Wi1 and Wi2. Write ψ∗
j =

∑
i≥j+1 ψi

and X∗
i =

∑+∞
j=0 ψ∗

j εi−j to get Xi = ψ(1)εi−X∗
i +X∗

i−1, where ψ(1) =
∑

j≥0 ψj 6=
0. Then

ηj

n0
j+sjη−2

j∑
i=n0

j+1

β2
j+1(X

2
i − σ2) = ηj

n0
j+sjη−2

j∑
i=n0

j+1

β2
j+1ψ(1)2(ε2i − σ2

0) + op(1),

so Wj2 is determined by εi, i > n0
j . Similarly Wj1 is determined by εi, i ≤ n0

j , so
they are independent.

Theorem 10. Under Assumption 2, η2
i (n̂i − n0

i )
d→ argmax s Q(i)(s) for i =

1, . . . , l.

Proof. A proof is only suggested here since it is similar to that of Theorem
5. Because of (ii) of Theorem 9, we can assume that (n1, . . . , nk) fall into the
configuration

{(n1, . . . , nk)|nj = n0
j + sjη

−2
j , |sj | ≤ Dj , j = 1, . . . , l; }.

By Lemma 6 and the method of proof of Theorem 5, we can show that

M3 →p

l∑
j=1

|sj |, M4 →p 0, M5⇒
∑

j∈{i|si≥0}

2Π1/2
j,2 Wj,2(sj)+

∑
j∈{i|si<0}

2Π1/2
j,1 Wj,1(−sj).
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Therefore it follows from the continuity of the minimization functional that

η2
j (n̂j − n0

j )
d→ argmax

s
Q(j)(s) for j = 1, . . . , l.

5. Simulations and Conclusions

The data set y1, . . . , yT was generated according to the model Yt = αt(θ1) +
βt(θ2)Xt, where

αt(θ1) =


4, if 1 ≤ t ≤ λ0

1T,

8, if λ0
1T + 1 ≤ t ≤ λ0

2T,

2, if λ0
2T + 1 ≤ t ≤ λ0

3T,

6, if λ0
3T + 1 ≤ t ≤ T,

βt(θ2) =


3, if 1 ≤ t ≤ τ0

1 T,

2, if τ0
1 T + 1 ≤ t ≤ τ0

2 T,

5, if τ0
2 T + 1 ≤ t ≤ T,

Xt was the autoregressive process of order 2 (AR(2)) given by Xt = 0.4Xt−1 −
0.04Xt−2 + εt, the ε′ts were i.i.d. N(0, σ0), and C0 = (5τ0

1 − 21τ0
2 + 25)T . Simu-

lations were carried out for two sets of specific values of parameters. Simulation
I took T = 160, λ0

1 = 0.25, λ0
2 = 0.5, λ0

3 = 0.75, τ0
1 = 3/8, τ0

2 = 3/4, σ0 = 1,

and C0 =1,780. After 1,000 replications, we took corresponding averages as the
estimates of means and volatilities and their break fractions; these are listed in
Table B.1 of Appendix B. Simulation II took T = 1,600 and kept the other
parameters unchanged. After 100 replications, we took averages as before; these
are listed in Table B.2 of Appendix B.

Our estimates are easy to implement because they only involve minimizations
of simple functions over a finite number of change point configurations. Simula-
tions suggest that the estimates and asymptotic theory work well for reasonable
sample sizes.

In practice, one might first try to use the penalized least square method
described in Section 2 to estimate the number of change points of means and
volatilities, then apply our model to those data sets to capture their change-
point behavior. One can then proceed to estimate the residuals of the process
Xt and make statistical inferences using resampling techniques.
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Appendix A: Proofs

Proof of Lemma 1. We use induction similarly to Móricz, Serfling, and Stout
(1982). First consider that T2 = T1 + C0 + 1. Since Xi follows a stationary
ARMA process, it follows that

E
(∣∣∣ T1+C0+1∑

i=T1+1

βi(θ2)Xi

∣∣∣)2
≤ C(C0 + 1).

Thus we obtain that

Pr

(
d(T1 + C0 + 1, T1)

∣∣∣ T1+C0+1∑
i=T1+1

βi(θ2)Xi

∣∣∣ > δ
)
≤ C

C0 + 1
δ2

T2∑
i=T1+1

d2(i, T1).

