SELECTING THE NUMBER OF CHANGE-POINTS IN SEGMENTED LINE REGRESSION

Hyune-Ju Kim1, Binbing Yu2, and Eric J. Feuer3

1Syracuse University, 2National Institute of Aging, and 3National Cancer Institute

Supplementary Material

This note contains proofs for Theorems 3.2.1 and 3.2.2, and this is the version revised in 2012.

Appendix A: Proof of Theorem 3.2.1

Lemma A.1. Suppose that conditions (A1) and (A2) in Assumption 3.2.1 are satisfied. Then, for α fixed and $j > i$, there exists $c = c_n = c_n(i, j; \alpha) = o(1)$ that asymptotically achieves the level α.

Lemma A.2. Suppose that the assumptions in Lemma A.1 are satisfied and $c_n = o(1)$. Then, for $i < k^*$, $P(A_{i,k^*\alpha} | \kappa = k^*)$ converges to zero as $n \to \infty$.

Lemma A.3. Suppose that the assumptions in Lemma A.1 are satisfied, $c_n = o(1)$, and $\frac{n}{(\ln n)^2 c_n} \to \infty$ as $n \to \infty$. Then, for $j > k^*$, $P(R_{k^*j\alpha} | \kappa = k^*)$ converges to zero as $n \to \infty$.

Proof of Theorem 3.2.1. First, note from (3.1) that

\[
P(\hat{\kappa} < k^* \mid \kappa = k^*) = \sum_{j=0}^{k^*-1} P(\hat{\kappa} = j \mid \kappa = k^*)
\]

\[
\leq \sum_{j=0}^{k^*-1} \sum_{k_0=0}^{j} d_{k_0} P(A_{k_0,k^*\alpha} | \kappa = k^*)
\]

\[
\leq \left(\sum_{j=0}^{k^*-1} \sum_{k_0=0}^{j} d_{k_0} \right) \max_{i=0,\ldots,k^*-1} P(A_{i,k^*\alpha} | \kappa = k^*)
\]

\[
= g_i(k^*, M) \max_{i=0,\ldots,k^*-1} P(A_{i,k^*\alpha} | \kappa = k^*),
\]

where $g_i(k^*, M)$ is a function of k^* and M.
where \(g_1(k^*, M) \) is a positive function of \(k^* \) and \(M \). Lemma A.2 then provides the result that the under-fitting probability converges to zero \(n \to \infty \). Since \(P(\hat{\kappa} > k^* | \kappa = k^*) \leq \alpha_0 \) by the design of the permutation procedure, in general, we obtain that \(\lim_{n \to \infty} P(\hat{\kappa} = k^* | \kappa = k^*) \geq 1 - \alpha_0 \).

If \(c = c_n = o(1) \) is chosen such that \(\frac{n}{(\ln n)^2} c_n \to \infty \), then we achieve the desired result by Lemma A.3.

Proof of Lemma A.1. Since, for \(j > i(= \kappa) \), \(0 < \hat{\sigma}^2_j - \hat{\sigma}^2_i = O_p((\ln n)^2/n) \) and \(\hat{\sigma}^2_j \) converges to \(\sigma_0^2 \) in probability from Lemma 5.4 of Liu et al. (1997), where \(\hat{\sigma}^2_j = \text{RSS}(i)/n \) as in Liu et al., there exist \(B_\alpha \) and \(N_\alpha \) such that \(P(\sigma^2_j - \hat{\sigma}^2_j \geq B_\alpha (\ln n)^2/n | \kappa = i) \leq \alpha \) for all \(n > N_\alpha \). Thus for \(n > N_\alpha \), there exists \(c = c_n \leq B_\alpha (\ln n)^2/n \) such that

\[
\alpha = P(\text{RSS}(i) \geq (1 + c) \text{RSS}(j) | \kappa = i) = P\left(\frac{\hat{\sigma}^2_i - \hat{\sigma}^2_j}{\hat{\sigma}^2_j} \geq c | \kappa = i \right).
\]

