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Abstract: Based on the effect hierarchy principle in experimental design, an aliased

effect-number pattern (AENP, or AP for short) is proposed to judge two-level regu-

lar designs; it contains the basic information of all effects aliased with other effects

at varying severity degrees in a design. Based on the AENP, a general minimum

lower-order confounding (GMLOC, or GMC for short) criterion is proposed, and

several results follow. First, the word-length pattern, as the core of the minimum

aberration (MA) criterion, is a function of the AENP. The same also holds for the

clear effects (CE) criterion. Furthermore, the estimation capacity (EC) of a design

can be also calculated as a function of the new pattern, and links between the MA

and CE criteria are discovered. In addition, a concept of estimation ability is intro-

duced, and it is concluded that a GMC design is the one with the best estimation

ability. Finally, more applications of the new pattern are given. All GMC designs

of 16 and 32 runs, a number of GMC designs of 64 runs, and some comparisons

with the optimal designs under MA and CE criteria are tabulated.

Key words and phrases: Clear effects criterion, effect hierarchy principle, estimation

ability, estimation capacity, minimum aberration.

1. Introduction

One of the main tasks in experimental design is to find good designs and

to analyze experimental data effectively, so that more effects and more possible

models related to the effects in experiments can be estimated. Regular designs

have been the most commonly considered designs in practice, due to their simple

confounding structure.

The effect hierarchy principle states that a lower-order effect is likely more

important than a higher-order one, and effects of the same order are equally

important. Therefore, to estimate more important parameters and models, a

good design should minimize the confounding between the lower-order effects.

In this paper, we only discuss the case of two-level regular designs. A regular

2n−m design is determined by m independent defining words and all possible

products of the m words constitute a subgroup, denoted by G = {I, w1, . . .,
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w2m−1}. Starting from the subgroup, there are several optimality criteria for

choosing good designs. We focus on four of them.

The first is the maximum resolution (MR) criterion proposed by Box and

Hunter (1961). This criterion chooses the good designs with MR, but does not

distinguish among them.

Going further, Fries and Hunter (1980) proposed the minimum aberration

(MA) criterion. It is based on the word-length pattern (WLP)

W = (A1, A2, A3, A4, . . . , An), (1.1)

where Ai denotes the number of words with length i in G. A design sequen-

tially minimizing the Ai’s in the WLP is called an MA design. In the past two

and half decades, much attention has been paid to the theory and construction

of MA designs. Many related papers have been published, including Franklin

(1984), Chen and Wu (1991), Chen, Sun and Wu (1993), Chen and Hedayat

(1996), Tang and Wu (1996), Suen, Chen and Wu (1997), Zhang and Park

(2000), Zhang and Shao (2001), Butler (2003), Ai and Zhang (2004a), Zhu and

Zeng (2005), Cheng and Tang (2005) and Xu (2006). A nice summary of MA

designs is given in Mukerjee and Wu (2006).

A third option is the clear effects (CE) criterion. Wu and Chen (1992) first

introduced the notion of clear effects and noticed that the MA criterion sometimes

does not result in satisfactory designs. The CE criterion selects designs that se-

quentially maximize the numbers of clear main effects and clear two-factor inter-

actions (2fi’s). Recent results in this direction include Chen and Hedayat (1998),

Tang, Ma, Ingram and Wang (2002), Wu and Wu (2002), Ai and Zhang (2004b),

Yang, Liu and Zhang (2005), Yang, Li, Liu and Zhang (2006) and Chen, Li, Liu

and Zhang (2006). However, the CE criterion is only applicable to the designs

having clear effects and cannot be used to compare designs having the same num-

bers of clear main effects and 2fi’s. Many examples of optimal CE designs that

differ from MA designs have been found by investigators (see Wu and Hamada

(2000), Li, Chen, Liu and Zhang (2006) and Tables 3 and 4 in the Appendix).

A fourth criterion is estimation capacity (EC), first introduced by Sun (1993).

Its idea is to estimate as many as possible models involving all the main ef-

fects and some 2fi’s. Cheng and Mukerjee (1998), Cheng, Steinberg and Sun

(1999) and Ai and Zhang (2004c) have studied it in detail, and obtained some

“good” designs with maximum estimation capacity (MEC). Note that for MEC,

the estimability of effects requires all the 2fi’s not in the model to be absent

(Mukerjee and Wu (2006)).

Facing many criteria, one can ask several questions. What relationships are

there among the criteria? Why do the criteria originating from the same ideas,

such as the MA and CE criteria, often give different optimal designs? What is
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the basic information contained in the subgroup G? Is there a criterion that can

more reasonably reflect the effect hierarchy principle? In this paper we try to

answer these questions.

In Section 2 we introduce a new aliasing pattern, denoted as AENP, and

based on it propose a general minimum lower-order confounding (GMC) criterion

for rank-ordering regular 2n−m designs. The relationships of the new criterion

with the MA, CE and EC criteria are studied in Sections 3, 4 and 5, respectively.

The links between the MA and CE criteria are addressed in Section 4. A novel

criterion, the maximum estimation ability criterion, is proposed in Section 6. In

Section 7 we simplify the AENP and provide more applications via examples. All

the GMC designs of 16 and 32 runs, a number of GMC designs of 64 runs, and

some comparisons with the MA and CE criteria are tabulated in the Appendix.

Some explanations are given in Section 8.

2. A New Aliasing Pattern and a General Minimum Lower-Order

Confounding Criterion

In order to give a reasonable aliasing pattern, we need to further explore the

basic information hidden in the subgroup G. For a given ordered pair (i, j), to

describe how the ith-order effects are to be aliased with the jth-order effects, we

need to consider two basic elements. First, for a given ith-order effect, assess how

severely it is aliased with the jth-order effects and measure the aliased severity

degree. If the ith-order effect is aliased with k jth-order effects simultaneously,

we can say that the degree of the ith-order effect being aliased with the jth-order

effects is k. The second consideration is how many ith-order effects are aliased

with the jth-order effects at a given degree k. We use the notation #
iC

(k)
j to

denote the number of ith-order effects aliased with jth-order effects at degree k.