Assume that the result holds for all integers T2 satisfying T1 +C0 +1 ≤ T2 <

N . We will show that the lemma then holds for T2 = N . We have that

Pr

(
max

T1+C0≤t1+C0<t2≤N
d(t2, t1)|

t2∑
i=t1+1

βi(θ2)Xi| > δ
)

≤ Pr

(
max

T1+C0≤t1+C0<t2≤N−1
d(t2, t1)|

t2∑
i=t1+1

βi(θ2)Xi| > δ
)

+Pr

(
max

T1+C0≤t1+C0<N−1
d(N − 1, t1)|

N−1∑
i=t1+1

βi(θ2)Xi| > δ
)

+Pr

(
d(N − 1, N − C0 − 1)|βN (θ2)XN | > δ

)
+Pr

(
d(N − 1, N − C0 − 1)|

N∑
i=N−C0

βi(θ2)Xi| > δ
)

≤ 2C1
C0 + 1

δ2

N−1∑
i=T1+1

d2(i, T1) +
C2

δ2
d2(N − 1, N − C0 − 1)

+C3
C0 + 1

δ2
d2(N − 1, N − C0 − 1)

≤ C
C0 + 1

δ2

N∑
i=T1+1

d2(i, T1),

which completes this proof by induction.

Proof of Lemma 2. We divide the problem into two cases: ‖λ−λ0‖∞ ≤ 40
λ/4,

and ‖λ − λ0‖∞ > 40
λ/4. First assume that ‖λ − λ0‖∞ ≤ 40

λ/4. A change point
mj can be left or right of the true change point m0

j .
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For any j such that λj−1 ≤ λ0
j ≤ λj , by (3.2), we have

L1 ≥
mj,j+1

T
(αj+1 − α̃j)2 +

mjj

T
(αj − α̃j)2

≥ 1
2
(αj+1 − αj)2

mj,j+1

T
=

1
2
(αj+1 − αj)2(λj − λ0

j ).

For any j such that λj ≤ λ0
j ≤ λj+1, by (3.2), we have

L1 ≥
mj+1,j

T
(αj − α̃j+1)2 +

mj+1,j+1

T
(αj+1 − α̃j+1)2

≥ 1
2
(αj+1 − αj)2

mj+1,j+1

T
=

1
2
(αj+1 − αj)2(λ0

j − λj).

Thus, if ‖λ − λ0‖∞ ≤ 40
λ/4, then L1 ≥ C1(α)‖λ − λ0‖∞.

If now ‖λ − λ0‖∞ > 40
λ/4, there clearly exists a pair (i, j) such that mij ≥

T40
λ/4 and mi,j+1 ≥ T40

λ/4. Then we have

L1 ≥
mi,j+1

T
(αj+1 − α̃i)2 +

mi,j

T
(αj − α̃i)2

≥ mijmi,j+1

T (mi,j+1 + mij)
(αj+1 − αj)2 ≥

40
λ

8
(αj+1 − αj)2 = C2(α)40

λ.

Therefore,

L1 ≥ min(C2(α)40
λ, C1(α)‖λ − λ0‖∞) ≥ min(C1(α), C2(α))40

λ‖λ − λ0‖∞.

Proof of Theorem 1. For any δ > 0, we have

Pr(‖λ̂ − λ0‖∞ ≥ δ) ≤ Pr( min
‖λ−λ0‖∞≥δ

L ≤ 0)

≤ Pr( max
‖λ−λ0‖∞≥δ

|L2| ≥ min
‖λ−λ0‖∞≥δ

L1).

It then follows from Lemma 2, (3.2), and (3.3) that

Pr

(
‖λ̂ − λ0‖∞ ≥ δ

)
≤ Pr

(
max

0≤t1<t2≤T

[ 1
(t2 − t1)

∣∣∣( t2∑
t=t1+1

βt(θ2)Xt

)( t2∑
t=t1+1

Yt)|
]
≥ Cδ

4k
T

)

+Pr

(
max

1≤t1<t2≤T

∣∣∣ t2∑
t=t1+1

αt(θ1)βt(θ2)Xt| ≥
Cδ

4k
T

)

≤ Pr

(
max

0≤t1<t2≤T
[

1
(t2 − t1)

(
t2∑

t=t1+1

βt(θ2)Xt)2] ≥
Cδ

8k
T

)
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+Pr

(
max

1≤t1<t2≤T

∣∣∣ t2∑
t=t1+1

βt(θ2)Xt| ≥
C1δ

8k
T

)

+Pr

(
max

1≤t1<t2≤T

∣∣∣ t2∑
t=t1+1

αt(θ1)βt(θ2)Xt| ≥
Cδ

4k
T

)
.

