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Abstract: We consider selection of nested and non-nested semiparametric models.

Using profile likelihood we can define both a likelihood ratio statistic and an Akaike

information for models with nuisance parameters. Asymptotic quadratic expansion

of the log profile likelihood allows derivation of the asymptotic null distribution

of the likelihood ratio statistic including the boundary cases, as well as unbiased

estimation of the Akaike information by an Akaike information criterion. Our work

was motivated by the proportional hazards mixed effects model (PHMM), which

incorporates general random effects of arbitrary covariates and includes the frailty

model as a special case. The asymptotic properties of its parameter estimate has

recently been established, which enables the quadratic expansion of the log profile

likelihood. For computation of the (profile) likelihood under PHMM we apply three

algorithms: Laplace approximation, reciprocal importance sampling, and bridge

sampling. We compare the three algorithms under different data structures, and

apply the methods to a multi-center lung cancer clinical trial.
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1. Motivation

In recent years random effects models for failure time data have been ap-
plied in various areas: for unobserved heterogeneity, for dependence induced by
clustering in, for instance, familial studies, and in settings where some effects,
such as center effects in a multi-center trial, are best thought of as sampled from
a wider population. The work in this paper, developed under the more general
models with nuisance parameters, was motivated by the random effects models
for failure time data. Like linear and generalized linear models, these random
effects models have provided a natural way to model many within-cluster cor-
relations. For example, Vaida and Xu (2000) showed how such models can be
used to understand institutional variation in outcomes of a multi-center lung
cancer trial conducted by the Eastern Cooperative Oncology Group. The use of
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random effects survival models in clinical trials was also advocated in Glidden
and Vittinghoff (2004), Murray, Varnell, and Blitstein (2004) and Sylvester, van
Glabbeke, Collette, Suciu, Baron, Legrand, Gorlia, Collins, Coens, Declerck and
Therasse (2002). Liu, Blacker, Xu, Fitzmaurice, Lyons and Tsuang (2004a,b),
on the other hand, used variance components to identify the genetic contribution
to the age of onset of alcohol dependence and alcohol abuse. The full power and
flexibility of the random effects models, however, has not yet been extended to
regression methods for right-censored data.

Vaida and Xu (2000) studied the proportional hazards model with mixed ef-
fects (PHMM). It includes the more classical ‘frailty’ models with random effects
on the baseline hazard, but also allows random covariate effects. In this way it
is able to model covariate by cluster interactions, such as treatment effects in a
multi-center clinical trial that depend on the trial centers (see Section 7). The
model is of the form

λij(t) = λ0(t) exp(β′Zij + b′iWij), (1.1)

where λij(t) is the hazard function of the j-th observation from the i-th cluster,
bi is a vector of random effects for the i-th cluster, Zij and Wij are the covariate
vectors for the fixed and random effects, and λ0(t) is the baseline hazard function.
This model contains a multivariate random effect with arbitrary design matrix in
the log relative risk, in a way similar to the linear, generalized linear and nonlinear
mixed models. Vaida and Xu developed the nonparametric maximum likelihood
estimator of the parameters in this model, computed using the EM algorithm and
Markov Chain Monte Carlo (MCMC) methods. Xu, Gamst, Donohue, Vaida and
Harrington (2006) established the asymptotic properties of the nonparametric
maximum likelihood estimator under the model.

As in any regression settings, model selection is an important aspect of data
analysis. In particular, in the applications of model (1.1), it often needs to be
decided whether a random effect term should be incorporated into the model.
From the testing point of view, the null hypothesis is that the corresponding vari-
ance component is zero. Although the standard errors of the estimated variance
components are obtained in Vaida and Xu (2000), they cannot be used directly
for testing zero variance components, because the null hypothesis lies on the
boundary of the parameter space. Gray (1995) and Commenges and Andersen
(1995) proposed a score test of homogeneity for this purpose. In this paper we
develop a likelihood ratio test that allows arbitrary testing on the mixed model,
so that a data analyst could test for the significance of a specified subset of the
random and/or fixed effects.

Another approach to model selection is via information criteria (Linhart and
Zucchini (1986)), which easily handles the comparison of non-nested models. The
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Akaike information criterion (AIC; Akaike (1973), deLeeuw (1992) and Burnham
and Anderson (2002)) is the most commonly used in practice. It has a simple
interpretation as a penalized log-likelihood, and it has an information-theoretic
foundation. Under the Cox model with no random effects, an AIC has been used
in association with the partial likelihood (Verweij and van Houwelingen (1995)).
However, partial likelihoods do not universally exist for semiparametric models;
in particular, strictly speaking it does not apply to PHMM (1.1). During the
revision of this paper, a referee alerted us to the forthcoming paper of Claeskens
and Carroll (2007) which also uses a profile AIC in the semiparametric context.

For model selection concerning right-censored failure time data, Cai, Fan,
Li and Zhou (2005) provided a rather complete review; see references therein.
Selection methods for modeling multivariate failure time data are still under-
developed. Fan and Li (2002) applied non-concave penalized likelihood to Cox
model with frailties. Cai (1999) developed generalized likelihood ratio to test
marginal models in multivariate failure time data, and Cai et al. (2005) proposed
a penalized pseudo-partial likelihood method for marginal models in multivariate
failure time data.

In this paper we consider both the likelihood ratio test and an Akaike infor-
mation criterion (AIC) for model selection in the presence of nuisance parameters.
They turn out to be derived from the same asymptotic expansion of a log profile
likelihood. They also share the same computational algorithm. In the next sec-
tion we review the proportional hazards mixed model and the profile likelihood
function. We consider the profile likelihood ratio test in Section 3, including test-
ing on the boundary. In Section 4 we develop an AIC using the profile likelihood.
We consider three algorithms to compute the maximized (profile) likelihood un-
der PHMM in Section 5. Simulation studies are carried out in Section 6, and an
application is shown in Section 7 to illustrate the methods. Section 8 contains
some further discussion.