Thus, for a design, we have a set

{#
iC

(k)
j , i, j = 0, 1, . . . , n, k = 0, 1, . . . ,Kj}, (2.1)

where Kj =
(

n
j

)

. The set reflects the overall confounding between effects in a

design. Note that the numbers in (2.1) are not symmetric with respect to i and

j (see Example 2 for an illustration).

The numbers in (2.1) are not equally important and should be usefully ar-

ranged. Clearly, for an ith-order effect, the lesser the degree at which it is aliased

with other effects, the more easily it can be estimated. In particular if it is aliased

at degree 0 with lower-order effects, and higher-order effects are negligible, then

it can be estimated without confounding. In addition, since the total number of

ith-order effects in a 2n−m design is
(

n
i

)

, the larger the number #
iC

(0)
j , the less

severely ith-order effects are confounded by jth-order effects. Subsequently, un-

der the condition of maximizing the number #
iC

(0)
j , the larger the number #

iC
(1)
j ,
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the less severely ith-order effects are confounded with jth-order effects, and so

on. Consider {#
iC

(k)
j , k = 0, 1, . . . ,Kj}. Since the larger the degree k, the more

severely the effect is aliased, we should rank the numbers of aliased ith-order

effects with jth-order effects from degree 0 to the most severe degree in the order

#
iCj = (#iC

(0)
j , . . . , #

iC
(Kj)
j ), (2.2)

which simply shows a distribution of the numbers of ith-order effects aliased with

jth-order effects on the degrees k = 0, 1, . . . ,Kj . Note that the 0th-order effect is

the grand mean. To save space, for a vector #
iCj, we use 0s to denote s successive

zero components in it and if it has a tail with successive zero components we cut

the tail part hereafter.

Consider the ranking of the different vectors #
iCj’s. First we ignore #

0C0,
#
0C1 and #

1C0 since #
0C0 = (1), #

0C1 = (1) and #
1C0 = (n) for the 2n−m designs.

According to the effect hierarchy principle, we should rank #
1C1 first, and then

consider the vectors related to 2fi’s. For every i ≥ 2, consider the two vectors
#
0Ci = (0Ai , 1) and #

iC0 = (#iC
(0)
0 , #

iC
(1)
0 ). Obviously #

0Ci should be placed before
#
iC0 because the 0th-order effect is more important. Since the latter can be

determined by the former for every i, we can ignore all #
iC0’s. Next, if the

2fi’s are not negligible, then we should rank the vectors #
0C2,

#
1C2,

#
2C1 and

#
2C2 in order as (#0C2,

#
1C2,

#
2C1,

#
2C2). The reason for placing #

0C2 first is

related to whether the grand mean effect can be estimated under the assumption

that 2fi’s cannot be neglected; putting #
1C2 before #

2C1 is due to the fact that

main effects are more important than 2fi’s; #
2C2 should be placed last. If the

third-order effects are not negligible, following the arguments above, we should

rank the vectors #
0C3,

#
1C3,

#
2C3,

#
3C1,

#
3C2 and #

3C3 in order as (#0C3,
#
1C3,

#
2C3,

#
3C1,

#
3C2,

#
3C3), and so on. The general rule can be described as follows:

(i) if max(i, j) < max(s, t) then #
iCj is placed ahead of #

sCt; (ii) if max(i, j) =

max(s, t) and i < s then #
iCj is placed ahead of #

sCt; (iii) if max(i, j) = max(s, t),

i = s and j < t, then #
iCj is placed ahead of #

sCt. Therefore, according to the

effect hierarchy principle we rank the numbers at (2.1) as

#C = (#1C1,
#
0C2,

#
1C2,

#
2C1,

#
2C2,

#
0C3,

#
1C3,

#
2C3,

#
3C1,

#
3C2,

#
3C3,

#
0C4,

#
1C4,

#
2C4,

#
3C4,

#
4C1,

#
4C2,

#
4C3,

#
4C4, . . .).

(2.3)

We call the ordering (2.3) an aliased effect-number pattern (AENP), or aliasing

pattern (AP) for short. Such a pattern, as well as (2.1), contains the basic

information of all effects aliased with other effects at varying degrees in a design.

A simple and quick algorithm for calculating the AENP of any design through

its defining pencil matrix is available from the authors.
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A main purpose of experimental design is to estimate as many factorial effects

as possible, especially the lower-order effects, e.g., the main effects and 2fi’s. So,

a “good” design should minimize the confounding between the lower-order effects

and hence should maximize the entries of #C sequentially. We define the new

criterion as follows.

Definition 1. Let #Cl be the l-th component of #C, and #C(d) and #C(d′) the

AENPs of designs d and d′, respectively. Suppose that #Cl is the first component

such that #Cl(d) and #Cl(d
′) are different. If #Cl(d) > #Cl(d

′), then d is said to

have less general lower-order confounding (GLOC) than d′. A design d is said to

have general minimum lower-order confounding (GMLOC, or GMC for short) if

no other design has less GLOC than d and such a design is called a GMC design.

The following theorem follows directly from the definition of GMC.

Theorem 1. A GMC 2n−m design must have maximum resolution among all

2n−m designs.

3. Relationship with Minimum Aberration Criterion

In order to study the relationship between the GMC and MA criterion, we

need to understand the relationship between WLP and AENP as the cores of

MA and GMC respectively.

Theorem 2. For a 2n−m design with R ≥ III, its WLP in (1.1) is a function

of {#
iC

(k)
j , i, j = 0, . . . , n, k = 1, . . . ,Kj} in the following two forms:

(1) #
iC

(0)
0 =

(

n
i

)

− Ai or
#
iC

(1)
0 = Ai;

(2) For any i, Ai is a function of sCt, s, t = 1, . . . , n, in (3.2), where sCt is a

function of {#
sC

(k)
t , k = 1, . . . ,Kt} as in (3.3), and sequentially minimizing

Ai’s of W is equivalent to sequentially minimizing sCt’s of C in (3.2).