This concludes the proof by Lemma 1, noting that
∑T

i=1 1/T = O(log T ).

Proof of Theorem 2 Because of the consistency of λ̂i for all i, we only need to
consider the change point configurations with nonzero mj,j−1,mjj ,mj,j+1 for all
j. Then we have

L1 =
1
T

k+1∑
j=1

j+1∑
i=j−1

mji(αi − α̃j)2,

L2 =
1
T

k+1∑
j=1

j+1∑
i=j−1

[(−2α̃j

∑
t∈m̃ji

βt(θ2)Xt) − (−2αi

∑
t∈m̃ji

βt(θ2)Xt)].

For any δ > 0, we obtain that

Pr(T‖λ̂ − λ0‖∞ > δ) ≤ Pr( min
‖λ−λ0‖∞>δT−1

L < 0)

≤
k+1∑
j=1

Pr( min
‖λ−λ0‖∞>δT−1

[
2
T

(αj − α̃j)
∑

t∈m̃jj

βt(θ2)Xt +
1

3(k + 1)
L1]<0) (A.1)

+
k+1∑
j=2

Pr( min
‖λ−λ0‖∞>δT−1

[
2
T

(αj−1 − α̃j)
∑

t∈m̃j,j−1

βt(θ2)Xt +
1

3(k + 1)
L1]<0) (A.2)

+
k∑

j=1

Pr( min
‖λ−λ0‖∞>δT−1

[
2
T

(αj+1 − α̃j)
∑

t∈m̃j,j+1

βt(θ2)Xt +
1

3(k + 1)
L1]<0).(A.3)

First consider the probability in (A.2) for general j ∈ [2, . . . , k + 1]. Here
λj−1 < λ0

j−1, otherwise the probability of the term corresponding to j in the
(A.2) is zero by definition. We have that

L1 ≥
m0

j−1 − mj−1

T
(αj−1 − α̃j)2.

Then it follows from Lemma 2 that

L1 ≥ max
(
C‖λ − λ0‖∞,

m0
j−1 − mj−1

T
(αj−1 − α̃j)2

)
.
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If 0 < λ0
j−1 − λj−1 ≤ δT−1, that is, 0 < m0

j−1 − mj−1 ≤ δ, then

Pr( min
‖λ−λ0‖∞>δT−1

[
2
T

(αj−1 − α̃j)
∑

t∈m̃j,j−1

βt(θ2)Xt +
1

3(k + 1)
L1] < 0) (A.4)

≤ Pr(
2
T
|αj−1 − α∗

j | max
1≤m0

j−1−mj−1≤δ
|

m0
j−1∑

t=mj−1+1

βt(θ2)Xt| >

1
3(k + 1)

max(CδT−1,
1
T

(αj−1 − α∗
j )

2)

≤ Pr( max
1≤m0

j−1−mj−1≤δ
|

m0
j−1∑

t=mj−1+1

βt(θ2)Xt| >
Cδ

6(k + 1)
), (A.5)

where α∗
j is the corresponding value of α̃j obtained through minimization at

(A.4), and we have used the fact that max(b/c, ca) ≥
√

bc for a, b, c > 0.

If λ0
j−1 − λj−1 > δT−1, that is, m0

j−1 − mj−1 > δ, then

Pr

(
min

‖λ−λ0‖∞>δT−1

[ 2
T

(αj−1 − α̃j)
∑

t∈m̃j,j−1

βt(θ2)Xt +
1

3(k + 1)
L1

]
< 0

)
(A.6)

≤ Pr

( 2
T
|αj−1 − α∗

j |
∣∣∣ m0

j−1∑
t=m∗

j−1+1

βt(θ2)Xt

∣∣∣ >

1
3(k + 1)

max
(
CδT−1,

m0
j−1 − m∗

j−1

T
(αj−1 − α∗

j )
2
))

≤ Pr

(
max

m0
j−1−mj−1>δ

| 1
m0

j−1 − mj−1

m0
j−1∑

t=mj−1+1

βt(θ2)Xt| >
Cδ

6(k + 1)

)
, (A.7)

where α∗
j and m∗

j−1 are the corresponding values of α̃j and mj−1 obtained through
minimization at (A.6), and we have used the fact that max(b/c, ca) ≥

√
bc for

a, b, c > 0.