2. PHMM and Profile Likelihood

2.1. Proportional hazards mixed model

Assume that the data consist of possibly right-censored event time observa-
tions from n clusters, with ni observations in each cluster, i = 1 . . . n. Within
a cluster the observations are dependent, but conditional on the cluster-specific
d × 1 vector of random effects bi, the survival times Tij are independent and
follow the proportional hazards model (1.1). In (1.1), Wij is often a subset of
Zij apart from possibly a ‘1’ which represents the cluster effect on the baseline
hazard. To insure identifiability, we assume that E(bi) = 0; for distribution of
the random effects we assume that

bi
iid∼ N(0, Σ),



822 RONGHUI XU, FLORIN VAIDA AND DAVID P. HARRINGTON

as in Vaida and Xu (2000). The multinormal distribution has attractive statis-
tical properties: it is symmetric, scale invariant, and consistent with the usual
setup in other typical mixed-effects scenarios (linear, non-linear, and generalized
linear mixed models). In contrast, the commonly used gamma distribution, al-
though computationally attractive, is not scale-invariant. This means that it is
not suitable as a distribution for the random effects of arbitrary (continuous) co-
variates: if eb is gamma-distributed, ebW no longer belongs to the gamma family
in general.

The data from subject j in cluster i can be written yij = (Xij , δij , Zij ,Wij),
where Xij is the possibly right-censored failure time and δij is the failure-event
indicator. Let yi = (yi1, . . . , yini) be the data for cluster i. Conditional on
the random effects, the observations from the same cluster are assumed to be
independent. The clusters are assumed to be i.i.d. (Xu et al. (2006)).

For cluster i, conditional on the random effect bi, the log-likelihood is

li = li(β, λ0; yi|bi) =
ni∑

j=1

{
δij log λ0(Xij)+δij(β′Zij+b′iWij)−Λ0(Xij)eβ′Zij+b′iWij

}
,

where Λ0(t) =
∫ t
0 λ0(s)ds. We rewrite the parameter for the baseline hazard

in the following as λ, to be consistent with the general semiparametric model
framework that we use. The likelihood of the observed data is then

L(θ) =
n∏

i=1

∫
exp(li)p(bi|Σ)dbi, (2.1)

where θ = (β,Σ, λ) and p(·) is the distribution of the random effects, assumed
multinormal. Usually no closed-form expression is available for L(θ) and its
calculation involves d-dimensional integration.

2.2. Profile likelihood

We discuss the profile likelihood in the general context of semiparametric
models, using the quadratic expansion of Murphy and van der Vaart (2000).
Assume that the data consists of a random sample of n observations, y1, . . . , yn,
from a distribution depending on parameters φ and λ. We assume that φ ∈ Φ, a
subset of Rp, and λ is a nuisance parameter, possibly of infinite dimension. The
log-likelihood of the data is l(φ, λ) =

∑n
i=1 li(φ, λ), and li is the log-likelihood

for yi. The log profile likelihood function for φ, with the nuisance parameter λ

‘profiled out’, is
pl(φ) = sup

λ
l(φ, λ). (2.2)

Following Murphy and van der Vaart (2000), under suitable conditions the log
profile likelihood behaves as a quadratic function asymptotically; i.e., for any
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random sequence φn such that ‖φn − φ0‖ = Op(1/
√

n), where φ0 is the true
parameter value,

1
n

{
pl(φn) − pl(φ0)

}
= (φn − φ0)′A − 1

2
(φn − φ0)′I(φn − φ0) + op

( 1
n

)
. (2.3)

Here A =
∑n

1 s(yi)/n, s is the efficient score for φ, i.e., the ordinary observed
score function minus its orthogonal projection onto the closed linear span of
the score functions for the nuisance parameter λ, and I, its covariance matrix,
is the efficient Fisher information matrix (Murphy and van der Vaart (2000)
and Severini and Wong (1992)). We derive the results of this paper for models
that satisfy (2.3). Note that (2.3) is used for theoretical purposes only: the
computation of the likelihood ratio test is discussed separately in Section 5.

Under PHMM the parameter of interest is φ = (β,Σ), whereas the baseline
hazard λ is seen as a nuisance parameter. Asymptotic normality, recently estab-
lished in Xu et al. (2006), of the nonparametric maximum likelihood estimator
implies that the likelihood surface is asymptotically quadratic near the true pa-
rameter value, which in turn implies that the same holds for the profile likelihood
(Murphy and van der Vaart (2000) and Li (2000)). The asymptotic properties
of the maximum likelihood estimate have also been established for the gamma
frailty models (Murphy (1994, 1995) and Parner (1998)). Maple, Murphy and
Axinn (2002) verified empirically that the contours of the profile likelihood under
the multinormal PHMM are elliptic.

3. Semiparametric Likelihood Ratio Test

The likelihood ratio statistic for two nested parametric models, when the
parameter space of the smaller model lies entirely in the interior of that of the
larger model, has a chi-squared distribution with the number of degrees of free-
dom equal to the difference of those of the two models. For a semiparametric
model such as (1.1), the number of degrees of freedom of the model itself is not
well defined, since there is at least one infinite dimensional parameter. Also the
maximum likelihood ratio statistic in general may not exist in nonparametric
and semiparametric setting (Fan, Zhang and Zhang (2001) and Fan and Huang
(2005)). However, if the infinite dimensional parameter is a nuisance parameter,
then under certain conditions the likelihood ratio statistic can be defined via the
profile likelihoods, with the number of degrees of freedom calculated using the
finite dimensional parameters.

For two nested models, let Θ be the parameter space under the larger model
and Θ0 the parameter space under the smaller model or, equivalently, under the
null hypothesis H0. We assume that H0 places no restrictions on the nuisance
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parameter λ. Write L for the likelihood, and let

LR =
supΘ0

L(φ, λ)
supΘ L(φ, λ)

.