Proof of Lemma A.2. For \(i < k^* \),

\[
P(A_{i,k^*}; \kappa | \kappa = k^*) = P(\hat{\sigma}^2_i > (1 + c_n) \hat{\sigma}^2_{k^*}; \kappa = k^*) \\
= P_k(\hat{\sigma}^2_i > \sigma_0^2 + C, \hat{\sigma}^2_i < (1 + c_n) \hat{\sigma}^2_{k^*}) + P_k(\hat{\sigma}^2_i \leq \sigma_0^2 + C, \hat{\sigma}^2_i < (1 + c_n) \hat{\sigma}^2_{k^*}) \\
= P_1 + P_2,
\]

where \(C \) is a positive constant in Lemma 5.4 of Liu et al. (1997) for which \(P_k(\hat{\sigma}^2_i > \sigma_0^2 + C) \to 1 \) as \(n \to \infty \). Since \(\hat{\sigma}^2_{k^*} - \sigma_0^2 = o_p(1) \), \(c_n = o(1) \) and \(C > 0 \), we get for \(\kappa = k^* \),

\[
P_1 = P_k(\hat{\sigma}^2_i > \sigma_0^2 + C, \hat{\sigma}^2_i < (1 + c_n) \hat{\sigma}^2_{k^*}) \leq P_k(\hat{\sigma}^2_i - \sigma_0^2 > C - c_n \hat{\sigma}^2_{k^*})
\]

which converges to zero. Also,

\[
P_2 = P_k(\hat{\sigma}^2_i \leq \sigma_0^2 + C, \hat{\sigma}^2_i < (1 + c_n) \hat{\sigma}^2_{k^*}) \leq P_k(\hat{\sigma}^2_i \leq \sigma_0^2 + C),
\]

and thus \(P_2 \) converges to zero by Lemma 5.4 of Liu et al.

Proof of Lemma A.3. Note that

\[
P(\text{R}_{k^*; i, n} | \kappa = k^*) = P(\hat{\sigma}^2_{k^*} \geq (1 + c_n) \hat{\sigma}^2_j; \kappa = k^*) = P_k(\hat{\sigma}^2_{k^*} - \hat{\sigma}^2_j \geq c_n \hat{\sigma}^2_j).
\]
From Lemma 5.4 of Liu et al. (1997), for \(j > k^* \), \(0 < \hat{\sigma}_k^2 - \hat{\sigma}_j^2 = O_p((\ln n)^2/n) \) and \(\hat{\sigma}_j^2 = \sigma_0^2 + o_p(1) \). If \(c_n = o(1) \) is chosen such that \(\frac{n}{(\ln n)^2} c_n \to \infty \),

\[
P_{k^*}(\hat{\sigma}_k^2 - \hat{\sigma}_j^2 \geq c_n \hat{\sigma}_j^2) = P_{k^*}\left(\frac{\hat{\sigma}_k^2 - \hat{\sigma}_j^2}{\hat{\sigma}_j^2} \geq c_n \frac{n}{(\ln n)^2}\right) \to 0 \quad \text{as} \quad n \to \infty.
\]

Appendix B: Proof of Theorem 3.2.2

Note that in this revision, the conditions (C1) and (C2) in Assumption 3.2.2 are replaced by (A1) and (A2) of Assumption 3.2.1.

Lemma B.1. Suppose that conditions (C1), (C2) and (C3) in Assumption 3.2.2 are satisfied. Then the \(\eta_i = \mu^T(I - H_i(\tau_{k^*}))\mu^* \) satisfy the followings:

(i) \(\eta_i \) is a decreasing function of \(i \).

(ii) \(1/\eta^* = 1/\eta_{k^*-1} = O(\ln n/n) \).

Lemma B.2. Suppose that the assumptions in Lemma B.1 are satisfied. For \(\alpha_0 \) fixed and \(j > i \), there exists \(c = c_n = c_n(i,j; \alpha_0/M_n) \) that asymptotically achieves the level \(\alpha_0/M_n \), where \(M_n/\sqrt{\eta^*} \to 0 \) as \(n \to \infty \).