Proof. By the definition of the AENP, part (1) of the theorem is trivial.

For a 2n−m design with R ≥ III, Zhang and Park (2000) defined iCj as the

number of alias relations between ith-order and jth-order effects in a design, and

obtained, for i ≤ j,

iCj =
i

∑

l=0

(

n − (j − i + 2l)

i − l

)(

j − i + 2l

l

)

Aj−i+2l, i, j = 1, . . . , n, (3.1)

where
(

x
0

)

= 1,
(

x
y

)

= 0 for x < y or x < 0, and Ai = 0 for i ≤ 2 or i > n.

Furthermore, they proposed using the sequence

C = (1C1, 1C2, 2C2, 1C3, 2C3, 3C3, 1C4, 2C4, 3C4, 4C4, . . .) (3.2)
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to choose optimal designs. Based on (3.1), they showed that sequences (1.1) and

(3.2) can be determined from each other, and that sequentially minimizing (3.2)

is equivalent to sequentially minimizing (1.1).

By the definition of iCj, and comparing with the definition of alias sets for

a regular design, it is easy to get the following relations for all i, j:

iCj =



























Ki
∑

k=1

k #
iC

(k)
i

2
, if i = j,

Kj
∑

k=1

k #
iC

(k)
j , if i 6= j.

(3.3)

Thus (2) is proved.

From Theorem 2, we have the following corollary.

Corollary 1. The designs with different WLPs must have different AENPs.

The converse of the corollary does not hold, designs with different AENPs

may have the same WLP. The following is an example of this.

Example 1. Consider the two 212−7 designs:

d1 : I = 126 = 137 = 238 = 12349 = 1235t0 = 45t1 = 12345t2,

d2 : I = 126 = 137 = 248 = 349 = 125t0 = 135t1 = 145t2,

where t0, t1 and t2 denote the factors 10, 11 and 12. The designs d1 and d2

have W = (0, 0, 8, 15, 24, 32, 24, 15, 8, 0, 0, 1), but their AENPs are different. In

particular, they first differ at #
2C

(1)
2 (d1) = 60 and #

2C
(1)
2 (d2) = 54.

Consequently, the AENP is a more refined pattern than the WLP for judging

designs; the WLP is only related to the portion {#
iC

(1)
0 , i = 1, . . .} of the AENP.

On the other hand, from part (2) of Theorem 2, we can see that the MA

criterion only uses information from {#
iC

(k)
j , i, j = 0, 1, . . . , n, k = 1, . . . ,Kj}

without {#
iC

(0)
j , i, j = 0, 1, . . . , n, }. We note that although #

iC
(0)
j can determine

the sum
∑Kj

k=1
#
iC

(k)
j , it cannot determine the vector (#iC

(1)
j , . . . , #

iC
(Kj)
j ) and

iCj =
∑Kj

k=1 k #
iC

(k)
j . Therefore, it is possible for two designs d and d′ with

#
iC

(0)
j (d) > #

iC
(0)
j (d′) to have

∑Kj

k=1
#
iC

(k)
j (d) <

∑Kj

k=1
#
iC

(k)
j (d′), and at the same

time to have iCj(d) =
∑Kj

k=1 k #
iC

(k)
j (d) > iCj(d

′) =
∑Kj

k=1 k #
iC

(k)
j (d′).

Consider the two designs d6 and d7 in Example 4. Although #
2C

(0)
2 (d6) =

8 < #
2C

(0)
2 (d7) = 15, we still have 2C2(d6) = (1× 24 + 3× 4)/2 = 18 < 2C2(d7) =

(2 × 21)/2 = 21. Thus, by sequentially minimizing (3.2) the MA criterion has

it that d6 is an MA design and hence better than d7; under the effect hierarchy
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principle, the GMC criterion has it that d7 is a GMC design and hence is better

than d6. In fact, although both have 9 clear main effects, d7 has 15 clear 2fis

while d6 has only 8. Perhaps using only partial information in the AENP is a

reason why sometimes the best design obtained by the MA criterion is inferior

to the best one obtained by the GMC criterion under the principle above.

From (3.3), we can see that iCj is a linear function of the components of #
iCj

with k as the weight of #
iC

(k)
j , and sequentially maximizing the components of #C

tends to sequentially minimize the components of C. Hence, the optimal designs

under the MA and GMC criteria are often consistent especially for designs with

small runs (see Tables 2 and 3) but there are a significant number of cases where

the two criteria yield different optimal designs. Here is one more example.

Example 2. Consider the three 213−7 designs with 64 runs (designs 13-7.7,

13-7.2, and 13-7.1 in Table 4):

d3 : I = 12347 = 34568 = 2459 = 1456t0 = 256t1 = 136t2 = 235t3,
d4 : I = 12347 = 3458 = 2459 = 356t0 = 256t1 = 456t2 = 346t3,
d5 : I = 12347 = 34568 = 2459 = 1456t0 = 246t1 = 12356t2 = 256t3.

The WLPs of d3, d4 and d5 are, respectively, (0, 14, 28, 24, 24, 17, 12, 8, 0, 0, 0),

(0, 26, 12, 24, 28, 13, 20, 0, 4, 0, 0), and (0, 14, 33, 16, 16, 33, 14, 0, 0, 0, 1), and the

most important parts of their AENPs are shown in Table 1.

Table 1. Some #
iCj ’s of designs d3, d4 and d5.

d3 d4 d5
#
i Cj j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

i = 1 13 13 13 13 13 13

i = 2 78 20, 36, 18, 4 78 23, 0, 24, 16, 15 78 36, 0, 42

According to the MA criterion, d3 is best and d5 is next best. However, from

Table 1, one sees that they all have 13 clear main effects, d3 has 20 clear 2fi’s, d4

has 23 clear 2fi’s, and d5 has 36 clear 2fi’s. Therefore, according to the GMC and

CE criteria their order of optimality should be d5, d4 and d3. The best design d3

under the MA criterion is not the best one among the three.