Then LR is the ratio of the maximized likelihoods under the two models. The
above can also be viewed as the ratio of the maximized profile likelihoods, with
the nuisance parameter λ ‘profiled out’. So

−2 log LR = −2
{

sup
Φ0

pl(φ) − sup
Φ

pl(φ)
}

,

where Φ0 and Φ are the corresponding parameter spaces for φ under the two
models. Murphy and van der Vaart (2000) showed that as result of the quadratic
expansion (2.3), when φ0 lies in the interior of the parameter space, the maximum
likelihood estimator of φ is asymptotically normal, and the profile likelihood ratio
test for H0 : φ = φ0 has asymptotically a chi-squared distribution with degrees of
freedom equal to the dimension of φ under the null hypothesis H0. We note that
for a class of varying-coefficient partially linear models, Fan and Huang (2005)
developed a profile likelihood ratio test using a profile least-squares estimator
which is not the maximum likelihood estimator.

3.1. Testing on the boundary

The challenging problem in hypothesis testing under model (1.1) is when
the null hypothesis lies on the boundary of the parameter space, such as testing
against zero variances of the random effects. We show in the following that the
asymptotic expansion (2.3) enables us to obtain results on the null distribution
of the profile likelihood ratio statistic similar to those in Self and Liang (1987)
on maximum likelihood estimators and likelihood ratio tests under nonstandard
conditions. We note that Vu and Zhou (1997) generalized Self and Liang (1987)
results to nonidentically distributed random variables and a class of estimating
functions.

First we obtain a result, similar to that of Theorem 1 in Self and Liang (1987),
on the

√
n-consistency of the maximum (profile) likelihood estimator when φ0 is

on the boundary of Φ, given that the same holds when φ0 lies in the interior of
Φ.

Theorem 1. Given the quadratic expansion (2.3), with probability tending to 1
as n → ∞, there exists a sequence of points in Φ, φ̂n, at which local maxima of
pln(φ) occur, that converges to φ0 in probability. Moreover,

√
n(φ̂n−φ0) = Op(1).

See the Appendix for a proof. Note that the proof only requires (2.3) to hold
in the interior of the parameter space.
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Expression (2.3) is equal to

1
2
A′I−1A − 1

2
{zn − (φn − φ0)}′I{zn − (φn − φ0)} + op

(
1
n

)
,

where zn = I−1A. Therefore the same representation of the asymptotic distri-
bution of −2 log LR as those of Chernoff (1954) and Self and Liang (1987) is
obtained, which can then be used to calculate the null distribution of the likeli-
hood ratio statistics. Specifically, assume that Φ and Φ0 are regular enough to
be approximated by cones with vertices at φ0 (for definitions, see Self and Liang
(1987) or Chernoff (1954)).

Theorem 2. Let Z be a random variable with a multivariate Gaussian dis-
tribution with mean φ and covariance matrix I−1(φ0), and let CΦ and CΦ0 be
non-empty cones approximating Φ and Φ0 at φ0, respectively. Then the asymp-
totic distribution of the likelihood ratio statistic, −2 log LR, is the same as the
distribution of the likelihood ratio test of φ ∈ CΦ0 versus φ ∈ CΦ based on a single
realization of Z when φ = φ0.

3.2. Likelihood ratio test under PHMM

The above representation only involves the finite dimensional parameter φ
under the PHMM, so for the cases of null distributions considered by Self and
Liang, or by Stram and Lee (1994, 1995) for linear mixed effects models, the
results are exactly the same.

In the following we list the cases which are the most likely to be encountered
in practice. Recall that d is the dimension of b.

Case 1. d = q + 1 and

Σ =
(

Σ11 σ12

σ12 σ22

)
,

where Σ11 is q × q and q ≥ 0. The asymptotic null distribution of −2 log LR
for testing H0 : σ22 = 0 against Σ positive semidefinite is (χ2

q + χ2
q+1)/2. When

q = 0, the distribution is a 50:50 mixture of a point mass at 0 and χ2
1; note that

in this case the maximum likelihood estimator of the variance components has a
positive probability of being zero. Our Case 1 corresponds to Cases 1-3 of Stram
and Lee (1994).

Case 2. Same as in Case 1, but the test also includes a r-dimensional subvector of
fixed effects, β1, i.e., H0 : σ22 = 0, σ12 = 0, β1 = 0 against Σ positive semidefinite
and β1 6= 0. The asymptotic distribution of −2 log LR is (χq+r + χq+r+1)/2.

Case 3. d = q + k and

Σ =
(

Σ11 Σ12

Σ′
12 Σ22

)
,
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where Σ11 is q×q and Σ22 is k×k. The asymptotic null distribution of −2 log LR

for testing H0 : Σ22 = 0 against Σ positive semidefinite is a mixture of χ2

distributions with degrees of freedom s, s+1, . . . , s+k, where s = kq+k(k−1)/2.
This corresponds to Case 4 of Stram and Lee (1994, 1995). The minimum

number of degrees of freedom of Stram and Lee (1994, 1995) is, however, in
error. To see why the correct mixture is the one we stated above, write Σ =
diag(σ)R diag(σ), where σ is the vector of standard deviations and R = (ρij) is
the correlation matrix. Testing Σ22 = 0 is equivalent to testing σq+1 = · · · =
σq+k = 0. The result then follows along the lines of Case 7 of Self and Liang
(1987). The mixing probabilities, however, are not directly available in general,
and simulation methods may be used to estimate the mixing probabilities, or to
estimate the null distribution itself. See Self and Liang (1987) and Stram and
Lee (1994) for further discussion.

If, in addition, the condition β1 = 0 is part of the null hypothesis, then the
asymptotic distribution of −2 log LR is a χ2 mixture with degrees of freedom
s + r, . . . , s + r + k.

Case 4. Another model of interest has Σ12 = 0 and Σ22 is diagonal. Similarly to
Case 3, the asymptotic null distribution for testing Σ22 = 0 is a χ2 mixture with
degrees of freedom 0 through k.