Similar methods can be applied to handle the probability terms in (A.3)

for j = 1, . . . , k. When considering the probability in (A.1), we can restrict the

configurations to (m1, . . . ,mk) satisfying mjj > (m0
j − m0

j−1)/2 because of the
consistency of λ̂. Then similar methods can be used to handle the probability

terms. Then the proof follows from Lemma 1.
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Proof of Theorem 3. For j = 1, . . . , k + 1, formula manipulations give that

√
T (α̂j − αj) =

√
T{ 1

m̂j − m̂j−1

m̂j∑
i=m̂j−1+1

yj −
1

m0
j − m0

j−1

m0
j∑

i=m0
j−1

yi

+
1

m0
j − m0

j−1

m0
j∑

i=m0
j−1+1

βi(θ2)Xi}.

It is easy to prove by Theorem 2 that

√
T{ 1

m̂j − m̂j−1

m̂j∑
i=m̂j−1+1

yj −
1

m0
j − m0

j−1

m0
j∑

i=m0
j−1

yi}
p→ 0,

so we just have to consider the limiting distribution of the rest of
√

T (α̂j − αj).
Theorem 3.1.3 in Brockwell and Davis (1991) has that Xt =

∑∞
j=−∞ ψjεt−j ,

where
∑∞

j=−∞ |ψj | < ∞ and
∑∞

j=−∞ ψj 6= 0, ε′ts are I.I.D. with mean zero. Let

υ2
j =

1
λ0

j − λ0
j−1

lim
T→∞

E[
1

m0
j − m0

j−1

(
m0

j∑
i=m0

j−1+1

βi(θ2)Xi)2]. (A.8)

Similar methods to those in Lemma 3 complete this proof.

Proof of Lemma 3. Theorem 2 in Truong-Van (1995) is used to prove this
result. Equation (3.6) can be proved in a way similar to that of (3.5), so we just
prove equation (3.5) here. First we have that

δj

m0
j+sjδ−2

j∑
i=m0

j+1

βi(θ2)Xi =
m0

j+sj/D(
√

D/δj)
2∑

i=m0
j+1

δj√
D

√
Dβi(θ2)Xi,

so that sj/D ∈ [0, 1].
If Fi be the σ-algebra generated by {εj , j ≤ i}, then (δjβi(θ2)Xi,Ft; 1 ≤

i ≤ T, t ∈ Z) is a quasi-stationary sequence of linear processes according to the
definition 2 in Truong-Van (1995). It is easy to check that (H1), (H2), and (H4.1)
are all satisfied for this case, and γ2 defined at (2.8) of Truong-Van (1995) is equal
to Ωj,2. Therefore Theorem 2 in Truong-Van (1995) gives (3.5).

Next we prove the independence between Wi1 and Wi2. Write ψ∗
j =

∑
i≥j+1 ψi

and X∗
i =

∑+∞
j=0 ψ∗

j εi−j , to get Xi = ψ(1)εi−X∗
i +X∗

i−1, where ψ(1) =
∑

j≥0 ψj 6=
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0. Thus

δj

m0
j+sjδ−2

j∑
i=m0

j+1

βi(θ2)Xi = δj

m0
j+sjδ−2

j∑
i=m0

j+1

βi(θ2)ψ(1)εi + δj

m0
j+sjδ−2

j∑
i=m0

j+1

βi(θ2)(X∗
i−1 − X∗

i ),

and it is straightforward to show that

δj

m0
j+sjδ−2

j∑
i=m0

j+1

βi(θ2)(X∗
i−1 − X∗

i )
p→ 0.

So Wi2 is determined by εi, i > m0
j . Similarly Wi1 is determined by εi, i ≤ m0

j ,
hence independent of Wi2.

Proof of Theorem 5. Because of (ii) of Theorem 4, we can assume that
(m1, . . . ,mk) falls into the configuration

{(m1, . . . ,mk)|m0
j − Dδ−2

j ≤ mj ≤ m0
j + Dδ−2

j , j = 1, . . . , k;D > 0}.