4. Relationship with Clear Effects Criterion

In order to study the relationship between the CE criterion and the new one,

we first present two formulas for calculating the numbers of clear effects via the

AENP.

Lemma 1. Consider the 2n−m designs with R ≥ III. Then
#
1C

(0)
2 is simply the

number of clear main effects in a design, and
#
2C

(0)
2 −#

1C
(1)
2 is simply the number
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of clear 2fi’s in a design.

Based on Lemma 1 and the related results of Chen and Hedayat (1998), we

can easily obtain the following Theorem 3, which shows that the CE criterion is

the one maximizing the special functions of the AENP in Lemma l.

Theorem 3. (1) When n ≤ 2n−m−1, the CE criterion selects the 2n−m designs

sequentially maximizing
#
1C

(0)
2 and

#
2C

(0)
2 as the optimal ones; (2) when 2n−m−1 <

n < 2n−m − 1, there exist only the designs with R ≤ III, and any 2n−m design

with R = III has neither any clear main effect nor any clear 2fi; (3) for given

n and m, if optimal designs under the CE criterion exist, then the GMC design

must be the best one among all optimal designs under the CE criterion, where the

meaning of “best” is under the comparison in Definition 1 of the GMC criterion.

Now let us discuss the links between the MA and CE criteria. Consider

the designs with R ≥ III. From the analysis in Sections 3 and Theorem 3, we

have found that the MA criterion only uses the information from {#
iC

(k)
j , i, j =

0, 1, . . . , n, k = 1, . . . ,Kj} at (2.1), and choosing optimal designs by the CE cri-

terion only uses the information from {#
iC

(0)
j , i, j = 0, 1, . . . , n}. This implies

that the information used comes from the two separate parts of the set (2.1). As

mentioned above, the two parts have the relation #
iC

(0)
j +

∑Kj

k=1
#
iC

(k)
j =

(

n
i

)

for any i and j. Thus the larger #
iC

(0)
j we choose, the smaller the number

∑Kj

k=1
#
iC

(k)
j we obtain. In many cases, when #

iC
(0)
j is large, the weighted sum

iCj =
∑Kj

k=1 k #
iC

(k)
j tends to be small. Thus sequentially maximizing the se-

quence (#1C
(0)
2 , #

2C
(0)
2 , . . .) tends to sequentially minimize the sequence (3.2). Per-

haps this is the reason why, in many cases, the two criteria would give the same

optimal designs. However, although the relationship between the number #
iC

(0)
j

and the sum
∑Kj

k=1
#
iC

(k)
j is rather clear, the same cannot be said for #

iC
(0)
j and

the weighted sum iCj =
∑Kj

k=1 k #
iC

(k)
j . Therefore, conflicting results from the

two criteria may appear, as shown in the examples given.

Return to consider the relationship with CE criterion. While the CE criterion

cannot distinguish between designs having same numbers of clear main effects

and 2fi’s the new criterion can. The following example illustrates this point.

Example 3. Consider the 218−12 designs with 64 runs. According to the CE

criterion there are 33 best ones with 18 clear main effects and no clear 2fi’s, two

of them are listed in Table 4. Among the 33 designs, under the GMC criterion

the best one is 18-12.1 with #
2C2 = (0, 60, 03, 84, 02, 9), in it there are 60 2fi’s each

aliased with only one 2fi. The worst one is 18-12.33 with #
2C2 = (03, 36, 75, 42),

thus every 2fi of the design is aliased with at least three 2fi’s, and there are
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seven such designs. There are 14 designs for which every 2fi is aliased with at

least two 2fi’s, and 2, 2, 2, 1, and 4 designs that have 32, 8, 6, 4 and 2 2fi’s,

respectively, each aliased with one 2fi. Obviously, for the design 18-12.1, one can

easily de-alias up to 60 2fi’s through the least follow-up experiments if needed.

But for the other designs, one only can de-alias very few 2fi’s by some follow-up

experiments, or it is difficult to de-alias any 2fi’s.

Accordingly, in some sense, the new criterion can be viewed as a refinement

of the CE criterion. Note that CE criterion cannot be used when there are no

clear effects. However there is no limitation on the use of the new criterion, and

it provides more information than the CE criterion.

5. Relationship with Maximum Estimation Capacity Criterion

Cheng and Mukerjee (1998) and Cheng, Steinberg and Sun (1999) discussed

the estimation capacity of a design d. Let Er(d) denote the number of models

containing all the main effects and r 2fi’s, 1 ≤ r ≤ n(n − 1)/2, which can be

estimated by the design d. The design d is said to dominate a design d′ if

Er(d) ≥ Er(d
′) for all r, with strict inequality for at least one r. Furthermore,

a design that maximizes Er(d) for all r is said to have maximum estimation

capacity (MEC). We consider designs with R ≥ III in this and next sections.

Clearly, there are #
2C

(k)
2 /(k + 1) alias sets containing k + 1 2fi’s and #

1C
(k+1)
2

alias sets containing k+1 2fi’s and one main effect. Moreover, an alias set contains

at most l = min{⌊n/2⌋, 2m} 2fi’s, where ⌊x⌋ is the integer part of x. Then all

the alias sets containing 2fi’s but none of the main effect can be partitioned

into l classes. The i-th class consists of the alias sets that contain i + 1 2fi’s,

i = 0, 1, . . . , l − 1. Let Ci be the i-th class. Then |Ci| = #
2C

(i)
2 /(i + 1) − #

1C
(i+1)
2 ,

where | · | denotes the cardinality of a set. Note that |Ci| may be zero for some

i’s. From the definition of Er(d), one has the the following result.

Theorem 4. Er(d) can be expressed as a function of
#
2C2 and

#
1C2 as

Er(d) =











∑

r0+···+rl−1=r

l−1
∏

i=0

(

|Ci|

ri

)

(i + 1)ri , if r ≤ f,

0, otherwise,

(5.1)

where 0 ≤ ri ≤ |Ci|, f = 2n−m − 1 − n.