Remark. The above asymptotic results are obtained under the assumption that
the number of clusters, n, goes to infinity. For small n, the approximation by
the mixture distributions given above may not be accurate. Crainiceanu and
Ruppert (2004) showed that, for balanced linear one-way ANOVA with a single
variance component, the mass at zero is larger than 0.5 when n is finite. See also
Greven, Crainiceanu, Peters and Kuechenhoff (2007). We further discuss this
issue in the simulation section.

4. Profile Akaike Information

In this section we construct the Akaike information and its associated crite-
rion, AIC, for models with nuisance parameters. Since the relevant quantity is the
profile likelihood, we term the criterion profile AIC. The development parallels
that of the standard AIC.

Consider a family of models M parameterized by θ = (φ, λ), where φ ∈ Φ is
again the parameter of interest, and λ ∈ Λ is the nuisance parameter. The view
we take here, similar to Claeskens and Hjort (2003), is that we are interested
in selecting the ‘φ part’ of the modeling, while leaving the parameter space Λ
the same across all competing models. In this way, for model selection purposes,
M is really indexed by φ alone. Assume that the data vector y, consisting of n

independent observations y1, . . . , yn, is generated by a distribution with density f .
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The classical ‘distance’ from the true distribution f to a member gθ = g(·|φ, λ) of
M is given by the Kullback-Leibler information (KL), KL(f, gθ) = Ef{log f(y)−
log gθ(y)}. When the focus is on φ alone, the relevant distance is that between f

and the subfamily of models {gφ,λ : λ ∈ Λ} : minλ∈Λ KL(f, gφ,λ). Suppose that
the minimum is attained at some λ = λ̃(φ) for each φ. Following Severini and
Wong (1992), λ̃(φ) is in fact a least favorable curve under smoothness conditions
(see also Fan and Wong (2000)). We write gφ = g(·|φ, λ̃(φ)). Ignoring the
constant term E{log f(y)} in KL(f, ·), we have that

E{log gφ(y)} = max
λ

E{log gφ,λ(y)};

the expectations here and in the rest of this section are with respect to the true
distribution f . Therefore gφ is the theoretical equivalent of the profile likelihood.

Minimum KL is attained at φ0 such that KL(f, gφ0) = minφ KL(f, gφ) or,
equivalently,

E{log gφ0(y)} = max
φ

E{log gφ(y)}.

Then gφ0 is the best approximation to f within the family of models M. When
the model is correct, we have f = gφ0 . In practice φ0 is estimated by φ̂(y) which
maximizes the profile likelihood:

pl(y|φ̂) = max
φ

pl(y|φ) = max
φ,λ

log g(y|φ, λ).

Note that (φ̂, λ̂) is the MLE for (φ, λ). The predictive value of pl(·|φ̂) is given by
the expected KL for predicting new data y∗, independent of but from the same
distribution as y. We define the profile Akaike Information as

pAI = −2Ef(y)Ef(y∗){pl(y∗|φ̂(y))}. (4.1)

It is important to note that pl(y∗|φ̂(y)) in (4.1) is different from the log-likelihood
function computed at the MLE (φ̂, λ̂), since it allows maximizing the likelihood
over λ based on the new data y∗.

It is well-known that the ‘apparent’ estimate −2pl(y|φ̂(y)) is biased for pAI.
The following result shows that a profile AIC provides an approximately unbiased
estimator, where the number in the bias correction term is p, the dimension of
φ.

Theorem 3. Assume that (2.3) holds and that f = g(.|θ0), with θ0 in the interior
of the parameter space. Further, assume that y, y∗ consist of n i.i.d. vectors,
and φ̂ is consistent for φ0. Then

pAIC = −2pl(y|φ̂(y)) + 2p (4.2)
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is an approximately unbiased estimator of pAI, in the sense that pAI = E(pAIC)
+E(r), where r = op(1) as n → ∞. If in addition r is uniformly integrable, then
E(r) = o(1), and pAIC is asymptotically unbiased for pAI.

See the Appendix for a proof.

Note that we assume that the family of models under consideration contains
the operating model f , so that the parameters lie in the interior of the parameter
space. This is generally the case in the theory of AIC. Incidentally, for model se-
lection, this avoids the boundary problem encountered in likelihood ratio testing
for nested models, since the AIC is computed assuming that the model in each
case holds. We also noted earlier that with new data y∗ the profile likelihood
function at φ̂(y) is not the same as the likelihood function at the MLE based
on data y. However, the observed profile likelihood in (4.2) is the same as the
maximized likelihood at θ̂. The correction term, 2p, depends on the definition of
the parameter of interest. In particular, if λ has finite dimension q, the classic
AIC for θ = (φ, λ) is −2l(θ̂)+2(p+ q), while the profile AIC for φ is −2l(θ̂)+2p.

As with the standard AIC, the model with the smaller pAIC is preferred.
Note however that pAIC (as well as the AIC) is subject to statistical error, and
the ranking of pAIC’s may not reflect the ranking of the pAI’s for a set of models
under consideration. In practice, a difference of greater than 2 is considered
evidence in favor of the model with the smaller AIC (Burnham and Anderson
(2002)). For a rigorous theory on the difference in AIC’s, see Vuong (1989).

4.1. Profile AIC for PHMM

The PHMM was our original motivation for developing the profile AIC. When
the focus is on the fixed effects β and the variance components Σ, the pAIC is
given by (4.2), where p counts the number of parameters in β and Σ. Computa-
tion of the likelihood term in (4.2) is addressed in the next section.