Lemma B.3. Suppose that the assumptions in Lemma B.1 are satisfied. For \(i < k^* \), \(H_{k^*}(\tau_{k^*}) - H_i(\tau_{k^*}) \) is idempotent.

Lemma B.4. Suppose that the assumptions in Lemma B.1 are satisfied. For \(i < k^* \),

\[
P(A_{i,k^*+\alpha} | \kappa = k^*) \leq P\left(Z_{i,n} + \frac{y^T(B_1 + B_2 + B_3)\epsilon}{2\sigma_0\sqrt{\eta_i}} > \frac{\sqrt{\eta_i}}{2\sigma_0}\right),
\]

where \(B_1 = H_{k^*}(\tau_{k^*}) - H_{k^*}(\hat{\tau}_{k^*}) \), \(B_2 = c(I - H_{k^*}(\hat{\tau}_{k^*})) \), \(B_3 = H_i(\hat{\tau}_i) - H_i(\tau_{k^*}) \), and

\[
Z_{i,n} = \frac{-2\mu^T(I - H_i(\tau_{k^*})\epsilon}{2\sigma_0\sqrt{\eta_i}},
\]

for \(\epsilon = y - E(y|x, \kappa = k^*) \).
Lemma B.5. Suppose that the assumptions in Lemma B.1 are satisfied. For \(i < k^* \),
\[V_{i,n} = y^T (B_1 + B_2 + B_3) y / (2\sigma_0 \sqrt{\eta_i}) = O_p(\sqrt{\ln n}) + h_{i,n}, \]
where \(\sqrt{\eta_i} = O(1) \) and \(h_{i,n} \leq \gamma_{i,n} \sqrt{\eta_i} / (2\sigma_0) \) for \(\gamma_{i,n} \) such that \(0 < \lim_{n \to \infty} (1 - \gamma_{i,n}) \leq 1 \).

Proof of Theorem 3.2.2.

We first show that \(P(\hat{k} < k^* | \kappa = k^*) \to 0 \) as \(n \to \infty \). Note that for \(V_{i,n} = y^T (B_1 + B_2 + B_3) y / (2\sigma_0 \sqrt{\eta_i}) \) \((i < k^*) \),
\[
P(A_{i,k^*:n} | \kappa = k^*) \leq P(Z_{i,n} + V_{i,n} - h_{i,n} \geq (1 - \gamma_{i,n}) \sqrt{\eta_i} / (2\sigma_0))
\leq P(e^{\hat{Z}_{i,n} + \hat{V}_{i,n}} \geq e^{\sqrt{\eta_i} / (2\sigma_0)})
\leq E(e^{\hat{Z}_{i,n} + \hat{V}_{i,n}}) / e^{\sqrt{\eta_i} / (2\sigma_0)},
\]
where \(\hat{Z}_{i,n} = Z_{i,n}/((1 - \gamma_{i,n}) \ln n), \hat{V}_{i,n} = (V_{i,n} - h_{i,n})/((1 - \gamma_{i,n}) \ln n), \) and \(\sqrt{\eta_i} = \sqrt{\eta_i} / \ln n \),
and the last inequality is obtained by Markov’s inequality. Then,
\[
P(\hat{k} < k^* | \kappa = k^*) = \sum_{j=0}^{k^*-1} P(\hat{k} = j | \kappa = k^*)
\leq \sum_{j=0}^{k^*-1} \sum_{k_0=0}^{j} d_{k_0} P(A_{k_0,k^*:n} | \kappa = k^*)
\leq \left(\sum_{j=0}^{k^*-1} \sum_{k_0=0}^{j} d_{k_0} \right) \left(\max_{i=0,\ldots,k^*-1} E(e^{\hat{Z}_{i,n} + \hat{V}_{i,n}}) \right)
\leq g_2(k^*) \left(\max_{j=0,\ldots,k^*-1} \left(\frac{M^j}{j!} \right) \right) \left(\max_{i=0,\ldots,k^*-1} \frac{E(e^{\hat{Z}_{i,n} + \hat{V}_{i,n}})}{e^{\sqrt{\eta_i} / (2\sigma_0)}} \right)
\leq g_2(k^*) M^{k^*-1} \max_{i=0,\ldots,k^*-1} E(e^{\hat{Z}_{i,n} + \hat{V}_{i,n}})
\leq g_2(k^*) M^{k^*-1} \frac{e^{\sqrt{\eta_i} / (2\sigma_0)}}{e^{\sqrt{\eta_i} / (2\sigma_0)}} \max_{i=0,\ldots,k^*-1} E(e^{\hat{Z}_{i,n} + \hat{V}_{i,n}})
\leq \tilde{g}_2(k^*) \left(\frac{M}{\sqrt{\eta}} \right)^{k^*-1} \left(\frac{(\ln n)^2}{\sqrt{\eta}} \right)^{k^*-1} \max_{i=0,\ldots,k^*-1} E(e^{\hat{Z}_{i,n} + \hat{V}_{i,n}}),
\]
where \(\tilde{g}_2(k^*) \) is a positive function of \(k^* \). Since \(\hat{Z}_{i,n} + \hat{V}_{i,n} = o_p(1) \) and \(\frac{(\ln n)^2}{\sqrt{\eta}} = o(1) \),
the upper bound will converge to zero under a mild condition on \(M \) such as the one described.
in Assumption 3.2.2 (C3). Then, by using \(P(\hat{k} > k^* | \kappa = k^*) \leq \alpha_0 \), we can show that \(\lim_{n \to \infty} P(\hat{k} = k^* | \kappa = k^*) \geq 1 - \alpha_0 \). Similarly as in Theorem 3.2.1, by choosing \(c = c_n \) such that \(\sqrt{n}c_n = O(1) \) and the corresponding \(\alpha_0 \) approaches to zero, we can achieve the desired result.