Thus the MEC criterion can be treated as the one that optimizes a special

function of the AENP. The following discussion further illuminates this point.

Using the notation in Cheng and Mukerjee (1998), it has been shown that

a design d will behave well under the MEC criterion if
∑n+f

i=n+1 mi(d) is large



1698 RUNCHU ZHANG, PENG LI, SHENGLI ZHAO AND MINGYAO AI

and mn+1(d), . . . ,mn+f (d) are close to one another. In other words, a design d

does well under MEC if
∑n+f

i=n+1 mi(d) is large and
∑n+f

i=n+1 m2
i (d) is small. Since

∑n+f
i=n+1 mi(d) =

∑l−1
i=0 |Ci|(i+1) and

∑n+f
i=n+1 m2

i (d) =
∑l−1

i=0 |Ci|(i+1)2, it follows

that a design d that maximizes
∑l−1

i=0 |Ci|(i + 1) and minimizes
∑l−1

i=0 |Ci|(i + 1)2

does well under the MEC criterion.

6. Maximum Estimation Ability

The optimal designs under the MEC criterion can estimate as many models

as possible that involve all the main effects and some 2fi’s, under the assumption

that all 2fi’s not in the model and higher order interactions are negligible. How-

ever, such an assumption seems to be too strong to validate since one usually

does not know whether all the 2fi’s not in the model are absent. In such cases one

would prefer to choose designs in which there is small degree of aliasing between

the main effects and 2fi’s, and between the 2fi’s. We introduce the notion of

estimation ability, and propose a maximum estimation ability criterion to try to

avoid the above assumption.

First, under the effect hierarchy principle, the number of main effects that can

be estimated in a design should be as large as possible, so we should sequentially

maximize the components of #
1C2 first to reduce the degree of the main effects

aliased with 2fi’s, and then sequentially maximize the components of #
2C1 as the

first step of considering 2fi’s. (The #
2C1 can be ignored when considering the

designs with R ≥ III, see Section 7.)

Next, consider the classes Ci for i = 0, 1, . . . , l − 1. Note that there are i + 1

2fi’s in each alias set of class Ci. Hence, a smaller i implies aliasing between the

2fi’s in the alias sets of Ci at a lesser degree. For a given i (i = 0, 1, . . . , l−1), any

model, involving s ≤ n main effects and r ≤
∑i

k=0 |Ck| 2fi’s in different alias sets

of
⋃i

k=0 Ck, can be estimated under the assumption of absence of the 2fi’s in the s

alias sets containing the s main effects, other k|Ck| 2fi’s in the alias sets of Ck for

k = 0, . . . , i, and the interactions involving at least three factors. For convenience,

we call a model involving only the 2fi’s in the alias sets of
⋃i

k=0 Ck an ith-class

model. A good design should sequentially maximize |Ci| for i = 0, 1, . . . , l − 1,

under the condition of sequentially maximizing the components of #
1C2 and #

2C1.

We say that such a design has maximum estimation ability (MEA). Especially,

for a given i, if the design satisfies the above condition for |Ck| (k = 0, 1, . . . , i),

we say that it has MEA for the ith-class model.

Optimal designs under the MEA criterion can estimate as many models as

possible that involve main effects and 2fi’s with minimum confounding. If the

experimenter wishes to de-alias the confounding between the effects, he/she needs

only perform a few follow-up experiments.
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Since |Ci| = #
2C

(i)
2 /(i + 1) − #

1C
(i+1)
2 , for given #

1C2 and #
2C1, sequentially

maximizing |Ci| for i = 0, . . . , l − 1 is equivalent to sequentially maximizing the

components of #
2C2. As a result, a GMC design sequentially maximizes the

estimation ability to the ith-class model for i = 0, . . . , l − 1, and has the MEA.

7. Simplification and More Applications of the AENP

While one may argue that the AENP of a design looks rather complicated,

we emphasize that from the point of view of applications, one needs to consider

only the anterior part of the AENP rather than the whole. If we consider the

designs in which third and higher order interactions are negligible, we only need

to consider the sub-array (#1C1,
#
0C2,

#
1C2,

#
2C1,

#
2C2); this can usually discriminate

different designs. If we consider the designs in which only fourth and higher order

interactions are negligible, the sub-array (#1C1, . . . ,
#
3C3) at (2.3) suffices. As we

know, the former receives more attention in practice. From these small sub-

arrays we can already obtain all the information concerning the numbers of clear

main effects and 2fi’s, and the severity of confounding between the lower-order

effects. Then the complete AENP can be reduced to a few numbers. Especially,

if we only consider the designs of the former case with R ≥ III, we can further

drop #
1C1,

#
0C2 and #

2C1 since #
2C1 can be determined by #

1C2 which precedes it,

and hence need only look to (#1C2,
#
2C2) in (2.3). For the designs in Tables 2–4

in the Appendix, only these two entries are listed.

Aside from the criteria MA, CE, MEC and MEA, which can be obtained

by choosing different functions of the AENP, many other criteria surface. For

example, for the maximal designs of resolution IV proposed by Chen and Cheng

(2006), we have that a 2n−m design of resolution IV is maximal if and only if

the design satisfies the two conditions: #
1C

(0)
2 = n and

∑

k≥1,j≥3
#
jC

(k)
2 +

(

n
2

)

=

2n − (n + 1)2m.

The following is an extended example of the AENP’s applications.

Example 4. Consider the 29−4 designs d6, d7 and d8 (they are 9-4.2, 9-4.1 and

9-4.3 in Table 3, respectively):

d6 : I = 1236 = 1247 = 1258 = 13459, d7 : I = 1236 = 1247 = 1348 = 23459,

d8 : I = 1236 = 2347 = 1348 = 1249.