As a special case, when there are only fixed effects in the proportional hazards
model, the profile AIC is also given by (4.2), where p is the dimension of the
regression parameter β. The profile likelihood in this case is equivalent to the
partial likelihood (Cox (1975) and Murphy and van der Vaart (2000)). This
AIC has been previously used, for example, by Verweij and van Houwelingen
(1995), although no formal justification has been given as an unbiased estimate
of a defined Akaike information. Murphy and van der Vaart (2000) verified
the conditions for the quadratic expansion (2.3) in this case. The validity of
this AIC as an unbiased estimate of an Akaike information can also be shown
directly, using the facts that asymptotically the partial likelihood score has zero
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expectation, and the second derivative of the log partial likelihood gives the
observed information for β̂ (Andersen and Gill (1982)).

5. Computing the Likelihood under PHMM

For the PHMM we computed θ̂ using an EM-type algorithm (Vaida and
Xu (2000)). Briefly, at the E-step the expectation of the full (not partial) log-
likelihood, conditional on the random effects, is computed via Monte Carlo simu-
lation using a Gibbs sampler. Then the M-step maximization proceeds as in the
standard Cox model with an offset, and the baseline hazard function is replaced
by Breslow’s estimator. The standard errors of the parameters are computed via
Louis’ formula. Several alternative fitting algorithms are discussed in Cortiñas-
Abrahantes, Legrand, Burzykowski, Janssen, Ducrocq, and Duchateau (2007)
and the references therein.

To compute the likelihood ratio statistic and the pAIC, only the maximum
of the full likelihood function given in (2.1) is needed, since pl(φ̂) = log L(θ̂).
The likelihood function (2.1) is, in general, an intractable integral of dimension
d. Here we consider three methods for computing l(θ̂) = log L(θ̂): Laplace ap-
proximation, reciprocal importance sampling (RIS, Gelfand and Day (1994)),
and bridge sampling (BS, Meng and Wong (1996)). Laplace approximation is
computationally simple, but it is less accurate when ni, the number of observa-
tions per cluster, is small. RIS and BS provide a numerically unbiased estimator
for l(θ̂) regardless of ni, at a computational price. We compare the performance
of the three methods in simulations and data analysis.

In the following we write b = (b′1, . . . , b
′
n)′ and y = (y′1, . . . , y

′
n)′.

Laplace approximation. This general method of computing integrals (see
e.g., Tierney and Kadane (1986)) is based on a normal approximation to the
posterior distribution of the non-normalized integrand in (2.1), p(yi)p(bi|yi), and
is justified asymptotically, as ni → ∞. The approximation for cluster i is given
by

l
(i)
L =

(d

2

)
log(2π) +

(1
2

)
log |V̂i| + log p(yi|b̂i, θ̂) + log p(b̂i|Σ̂), (5.1)

where b̂i = E(bi|yi, θ̂) and V̂i = Var (bi|yi, θ̂) are the posterior mean and vari-
ance of the random effects (DiCiccio, Kass, Raftery and Wasserman (1997)). We
compute b̂i and V̂i using MCMC sample averages after convergence of the EM
algorithm. Alternatively, b̂i, V̂i can be taken as the posterior mode and inverse
negative curvature of p(bi|yi, θ̂), respectively. We compute the Laplace approxi-
mation separately for each cluster, and let

lL =
n∑

i=1

l
(i)
L =

(nd

2

)
log(2π) +

(1
2

)
log |V̂ | + log p(y|b̂, θ̂) + log p(b̂|Σ̂),
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where b̂ = E(b|y, θ̂) and V̂ = Var (b|y, θ̂). Note that Ripatti and Palmgren (2000)
and Therneau and Grambsch (2000) used Laplace approximation for estimation
of θ in PHMM.

Reciprocal importance sampling. Let p0(b) be the density of a fully
specified approximating distribution to p(b|y, θ̂), for example, the normal density
p0(b) from N(b̂, V̂ ). If b(1), . . . , b(M) is a MCMC sample from p(b|y, θ̂), then the
reciprocal importance sampling estimator of l(θ̂) is

lR = lL − log A, (5.2)

where

A =
1
M

M∑
k=1

exp{v(b(k))}, (5.3)

v(b) = lL + log p0(b) − log p(y, b|θ̂). (5.4)

For numerical accuracy, the computations are done on the logarithmic scale as
in (5.4). Theoretically, lL can be omitted in (5.4), in which case lR = − log A.
However, using the Laplace approximation lL as a “point of reference” in (5.4)
greatly improves the numerical accuracy of lR. A simple probabilistic argument
shows that indeed A in (5.3) is a Monte Carlo unbiased estimator of exp{lL−l(θ̂)};
see Gelfand and Day (1994) for details.

The sampling and computation for lR are straightforward to implement. The
following result shows that in practice it is more efficient to compute lR separately
for each cluster.

Proposition 1. Assume that lR is computed as in (5.2) over the whole dataset,
and l̃R =

∑n
i=1 l

(i)
R , where l

(i)
R = l

(i)
L − log Ai, l

(i)
L is given by (5.1), and Ai =∑

k exp{v(b(k)
i )}/M . Put Ã =

∏n
i=1 Ai, so that l̃R = lL − log Ã. Then both l̃R

and lR converge to l(θ̂) with probability one, and the sampling variance of A is
at least as large as the sampling variance of Ã.

See the Appendix for a proof.

Bridge sampling. Assume that the Monte Carlo samples b(1), . . . , b(M)

from p(b|y, θ̂) and u(1), . . . , u(M0) from p0(b) are available, where p0(b) is a fully
specified approximation to p(b|y, θ̂), as described for RIS above. The bridge
sampling (Meng and Wong (1996)) estimator for l(θ̂) is given by

lB = log(B) − log(C) + lL,

where
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B =
1

M0

M0∑
k=1

[
1 + exp{v(u(k))}

]−1
, (5.5)

C =
1
M

M∑
k=1

[
1 + exp{−v(b(k))}

]−1
. (5.6)

It is again more efficient to compute lB separately for each cluster and then
combine the results, as in Proposition 1.

6. Simulation Experiments

In this section we report on simulations to compare the accuracy of the three
methods described in Section 5 for calculating the likelihood values, and we study
the finite sample distribution of the likelihood ratio statistic.

