CONSISTENT VARIABLE SELECTION IN ADDITIVE MODELS

Lan Xue
Oregon State University

Supplementary Material

S1. Assumptions

Let \(\{(X_i, Y_i)\}_{i=1}^n \) denote independent pairs, each having the same distribution as \((X, Y)\). The technical assumptions we need are as follows.

(A1) The density function \(f(x) \) of \(X \) is absolutely continuous and compactly supported. Without loss of generality, let its support \(\mathcal{X} = [0, 1]^d \). Also there exists constants \(0 < c_1 \leq c_2 \), such that \(c_1 \leq f(x) \leq c_2 \), for all \(x \in \mathcal{X} \).

(A2) The \(d \) sets of knots denoted as \(k_l = \{0 = x_{l,0} \leq x_{l,1} \leq \cdots \leq x_{l,N_l} \leq x_{l,N_l+1} = 1\}, l = 1, \ldots, d \), are quasi-uniform, that is, there exists \(c_3 > 0 \), such that

\[
\max_{l=1,\ldots,d} \frac{\max_{j=0,\ldots,N_l} (x_{l,j+1} - x_{l,j})}{\min_{j=0,\ldots,N_l} (x_{l,j+1} - x_{l,j})} \leq c_3.
\]

Furthermore, the number of interior knots \(N_l \asymp n^{1/(2p+3)} \), where \(p \) is the degree of the spline and \(\asymp \) means both sides have the same order. In particular, \(h \asymp n^{-1/(2p+3)} \).

(A3) For \(1 \leq l \leq d \), the functions \(\alpha_l \in C^p([0, 1]) \), where \(C^p([0, 1]) \) denotes the space of \(p \)-times continuously differentiable functions on \([0, 1]\).

(A4) The conditional variance function \(\sigma^2(x) = \text{Var}(Y|X = x) \) is bounded on \(\mathcal{X} \).

S2. Auxiliary lemmas

Denote \(\mathcal{M}_{n,0} \subset \mathcal{M}_n \) as

\[
\mathcal{M}_{n,0} = \left\{ m_{n}(x) = \sum_{l=1}^s g_l(x_l); g_l \in \varphi_{l}^{0,n} \right\},
\]

where
which is the approximation space knowing $\alpha_{l0} = 0$, for $l = s + 1, \ldots, d$. To prove Theorem 1, we will make use of two standard least square spline estimators, denoted as $\hat{m}_{n,0}^*$ and \hat{m}_{n}^*, which are the best least square approximation of m_0 in approximation spaces $M_{n,0}$ and M_n respectively. That is, define

$$
\hat{m}_{n,0}^* = \arg\min_{m_{n,0} \in M_{n,0}} \|Y - m_{n,0}\|_n^2, \quad \hat{m}_{n}^* = \arg\min_{m_n \in M_n} \|Y - m_n\|_n^2.
$$

Here we cite some results regarding the standard polynomial spline estimation.

Lemma 1 Under conditions (A1-A4), with $\rho_n = 1/\sqrt{nh} + h^{p+1}$, one has

(i) $\|\hat{m}_{n,0}^* - m_0\|_n = O_p(\rho_n)$, $\|\hat{m}_{n}^* - m_0\|_n = O_p(\rho_n)$.

(ii) $\|\hat{m}_{n,0}^* - m_0\| = O_p(\rho_n)$, $\|\hat{m}_{n}^* - m_0\|_n = O_p(\rho_n)$.

Lemma 1 is the standard results regarding the mean square (or L_2)-convergence rate for standard polynomial spline estimators (e.g. Theorem 1 in Huang 1998).

Lemma 2 Under conditions (A1-A2), as $n \to \infty$, one has

$$
\sup_{\phi_1 \in M_n, \phi_2 \in M_n} \left| \frac{\langle \phi_1, \phi_2 \rangle_n - \langle \phi_1, \phi_2 \rangle}{\|\phi_1\| \|\phi_2\|} \right| = O_p \left(\sqrt{\frac{\log^2(n)}{nh}} \right).
$$

In particular, there exist constants $0 < c < 1 < C$ such that, except on an event whose probability tends to zero as $n \to \infty$, $c \|m_n\| \leq \|m_n\|_n \leq C \|m_n\|, \forall m_n \in M_n$.

Lemma 2 is crucial to prove both Theorem 1 and Theorem 2. It shows that the empirical and theoretical inner products are uniformly close over the approximation space M_n. The general proof of Lemma 2 can be found in Xue and Yang (2006a) or Huang (1998).

Lemma 3 Under condition (A1), let $\delta = (1 - c_1/c_2)^{1/2}$, and $c_4 = (\frac{1-\delta}{2})^{(d-1)/2} > 0$. Then for any $m = \sum_{l=1}^d \alpha_l \in \mathcal{M}$, one has

$$
\|m\| \geq c_4 \sum_{l=1}^d |\alpha_l|.
$$
Lemma 3 is the Lemma 1 in Stone (1985), which implies that the model space \mathcal{M} is essentially identifiable (up to sets of Lebesgue measure zero). That is, for any $m \in \mathcal{M}$, there is essentially a unique additive representation $m = \sum_{l=1}^{d} \alpha_l$, with $\alpha_l \in H^0_l$. The next lemma follows immediately from Lemmas 2 and 3.

Lemma 4 Under conditions (A1-A2), there exists a constant $c_5 > 0$, such that, except on an event whose probability tends to zero, as $n \to \infty$, for any $m_n = \sum_{l=1}^{d} g_l \in \mathcal{M}_n$, with $g_l \in \varphi^0_{l,n}$,

$$\|m_n\|_n \geq c_5 \sum_{l=1}^{d} \|g_l\|_n.$$