Their WLPs are (0, 0, 0, 6, 8, 0, 0, 1, 0), (0, 0, 0, 7, 7, 0, 0, 0, 1) and (0, 0, 0, 14, 0, 0,

. . .), respectively. Design d6 has MA in all 29−4 designs. Note that all three

designs have #
1C2 = (9) and #

2C1 = (36), but

#
2C2(d6) = (8, 24, 0, 4), #

2C2(d7) = (15, 0, 21), #
2C2(d8) = (8, 0, 0, 28).
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So, from their AENPs, it is easily seen that all 9 main effects are clear, d6 and

d8 only have 8 clear 2fi’s and d7 has 15. According to the GMC and CE criteria,

d7 is best.

With the AENP, one can sometimes see that some clear 2fi’s are strongly

clear. Consider the designs d6 and d8 again. The both have eight clear 2fi’s. Note

that #
2C

(0)
3 (d8) = (36), which means that none of the 2fi’s of d8 is aliased with any

three-factor interaction (3fi), and hence the eight clear 2fi’s of d8 are all strongly

clear. For design d6, starting from #
2C2(d6), by carefully analyzing #

2C2(d6) =

(8, 24, 0, 4), #
2C3(d6) = (4, 0, 24, 0, 8), #

3C2(d6) = (28, 32, 24), #
3C3(d6) = (0, 24,

24, 36) and #
3C1(d6) = (60, 24), we conclude that all its aliasing cosets involving

2fi’s and 3fi’s, have only the following five forms: one coset containing four 2fi’s

but no 3fi’s, one coset containing four 3fi’s but no 2fi’s, twelve cosets containing

two 2fi’s and two 3fi’s, eight cosets containing one 2fi and four 3fi’s, and eight

cosets containing three 3fi’s but no 2fi’s. Then for the eight clear 2fi’s of d6 shown

in #
2C2(d6), each must be in one of the 8 cosets containing one 2fi and four 3fi’s.

Since every one of such 8 cosets contains 3fi’s, it follows that none of the eight

clear 2fi’s of d6 is strongly clear. This analysis cannot be done using WLPs alone.

8. GMC Designs of 16, 32 and 64 runs

We have obtained all GMC designs of 16 and 32 runs, and the GMC designs,

up to 26 additional columns, of 64 runs. These are listed, respectively, in Tables

2, 3 and 4, and including some simple comparisons with the results of the MA

and CE criteria. Some explanations are given below.

Let a1, . . . , a5 and a6 denote the six independent columns (000001)′, (000010)′,

(000100)′, (001000)′, (010000)′ and (100000)′ , respectively. Then any product of

a1, a2, a3, a4, a5, and a6 also corresponds to a binary sequence, for example a1a3a5

corresponds to (010101)′. These binary sequences are converted into decimal ones

as usual, for example, 28 corresponds to (011100)′ . We omit the converted table

to save space. A 2n−m design can be obtained by selecting a subset of n columns

of C = {1, . . . , 2n−m − 1}, consisting of n − m independent columns and m

additional columns.

For simplicity, in the tables we use n-m.i to denote the i-th good design,

according to the GMC criterion, among 2n−m designs with n factors and m

independent defining words. The additional columns are listed in decimal in

the second part of the tables. The third part is the AENP of the design, here

we only list #
1C2 and #

2C2. We also list the WLP (A3 to A6) and the numbers

{c1, c2} of clear main effects and clear 2fi’s for comparison in the fourth and fifth

parts, respectively. In the last part, the optimality order-numbers of the designs

under the GMC, MA and CE criteria, respectively, in all the non-isomorphic
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2n−m designs are listed, where the subscript s of rs in this part indicates the

number of non-isomorphic designs which have the same order-number r under

its corresponding criterion, and “-” means no clear main effects and 2fi’s. To

save space, we only list a few designs under the GMC criterion, these are best, or

are used as examples in the paper. For parameters n = 2n−m − i, i = 1, 2, 3, the

design is unique up to isomorphism and hence is omitted. Also the best design

with one additional column is omitted.
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Appendix

Table 2. 16-run GMC designs and comparisons with the MA and CE criteria.

Design Additional Columns AENP WLP Cs Order
#
1C2;

#
2C2 A3, . . . , A6 c1,c2 G,M,C

6-2.1 14 7 6; 0,12,3 0,3,0,0 6,0 1,1,1
6-2.3 12 6 1,4,1; 9,6 2,1,0,0 1,5 3,4,3
6-2.4 12 3 0,6; 15 2,0,0,1 0,9 4,3,4
7-3.1 14 7 11 7; 02,21 0,7,0,0 7,0 1,1,1
7-3.3 12 6 10 1,0,6; 6,12,3 4,3,0,0 1,6 3,5,3
7-3.5 12 6 3 0,5,2; 9,12 3,2,1,1 0,4 5,3,4
8-4.1 14 7 11 13 8; 03,28 0,14,0,0 8,0 1,1,1
8-4.2 14 7 3 5 2,0,6; 0,24,0,4 4,6,4,0 2,0 2,4,2
8-4.3 14 7 11 3 1,6,0,1; 7,0,21 3,7,4,0 1,1 3,2,4
8-4.4 12 6 10 14 1,02,7; 7,0,21 7,7,0,0 1,7 4,6,3
8-4.5 14 7 3 12 0,4,4; 4,18,6 4,5,4,2 0,0 5,3, -
9-5.1 14 7 11 13 3 0,8,02,1; 8,02,28 4,14,8,0 0,0 1,1, -
9-5.2 14 7 11 3 6 0,2,5,2; 2,12,18,4 6,10,8,4 0,0 2,3, -
9-5.3 12 6 10 14 3 0,2,0,6,1; 2,12,18,4 8,10,4,4 0,0 3,5, -
9-5.4 14 7 3 12 9 02,9; 0,18,18 6,9,9,6 0,0 4,2, -
9-5.5 14 7 3 12 6 02,6,3; 0,18,18 7,9,6,6 0,0 5,4, -
10-6.1 14 7 11 13 3 6 02,8,0,2; 0,16,0,24,5 8,18,16,8 0,0 1,1, -
10-6.3 12 6 10 14 3 5 02,3,4,3; 0,6,27,12 10,16,12,12 0,0 3,4, -
10-6.4 14 7 3 12 6 15 03,10; 02,45 10,15,12,15 0,0 4,3, -
11-7.1 14 7 11 13 3 6 12 03,8,3; 02,24,16,15 12,26,28,24 0,0 1,1, -
11-7.2 14 7 11 13 3 6 5 03,8,0,3; 02,24,16,15 13,26,24,24 0,0 2,3, -
11-7.3 14 7 3 12 9 6 5 03,5,6; 02,15,40 13,25,25,27 0,0 3,2, -
12-8.1 14 7 11 13 3 6 12 9 04,12; 03,48,0,18 16,39,48,48 0,0 1,1, -
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Table 3. 32-run GMC designs and comparisons with the MA and CE criteria.