We first simulated data under model (1.1) with a single binary covariate
Z, β = 1.5, λ0(t) = 1, and no random effects. The censoring distribution was
Uniform (0, τ), where τ was chosen to achieve about 15% censoring. We then
fit model (1.1) with a random intercept, i.e., λij(t) = λ0(t) exp(βZij + bi). Dif-
ferent combinations of numbers of clusters and cluster sizes (n × ni) were used;
for each case 100 simulations were carried out. In Figure 1 the likelihood ratios
are computed using the three methods described in the last section. We see that
reciprocal importance sampling (RIS) and bridge sampling (BS) have extremely
close agreement in computing the likelihood (ratio) for all cases. As suggested
by a referee, we also compared the three computational methods with a direct
numerical solution, namely, Gaussian-Hermite quadrature. In all cases, quadra-
ture gave overlaying plots on top of RIS and BS; for illustration purposes we only
plot them for the case of 10×20 in Figure 1. For the number of observations per
cluster ni = 20 Laplace approximation gave similar results to RIS and BS. For
ni = 2, however, there were discrepancies between Laplace approximation and
RIS or BS. The discrepancies increased with the number of clusters n since the
log likelihood is the sum of that from each cluster, and the overall discrepancies
are the sums of the discrepancies from each cluster.

In Figure 1 we plot the ordered likelihood ratio statistics from 100 simulations
versus the theoretical mixture distribution quantiles. The asymptotic results for
the null distribution of the likelihood ratio statistic requires that the number of
clusters n → ∞. For n = 100 (second row) we compare the empirical distribution
of the likelihood ratio statistic with its asymptotic distribution given in Case 1
of Section 3.2, i.e., a 50:50 mixture of point mass at zero and χ2

1. In Figure 1 ‘p0’
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Figure 1. Q-Q plots of likelihood ratio statistics from simulated data for
testing H0: λij(t) = exp(βZij) versus H1 : λij(t) = exp(βZij + bi). The
theoretical mixture distribution is p0 : (1−p0) mixture of point mass at zero
and χ2

1.

denotes the probability of point mass at zero. For n = 10 (first row) the asymp-
totic distribution does not appear to provide good approximation, and we use
the result of Crainiceanu and Ruppert (2004) on linear mixed models (balanced
one-way ANOVA) as a guideline, i.e., a 65:35 mixture of point mass at zero and
χ2

1. Note that their result requires the cluster size ni → ∞ while keeping the
number of clusters n fixed.

There is a clear effect of the number of observations per cluster on the null
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Table 1. Error rates of nominal 0.05-level likelihood ratio test and AIC.
Sample size Likelihood ratio pAIC+

Laplace RIS BS Smallest Difference > 21

d = 1 10 × 2∗ 1% 1% 1% 1% 0%
100 × 2 0% 2% 2% 3% 0%
250 × 2 1% 6% 6% 9% 1%

10 × 20∗ 5% 5% 5% 5% 1%
100 × 20 5% 6% 6% 6% 2%

d = 2 20 × 5 3% 3% 3% 6% 3%
20 × 20 4% 4% 4% 5% 4%
100 × 5 2% 3% 3% 4% 2%
100 × 20 3% 4% 5% 8% 3%

d = 1 corresponds to the simulation setup in Figure 1, d = 2 corresponds to the setup in Figure 2.
∗ the reference distribution is the 65:35 mixture of point mass at zero and χ2

1.

RIS - reciprocal importance sampling, BS - bridge sampling.
+ computed using RIS.
1 Choose the smaller model unless the difference in pAIC’s > 2.

distribution of the likelihood ratio. For ni = 20 the empirical distributions of the
computed likelihood ratio statistics agree reasonably well with their theoretical
distributions according to the plots, for both n = 100 and n = 10. But for ni = 2
the asymptotic 50:50 mixture is not a good approximation unless n is as large as
250 (bottom plot, computed using RIS and BS). As mentioned before, for n = 10
the 65:35 mixture of Crainiceanu and Ruppert’s requires that ni be reasonably
large, and clearly ni = 2 is not sufficient.

In Table 1 we give the empirical significance levels of the nominal 0.05-
level profile likelihood rato test as well as the error rates of model selection by
the profile AIC, here the true model being the null model. When compared to
Figure 1, it is seen that the nominal siginficance level is better achieved when the
theoretical distribution has reasonable agreement with the empirical distribution
of the likelihood ratio statistic, that is, for the sample sizes 250× 2 (RIS and BS
only), 10 × 20 and 100 × 20. Otherwise the test tends to be conservative. Note
that choosing the model with the smallest pAIC here is equivalent to a likelihood
ratio statistic greater than two time the difference in the numbers of parameters
under the two models. We also considered the method of choosing the smaller
model unless the difference in the pAIC’s is at least 2, and this is equivalent to a
likelihood ratio statistic greater than two time the difference in the numbers of
parameters plus 2. It is clear then the effect of different computational methods
on the likelihood ratio test carries over to the pAIC, and the second approach to
using pAIC gave lower error rates than the first one in this case.

Finally, we simulated data with two covariates, and test against the null
hypothesis that both the fixed and the random effects for one of the covariates
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Figure 2. Q-Q plots of likelihood ratio statistics from simulated data for
testing H0 : λij(t) = exp(β1Zij1 + bi0) versus H1 : λij(t) = exp(β1Zij1 +
β2Zij2 + bi0 + bi2Zij2). The theoretical mixture distribution is (χ2

1 + χ2
2)/2.

are zero. That is, under the null model, we have exp(β1Zij1 + bi0) in the relative
risk, while under the alternative model we have exp(β1Zij1+β2Zij2+bi0+bi2Zij2).
This is Case 2 of Section 3.2, and the likelihood ratio statistic has an asymptotic
null distribution of (χ2

1 + χ2
2)/2. Figure 2 shows the Q-Q plots of the likelihood

ratio statistics from 100 simulations against the theoretical mixture distribution
quantiles. The empirical significance levels of the nominal 0.05-level tests are
also given in Table 1, along with the error rates of pAIC. From the simulations
we see that for the larger cluster size 20, for both numbers of clusters n = 20
and 100 the null distribution of the likelihood ratio test was well approximated
by its asymptotic counterpart. For the smaller cluster size 5, the asymptotic
approximation was less accurate and tends to be conservative. This tendency
was also seen for d = 1 above.