Proof of Lemma B.1. Let \(X_{i+1}(t) = (X_i(t) \; x_{i+1}(t)) \), where \(x_{i+1}(t) = ((x_1 - t_{i+1})^+, \ldots, (x_n - t_{i+1})^+)^T \). Note that \(\eta_i = \mu^*T(I - H_i(\tau_{k^*}))(\mu^* \right) \) is a decreasing function of \(i \), which can be proved by showing that

\[
(I - H_i(t)) - (I - H_{i+1}(t)) = (I - H_i(t)) \left[\frac{x_{i+1}(t)x^T_{i+1}(t)}{a_{i+1}^2} \right] (I - H_i(t)) > 0,
\]

where \(a_{i+1}^2 = x^T_{i+1}(t)(I - H_i(t))x_{i+1}(t) \).

Thus, for \(X_{k^*-1} = X_{k^*-1}(\tau_{k^*}) \), \(x_{k^*} = x_{k^*}(\tau_{k^*}) \), \(\mu^* = \mu(\tau_{k^*}) \) and \(H_i = H_i(\tau_{k^*}) \),

\[
\eta^* = \min_{i < k^*} \eta_i = \eta_{k^*-1} = (\mu^*)^T(I - H_{k^*-1})\mu^*
\]

\[
= (\mu^*)^T \left(I - H_{k^*} + (I - H_{k^*-1}) \left[\frac{x_{k^*}x^T_{k^*}}{a_{k^*}^2} \right] (I - H_{k^*-1}) \right) \mu^*
\]

\[
= \beta^T \left(X_{k^*-1} \; x_{k^*} \right)^T (I - H_{k^*-1}) \left[\frac{x_{k^*}x^T_{k^*}}{a_{k^*}^2} \right] (I - H_{k^*-1}) (X_{k^*-1} \; x_{k^*}) \beta
\]

\[
= \delta_{k^*}a_{k^*}^2 \delta_{k^*}
\]

\[
= \delta_{k^*}^2 \left[x^T_{k^*}(I - H_{k^*-1})x_{k^*} \right]
\]

\[
= \delta_{k^*}^2 \sum_{m=k^*+1}^n \left\{ \sum_{j=k^*+1}^n (x_j - \tau_{k^*})b_{mj} \right\} (x_m - \tau_{k^*}),
\]

where \((x_{k^*+1}, \ldots, x_n) \) are the observations in \([\tau_{k^*}, 1] \) and \(I - H_{k^*-1} = (b_{mj}) \). Under (C1), it can be shown that for large \(n \), \(\eta^* \geq D_1n / \ln n \), where \(D_1 \) is a positive constant.