Design Additional Columns AENP WLP Cs Order

#
1C2;

#
2C2 A3, . . . , A6 c1,c2 G,M,C

7-2.1 30 7 7; 15,6 0,1,2,0 7,15 1,1,1

8-3.1 30 7 11 8; 13,12,3 0,3,4,0 8,13 1,1,1

9-4.1 30 7 11 13 9; 15,0,21 0,7,7,0 9,15 1,2,1

9-4.2 30 7 11 19 9; 8,24,0,4 0,6,8,0 9,8 2,1,22

9-4.3 28 14 22 26 9; 8,02,28 0,14,0,0 9,8 3,5,22

10-5.1 30 7 11 19 29 10; 0,40,02,5 0,10,16,0 10,0 1,1,14

11-6.1 28 14 22 26 7 11 11; 02,24,16,15 0,26,0,24 11,0 1,2,12

11-6.2 28 14 7 19 25 11 11; 02,15,40 0,25,0,27 11,0 2,1,12

12-7.1 28 14 22 26 7 11 13 12; 03,48,0,18 0,39,0,48 12,0 1,2,12

12-7.2 28 14 7 19 25 11 13 12; 03,36,30 0,38,0,52 12,0 2,1,12

13-8.1 28 14 22 26 7 11 13 19 13; 04,60,18 0,55,0,96 13,0 1,1,1

14-9.1 28 14 22 26 7 11 13 19 21 14; 05,84,7 0,77,0,168 14,0 1,1,1

15-10.1 28 14 22 26 7 11 13 19 21 25 15; 06,105 0,105,0,280 15,0 1,1,1

16-11.1 28 14 22 26 7 11 13 19 21 25 31 16; 07,120 0,140,0,448 16,0 1,1,1

17-12.1 28 14 22 26 7 11 13 19 21 25 31 3 0,16,06,1; 16,06,120 8,140,112,448 0,0 1,1, -

18-13.1 28 14 22 26 7 11 13 19 21 25 31 3 6 02,16,05,2; 0,32,05,112,9 16,148,224,560 0,0 1,1, -

19-14.1 28 14 22 26 7 11 13 19 21 25

31 3 6 12 03,16,04,3; 02,48,04,96,27 24,164,344,784 0,0 1,1, -

20-15.1 28 14 22 26 7 11 13 19 21 25

31 3 6 12 9 04,16,03,4; 03,64,03,96,0,30 32,189,480,1120 0,0 1,2, -

20-15.2 28 14 22 26 7 11 13 19 21 25

31 3 6 12 24 04,16,03,4; 03,64,03,72,54 32,188,480,1128 0,0 2,1, -

21-16.1 28 14 22 26 7 11 13 19 21 25

31 3 6 12 9 24 05,16,02,5; 04,80,02,64,36,30 40,221,640,1600 0,0 1,2, -

21-16.2 28 14 22 26 7 11 13 19 21 25

31 3 6 12 24 17 05,16,02,5; 04,80,02,40,90 40,220,641,1608 0,0 2,1, -

22-17.1 28 14 22 26 7 11 13 19 21 25

31 3 6 12 9 24 18 06,16,0,6; 05,96,0,64,0,60,11 48,263,832,2224 0,0 1,1, -

23-18.1 28 14 22 26 7 11 13 19 21 25

31 3 6 12 9 24 18 23 07,16,7; 06,112,64,02,77 56,315,1064,3024 0,0 1,1, -

24-19.1 28 14 22 26 7 11 13 19 21 25

31 3 6 12 9 24 18 23 29 08,24; 07,192,03,84 64,378,1344,4032 0,0 1,1,

25-20.1 28 14 22 26 7 11 13 19 21 25

31 3 6 12 9 24 18 23 29 5 09,24,02,1; 08,216,02,84 76,442,1656,5376 0,0 1,1, -

26-21.1 28 14 22 26 7 11 13 19 21 25

31 3 6 12 9 24 18 23 29 5 10 010,24,0,2; 09,240,0,72,13 88,518,2032,7032 0,0 1,1, -

27-22.1 28 14 22 26 7 11 13 19 21 25 31

3 6 12 9 24 18 23 29 5 10 20 011,24,3; 010,264,48,39 100,606,2484,9064 0,0 1,1, -

28-23.1 28 14 22 26 7 11 13 19 21 25 31

3 6 12 9 24 18 23 29 5 10 20 27 012,28; 011,336,0,42 112,707,3024,11536 0,0 1,1, -
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Table 4. 64-run GMC designs and comparisons with the MA and CE criteria.
Design Additional Columns AENP WLP Cs Order

#
1 C2;

#
2C2 A3, . . . , A6 c1,c2 G,M,C

8-2.1 60 15 8; 28 0,0,2,1 8,28 1,1,1

9-3.1 60 15 22 9; 30,6 0,1,4,2 9,30 1,1,1

10-4.1 60 15 22 39 10; 33,12 0,2,8,4 10,33 1,1,1

11-5.1 60 15 22 39 21 11; 34,18,3 0,4,14,8 11,34 1,1,1

12-6.1 60 15 22 39 21 59 12; 36,24,6 0,6,24,16 12,36 1,1,1

13-7.1 60 15 22 39 21 59 19 13; 36,0,42 0,14,33,16 13,36 1,2,1
13-7.2 60 14 22 11 19 7 13 13; 23,0,24,16,15 0,26,12,24 13,23 2,37,2
13-7.7 60 15 22 39 19 41 26 13; 20,36,18,4 0,14,28,24 13,20 7,1,7