7. Application

In this section we consider the multi-center non-small cell lung cancer trial
that was discussed in Vaida and Xu (2000). The trial enrolled 579 patients
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Table 2. Parameter estimates (and standard errors) from the lung cancer data.

Model 1 2 3
treatment β −0.25 (0.09) −0.25 (0.10) −0.25 (0.12)

bone 0.22 (0.09) 0.21 (0.10) 0.23 (0.14)
liver 0.43 (0.09) 0.42 (0.09) 0.39 (0.09)
ps −0.60(0.10) −0.64 (0.11) −0.65 (0.13)

wt loss 0.20 (0.09) 0.22 (0.09) 0.21 (0.09)
treatment σ - 0.27 (0.13) 0.21 (0.43)

bone - - 0.36 (0.12)

from 31 institutions. The primary endpoint was patient death. There were two
randomized treatment arms in the trial, a standard chemotherapy (CAV) arm,
or an alternative regimen (CAV-HEM) arm. Other important covariates that
affected patient survival were presence or absence of bone metastases, presence
or absence of liver metastases, performance status at study entry and whether
there was weight loss prior to entry. Gray (1995) used a score test for the existence
of random treatment effect, and found it to be significant.

In the following we mainly consider the three nested models of Vaida and
Xu (2000); they are named Models 1−3 in the tables. They all include the fixed
effects of the five covariates: Model 1 includes no random effect; Model 2 includes
a random treatment effect; and Model 3 includes random treatment and random
bone metastases effects. The estimate of the other variance components corre-
sponding to potential random effects for the other three covariates, as well as
random center effect on the baseline hazard function (see also Gray (1995)), con-
verged to zero during the EM algorithm (Vaida and Xu (2000)). The parameter
estimates under the three models are reproduced in Table 2; for more discussion
on the parameter estimates see Vaida and Xu (2000). Table 3 gives minus twice
the log likelihood values for the models, computed using Laplace approximation,
reciprocal importance sampling, and bridge sampling for Models 2 and 3. Note
that the likelihood can be computed directly when there are no random effects,
and such is the case for Models 1 and 0 (see below). The likelihood values for
Models 2 and 3 were computed after 50 EM steps where the maximum likelihood
estimate has converged; the sample sizes for Gibbs sampler during MCEM were
100 initially and increased to 1,000 for the last 10 EM steps. The Monte Carlo
sample sizes for RIS and BS were 1,000, respectively. From the table we see
that the values of the log likelihoods agree well among the three computational
methods.

As seen in Table 3, if we test Model 2 versus Model 1 using the likelihood ratio
statistic, its sampling distribution under Model 1 is asymptotically (χ2

0 + χ2
1)/2,

according to Case 1 of Section 3.2, with critical value of 2.71 at .05 significance
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Table 3. −2× Log likelihood values from the lung cancer data.

Model Laplace RIS BS pAIC+

0∗ 7241.76 7241.76 7241.76 7249.76
1∗ 7232.80 (8.96) 7232.80 7232.80 7242.80
2 7228.98 (3.82) 7228.80 (4.00) 7228.78 (4.02) 7240.80
3 7222.72 (6.26) 7222.55 (6.25) 7222.60 (6.18) 7236.55

RIS - reciprocal importance sampling, BS - bridge sampling.
+ computed using RIS.
∗ likelihood computed directly when there are no random effects.
In (·) are the likelihood ratio statistics between the model and its immediate
submodel (3 vs. 2, 2 vs. 1, etc.).

level. Model 1 is then rejected in favor of Model 2. Similarly, to test Model 3
versus Model 2, the likelihood ratio statistic is again asymptotically (χ2

0 + χ2
1)/2

under Model 2. This is a special case of Case 4, and the mixing probabilities
can be derived directly as in Case 1. Therefore Model 2 is rejected in favor of
Model 3. Note that for this dataset, there are 31 institutions and the average
number of patients per institution is close to 20, so we expect the asymptotic
approximation to be reasonably good. On the other hand, the finite sample
distribution we considered in Section 5 puts more point mass at zero, leading to
even smaller critical values for the likelihood ratio statistic.

We can also compare Models 1 and 3 directly. Under Model 1 the asymptotic
distribution of the likelihood ratio statistic is a mixture of χ2

0, χ2
1 and χ2

2. This is
again Case 4 in Section 3.2. The mixing probabilities are not straightforward to
compute; however, given that the 0.95 quantile of χ2

2 is 5.99, and that the same
quantile for the mixture is smaller, Model 1 is rejected in favor of Model 3.

Finally, Model 0 in Table 3 is the Cox model with only fixed effects for the
four covariates other than treatment. The comparison of Model 0 versus Model
2 provides an illustration for Case 2 of Section 3.2, i.e., under the null Model
0 the random treatment effect is zero and a subset of the fixed effects, namely
the treatment effect, is also zero. Here q = 0 and r = 1, so the null asymptotic
distribution of the likelihood ratio statistic is (χ2

1 + χ2
2)/2. It is again easy to see

that Model 0 is rejected in favor of Model 2 at 0.05 significance level.
Alternatively, we can use the profile AIC to compare the nested models.

From the table it is clear that the larger models are chosen by the criterion.