Proofs of Lemma B.2. and Lemma B.3.

The proof of Lemma B.3, which is based on lengthy and straightforward matrix algebra, is omitted, and the proof of Lemma B.2. is sketched below.

Suppose that for some \(a_n > 0 \) such that \(a_n \to \infty \) as \(n \to \infty \), \(Z_n = a_n \frac{\hat{\sigma}_2 - \hat{\sigma}_2^*}{\hat{\sigma}_2^*} \), under the null hypothesis of \(\kappa = i \), converges in distribution to \(Z \) with a cumulative distribution
function $F(\cdot)$ and the probability density function $f(\cdot)$. We then see that for $j > i$,

$$\frac{\alpha_0}{M_n} = P(RSS(i) \geq (1 + c_n)RSS(j)|\kappa = i) = P(Z_n \geq \hat{c}_n) \approx 1 - F(\hat{c}_n),$$

where $\hat{c}_n = a_n c_n$. Since $\frac{d}{dn} \frac{1}{M_n}$ is proportional to $-f(\hat{c}_n) \frac{d}{dn} \hat{c}_n$ and $\frac{d}{dn} g_n$ is proportional to $-\frac{\sqrt{n}}{n\sqrt{n}}$, where $1/\sqrt{n^2} \leq \sqrt{\frac{n}{B_n}} = g_n$, a slowly increasing function of n, \hat{c}_n, such that $\frac{\sqrt{n}}{n\sqrt{n}}/f(\hat{c}_n) \frac{d}{dn} \hat{c}_n \to 0$ as $n \to \infty$ satisfies the condition of $M = M_n$ such that $M/\sqrt{\eta^2} \to 0$ as $n \to \infty$. Using that $Z_n/a_n = O_p \left(\frac{M_n(\ln n)^2}{n} \right)$, it can also be shown that for appropriately chosen c_n, $\sqrt{n} c_n = O(1)$ since $\sqrt{n} c_n = \frac{\hat{c}_n}{a_n/\sqrt{n}}$ where \hat{c}_n is slowly increasing and $a_n/\sqrt{n} \to \infty$ at least as fast as $\sqrt{n}/\{M_n(\ln n)^2\}$ does as $n \to \infty$. For example, if f is a chi-square density with finite degrees of freedom, then c_n such that $\hat{c}_n = a_n c_n = D_2 \ln n$ for $0 < D_2 < 1$ can be used.

Proof of Lemma B.4.

$$P(A_{i,k^*} | \kappa = k^*) = P_{k^*} \left[y^T(I - H_i(\hat{\tau}_i))y < (1 + c) y^T(I - H_{k^*}(\hat{\tau}_{k^*}))y \right]$$

$$= P_{k^*} \left[y^T(I - H_i(\tau_{k^*}))y + y^T(H_i(\tau_{k^*}) - H_i(\hat{\tau}_i))y < (1 + c) \{ y^T(I - H_{k^*}(\hat{\tau}_{k^*}))y \} \right].$$

Noting that $y = \mu^* + \epsilon$ when $\kappa = k^*$ and $(I - H_{k^*}(\tau_{k^*}))\mu^* = 0$, the right hand side is equivalent to

$$P_{k^*} \left[2\mu^* y^T(I - H_i(\tau_{k^*})) \epsilon < -\mu^* y^T(I - H_i(\tau_{k^*}))\mu^* - \epsilon^T(H_{k^*}(\tau_{k^*}) - H_i(\tau_{k^*}))\epsilon \right. \left. y^T(H_{k^*}(\tau_{k^*}) - H_{k^*}(\hat{\tau}_{k^*}))y + c y^T(I - H_{k^*}(\hat{\tau}_{k^*}))y + y^T(H_i(\hat{\tau}_i) - H_i(\tau_{k^*}))y \right].$$