For j = 1, . . . , k, mj may fall to the left or the right of m0
j . By symmetry, we

just need to consider the configuration

{(m1, . . . ,mk)|mj = m0
j + sjδ

−2
j , j = 1, . . . , k; 0 ≤ sj ≤ D}.

Since sj ≥ 0 and Tδ2
j → ∞, we have m0

j+1 > mj ≥ m0
j for j = 1, . . . , k.

Under the above configuration, we have

L3 =
k∑

j=1

{
m0

j∑
i=mj−1+1

[αj −
1

mj·
(mjjαj + mj,j+1αj+1)]2

+
mj∑

i=m0
j+1

[αj+1 −
1

mj·
(mjjαj + mj,j+1αj+1)]2}

=
k∑

j=1

mjjmj,j+1

mj·
(αj+1 − αj)2 =

k∑
j=1

m0
j − mj−1

mj − mj−1
sj .

Hence L3 converges to
∑k

j=1 sj since (m0
j − mj−1)/(mj − mj−1) converges to 1.

Under above configuration, we have that

L4 =
k∑

j=1

[ mj,j+1

mj·mjj
S2

jj + (
mjj

mj·mj,j+1
− mj+1,j+1

m·j+1mj,j+1
)S2

j,j+1 −
2

mj·
SjjSj,j+1
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− mj,j+1

m·j+1mj+1,j+1
S2

j+1,j+1 +
2

m·j+1
Sj+1,j+1Sj,j+1

]
,

where Sij =
∑

t∈m̃ij
βt(θ2)Xt. Then

|L4| ≤
k∑

j=1

[ mj,j+1

mj·mjj
S2

jj + |mjj

mj·
− mj+1,j+1

n·j+1
|
S2

j,j+1

mj,j+1

+2|Sj,j+1|(
|Sjj |
mjj

+
|Sj+1,j+1|
mj+1,j+1

) +
mj,j+1

m·j+1mj+1,j+1
S2

j+1,j+1

]
. (A.9)

It follows from mj,j+1/mj· = op(1) and S2
jj/mjj = Op(1) that (mj,j+1/(mj·mjj))

×S2
jj = op(1). Similarly we can have that the other terms in the above equation

is also op(1), so that L4 = op(1).
Algebraic manipulations give

L5 =
k∑

j=1

2(αj+1 −αj)[
mjj

mj·

mj∑
i=m0

j+1

βi(θ2)Xi −
mj,j+1

mj·

m0
j∑

i=mj−1+1

βi(θ2)Xi]. (A.10)

For the first term on the right, we have that

|2(αj+1 − αj)
mj,j+1

mj·

m0
j∑

i=mj−1+1

βi(θ2)Xi|

≤ 2sj

δjT 1/2(λ0
j − λj−1)1/2

[
1

(m0
j − mj−1)1/2

|
m0

j∑
i=mj−1+1

βi(θ2)Xi|] = op(1). (A.11)

It is obvious that mjj/mj· → 1. Therefore (3.5) of Lemma 3 gives that

L5 ⇒
k∑

j=1

2Ω1/2
j,2 Wj,2(sj).

When we consider other configurations with some sj
′s < 0, we similarly have

that

L3
p→

k∑
j=1

|sj |, L4
p→ 0, L5⇒

∑
j∈{i|si≥0}

2Ω1/2
j,2 Wj,2(sj) +

∑
j∈{i|si<0}

2Ω1/2
j,1 Wj,1(−sj).

Therefore it follows from the continuity of minimization functional that

δ2
j (m̂j − m0

j )
d→ argmax

s
Z(j)(s) for j = 1, . . . , k.
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Appendix B: Simulation Results

Table B.1. Change-point simulation I.

Mean Volatility
Comparison mean Break fraction Volatility Break fraction
True value 4 8 2 6 0.25 0.50 0.75 3 2 5 0.375 0.750
Estimate 3.92 8.10 1.95 6.20 0.25 0.50 0.75 3.02 2.02 5.08 0.366 0.766

Table B.2. Change-point simulation II.

Mean Volatility
Comparison mean Break fraction Volatility Break fraction
True value 4 8 2 6 0.25 0.50 0.75 3 2 5 0.375 0.750
Estimate 4.00 8.05 1.98 6.02 0.25 0.50 0.75 3.01 2.00 5.00 0.375 0.752
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