8. Discussion

In this paper, motivated by model selection problems under PHMM, we de-
veloped the profile likelihood ratio test and a profile Akaike information criterion
that are generally applicable to models with nuisance parameters. The develop-
ment was based on the asymptotic quadratic expansion of the profile likelihood
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function. The profile likelihood ratio test for the null hypothesis that lies in the
interior of the parameter space was given in Murphy and van der Vaart (2000);
here we further developed it for testing on the boundary. The profile AIC has
not been previously proposed in the literature, to our best knowledge. It ap-
plies to both parametric and semiparametric models where, for the latter type
of models, the focus is on the finite-dimensional parameter. The AIC approach
does not encounter the boundary problem as in hypothesis testing. The profile
AIC also provides a theoretical justification for the use of the partial likelihood
in the AIC under the classic Cox model.

We focused on the PHMM with multinormal random effects. The devel-
opment of the likelihood ratio test and the profile AIC holds in more general
situations. For example, for gamma frailty PHMM, Murphy and van der Vaart
(2000) show that the asymptotic expansion (2.3) holds, on which our development
hinges. Alternatives to the multinormal include the multivariate t distribution,
considered in Sargent (1998). Glidden (1999), Viswanathan and Manatunga
(2001) and Economou and Caroni (2005) proposed methods for checking the dis-
tributional assumption of the random effects under the frailty models. O’Quigley
and Stare (2002) demonstrated the robustness in the fixed effects estimation
against frailty distribution misspecifications. This latter result parallels the ex-
isting literature for the linear, nonlinear and generalized linear mixed models,
which shows that the estimation of the fixed effects and variance components is
practically unaffected by the misspecifications of the random effect distributions
(Verbeke and Lesaffre (1997), Neuhaus, Hauck and Kalbfleisch (1992), Chen,
Zhang, and Davidian (2002) and Agresti, Caffo and Ohman-Strickland (2004)).

Model selection has been an area of growing interest in recent years. In this
paper we restricted our attention to the classic derivation of the Akaike informa-
tion criterion. However we acknowledge, as Longford (2005) pointed out, that
whatever the selection criterion, single-model based inference can be inherently
biased. Alternatives may include the use of a mixture of plausible models, and
the focused information criteria of Claeskens and Hjort (2003). The associated
new challenges of such improvements in practice are model interpretability and
variability of inferences following the model averaging or selection.

For computation of the maximized likelihood, the Laplace approximation is
the most straightforward, but is only accurate when the cluster sizes are rea-
sonably large. In view of the MCEM algorithm that is used to fit the PHMM,
the additional computation of RIS or BS is often comparable to one step of
the MCEM. Therefore we include RIS and BS as default in our computational
program.

Finally, under linear mixed models when the interest lies in the inference of
the random effects themselves, Vaida and Blanchard (2005) propose a conditional
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AIC using the notion of effective degrees of freedom. The usefulness of conditional
inference carries over to PHMM, and currently we are working to develop a
conditional AIC under the PHMM. Additionally, the finite sample distribution
of the likelihood ratio statistic for testing zero variance components is another
area that requires further work.
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Appendix

Proof of Theorem 1. The proof is similar to the proof of Theorem 1 in Self and
Liang (1987), except that the Taylor series expansion cited in Lehmann (1983,
pp.429-432), is now replaced by (2.3).

Proof of Theorem 3. From Theorem 1 we have that
√

n(φ̂ − φ0) = Op(1).
Applying (2.3) for the sequence φn = φ̂, we get

pl(y∗|φ̂(y)) = pl(y∗|φ0) + s(y∗|φ0)′(φ̂−φ0) −
n

2
(φ̂−φ0)′I0(φ̂−φ0) + r1, (A.1)

where r1 = op(1). The main result (2.2) from Murphy and van der Vaart (2000)
implies that E{s(y∗|φ0)} = 0 (divide by

√
n and take limits on both sides of

(2.2), and then apply the Strong Law of Large Numbers). Therefore, taking
expectations on both sides of the equality in (A.1), the first-order term vanishes
and we get

Ef(y∗){pl(y∗|φ̂(y))} = E{pl(φ0)} −
n

2
(φ̂ − φ0)′I0(φ̂ − φ0) + E(r1). (A.2)

Taking expectation with respect to y on both sides of (A.2), we have

pAI = −2E{pl(y|φ0)} + E{n(φ̂ − φ0)′I0(φ̂ − φ0)} + E(r1)

= −2E{pl(y|φ̂(y))} + 2E{pl(y|φ̂(y)) − pl(y|φ0)} + E{n(φ̂−φ0)′I0(φ̂−φ0)}
+E(r1).

From Corollary 2 and 1 of Murphy and van der Vaart (2000), the middle
term and the last term under expectation signs in the last equation above have
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a χ2
p distribution, except for remainder terms of op(1). Collecting all the re-

mainder terms in r = op(1), we get pAI = −2E{pl(y|φ̂(y))} + 2p + E(r) which
proves the theorem. If r is uniformly integrable, then E(r) = o(1) and pAIC is
asymptotically unbiased for pAI.

Proof of Proposition 1. The consistency part is immediate by applying the
Strong Law of Large Numbers to A and Ai.

To show the variance inequality, note that A =
∑

k exp{
∑

i v(b(k)
i }/M . As-

sume for simplicity that n = 2 (the general case follows by induction). Put
exp{v(bi)(k)} = ξ

(k)
i , for i = 1, 2. Then A = ξ1ξ2, and Ã = ξ̄1ξ̄2, where the bar

denotes sample average over M observations. Let µi, σ2
i denote respectively the

mean and variance of ξi, i = 1, 2. Then

Var (ξ1ξ2) =
Var (ξ1ξ2)

M

=
σ2

1σ
2
2

M
+

µ2
1σ

2
2

M
+

µ2
2σ

2
1

M

Var (ξ̄1ξ̄2) =
(σ2

1

M

)(σ2
2

M

)
+

µ2
1σ

2
2

M
+

µ2
2σ

2
1

M
.

The first term in Var (ξ1ξ2) is no smaller than the corresponding term in
Var (ξ̄1ξ̄2), while the other two terms are identical, so the result follows.
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