Since $\epsilon^T(H_{k^*}(\tau_{k^*}) - H_i(\tau_{k^*}))\epsilon > 0$ by Lemma B.3,

$$P(A_{i,k^*} | \kappa = k^*) \leq P \left(-2\mu^* y^T(I - H_i(\tau_{k^*})) \epsilon + y^T(B_1 + B_2 + B_3)y \epsilon^T(I - H_i(\tau_{k^*}))\epsilon \right)$$

$$= P \left(Z_{i,n} + \frac{y^T(B_1 + B_2 + B_3)y}{2\sigma_0^2/\sqrt{\eta_i}} > \frac{\sqrt{\eta_i}}{2\sigma_0} \right).$$
Proof of Lemma B.5.

(i) \(y^T B_1 y / (2\sigma_0 \sqrt{\eta_i}) = y^T (H_{k^*}(\tau_{k^*}) - H_{k^*}(\hat{\tau}_{k^*})) y / (2\sigma_0 \sqrt{\eta_i}) = O_p(\sqrt{\ln n}) \). This can be obtained by using \(\hat{\sigma}_{k^*}^2 - \sigma_0^2 = O_p(1 / \sqrt{n}) \) and \(1 / \sqrt{\eta_i} \leq 1 / \sqrt{\eta} = O(\sqrt{\ln n / n}) \).

(ii) \(y^T B_2 y / (2\sigma_0 \sqrt{\eta_i}) = c y^T (I - H_{k^*}(\hat{\tau}_{k^*})) y / (2\sigma_0 \sqrt{\eta_i}) = O_p(\sqrt{\ln n}) \) for a choice of \(c = c_n \) such that \(c\sqrt{n} = O(1) \). This can be shown because \(\sqrt{n / \eta_i} = O(\sqrt{\ln n}) \) and \(\hat{\sigma}_{k^*}^2 \) is a consistent estimator of \(\sigma_0^2 \).

(iii)
\[
y^T B_3 y / (2\sigma_0 \sqrt{\eta_i}) = \frac{y^T (I - H_i(\tau_{k^*})) y}{2\sigma_0 \sqrt{\eta_i}} - \frac{y^T (I - H_i(\hat{\tau}_i)) y}{2\sigma_0 \sqrt{\eta_i}} = \sqrt{\frac{n\sigma_0^2}{2\eta_i}} (Z_{1,n} - Z_{2,n}) + \frac{E_{k^*}[Q_1] - E_{k^*}[Q_2]}{2\sqrt{\eta_i}/\sigma_0},
\]
where \(Q_1 = y^T (I - H_i(\tau_{k^*})) y / \sigma_0^2 \), \(Q_2 = y^T (I - H_i(\hat{\tau}_i)) y / \sigma_0^2 \), \(Z_{1,n} = (Q_1 - E_{k^*}[Q_1]) / \sqrt{2n} \), and \(Z_{2,n} = (Q_2 - E_{k^*}[Q_2]) / \sqrt{2n} \). Matrix algebra shows that \((E_{k^*}[Q_1] - E_{k^*}[Q_2]) / (2\sqrt{\eta_i}/\sigma_0) = h_{i,n} + O(\sqrt{\ln n}) \), where \(h_{i,n} \leq \gamma_{i,n} \sqrt{\eta_i} / (2\sigma_0) \) for \(\gamma_{i,n} \) such that \(0 < \lim_{n \to \infty} (1 - \gamma_{i,n}) \leq 1 \). Since \(Z_{1,n} - Z_{2,n} = O_p(1) \) and \(\sqrt{n / \eta_i} = O(\sqrt{\ln n}) \), \(y^T B_3 y / (2\sigma_0 \sqrt{\eta_i}) = O_p(\sqrt{\ln n}) + h_{i,n} \).

Combining (i), (ii) and (iii), we obtain that \(V_{i,n} = O_p(\sqrt{\ln n}) + h_{i,n} \).