14-8.1 60 14 22 11 19 7 13 21 14; 25,02,48,0,18 0,39,16,48 14,25 1,42,12
14-8.17 60 15 22 35 26 37 19 46 14; 8,52,18,8,5 0,22,40,36 14,8 17,1,17

15-9.1 60 14 22 11 19 7 13 21 26 15; 27,03,60,18 0,55,22,96 15,27 1,40,1
15-9.27 60 15 22 35 26 37 19 46 59 15; 0,60,30,0,15 0,30,60,60 15,0 27,1,27

16-10.1 60 14 22 11 19 7 13 21 26 25 16; 29,04,84,7 0,77,28,168 16,29 1,45,1
16-10.20 60 15 22 35 26 37 19 46 59 29 16; 0,36,66,02,18 0,43,81,96 16,0 20,1,1930

17-11.1 60 14 22 11 19 7 13 21 26 25 31 17; 31,05,105 0,105,35,280 17,31 1,38,1
17-11.17 60 15 22 35 26 37 19 49 29 55 41 17; 0,18,81,16,02,21 0,59,108,150 17,0 17,1,1724

18-12.1 60 14 22 11 19 7 13 21 38 25 31 58 18; 0,60,03,84,02,9 0,92,112,280, 18,0 1,3,133

18-12.6 60 15 22 35 26 37 19 49 29 55 41 50 18; 0,6,75,48,03,24 0,78,144,228, 18,0 6,1,133

19-13.1 60 15 22 35 26 49 37 55 19 50 29 46 41 19; 02,48,96,04,27 0,100,192,336 19,0 1,1,125

20-14.1 60 15 22 35 26 49 37 55 19 50 29 46
41 59 20; 03,160,05,30 0,125,256,480 20,0 1,1,124

21-15.1 56 28 44 52 14 22 26 38 42 50 62 7
11 19 13 21; 04,80,02,64,36,30 0,221,0,1600 21,0 1,16,116

21-15.16 56 11 22 37 7 59 28 42 14 49 19 38
21 41 26 21; 05,60,126,24 0,204,0,1680 21,0 16,1,116

22-16.1 56 28 44 52 14 22 26 38 42 50 62 7
11 19 13 21 22; 05,96,0,64,0,60,11 0,263,0,2224 22,0 1,15,115

22-16.14 56 11 22 37 7 59 28 42 14 49 19 38

21 41 26 44 22; 05,6,105,120 0,250,0,2304 22,0 14,1,115

23-17.1 56 28 44 52 14 22 26 38 42 50 62 7
11 19 13 21 25 23; 06,112,64,02,77 0,315,0,3024 23,0 1,9,19

23-17.8 56 11 22 37 7 59 28 42 14 49 19 38
21 41 26 44 13 23; 06,28,144,81 0,304,0,3105 23,0 8,12,19

23-17.9 56 11 22 37 7 59 28 42 14 49 13 26
47 50 19 21 35 23; 06,21,168,54,10 0,304,0,3105 23,0 9,12,19

24-18.1 56 28 44 52 14 22 26 38 42 50 62 7
11 19 13 21 25 31 24; 07,192,03,84 0,378,0,4032 24,0 1,8,18

24-18.8 56 11 22 37 7 59 28 42 14 49 13 26
47 50 19 21 35 38 24; 07,48,198,30 0,365,0,4138 24,0 8,1,18

25-19.1 56 28 44 52 14 22 26 38 42 50 62 7
11 19 13 21 25 31 35 25; 08,216,02,84 0,442,0,5376 25,0 1,5,15

25-19.5 56 11 22 37 7 59 28 42 14 49 13 26
47 50 19 21 35 38 52 25; 08,90,210 0,435,0,5440 25,0 5,1,15

26-20.1 56 28 44 52 14 22 26 38 42 50 62 7
11 19 13 21 25 31 35 37 26; 09,240,0,72,13 0,518,0,7032 26,0 1,4,14

26-20.4 56 11 22 37 7 59 28 42 14 49 13 26
47 50 19 21 35 38 52 25 26; 09,160,165 0,515,0,7062 26,0 4,1,14

27-21.1 56 11 22 37 7 59 28 42 14 49 13 26 47
50 19 21 35 38 25 31 44 27; 010,264,48,39 0,606,0,9064 27,0 1,2,12

27-21.2 56 11 22 37 7 59 28 42 14 49 13 26 47
50 19 21 35 38 52 55 25 27; 010,231,120 0,605,0,9075 27,0 2,1,12

28-22.1 56 11 22 37 7 59 28 42 14 49 13 26 47
50 19 21 35 38 25 31 44 41 28; 011,336,0,42 0,707,0,11536 28,0 1,2,12

28-22.2 56 11 22 37 7 59 28 42 14 49 13 26 47
50 19 21 35 38 52 55 25 31 28; 011,300,78 0,706,0,11548 28,0 2,1,12

29-23.1 56 11 22 37 7 59 28 42 14 49 13 26 47
50 19 21 35 38 52 55 25 31 44 29; 012,364,42 0,819,0,14560 29,0 1,1,1

30-24.1 56 11 22 37 7 59 28 42 14 49 13 26 47
50 19 21 35 38 52 55 25 31 44 41 30; 013,420,15 0,945,0,18200 30,0 1,1,1

31-25.1 56 11 22 37 7 59 28 42 14 49 13 26 47
50 19 21 35 38 52 55 25 31 44 41 62 31; 014,465 0,1085,0,22568 31,0 1,1,1

32-26.1 56 11 22 37 7 59 28 42 14 49 13 26 47
50 19 21 35 38 52 55 25 31 44 41 62 61 32; 015,496 0,1240,0,27776 32,0 1,1,1
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