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Abstract: This paper presents a new statistical surface analysis framework that

aims to accurately and efficiently localize regionally specific shape changes between

groups of 3D surfaces. With unknown distribution and small sample size of the

data, existing shape morphometry analysis involves testing thousands of hypothe-

ses for statistically significant effects through permutation. In this work, we de-

velop a novel hybrid permutation test approach to improve the system’s efficiency

by approximating the permutation distribution of the test statistic with a Pearson

distribution series that involves the calculation of the first four moments of the

permutation distribution. We propose to derive these moments theoretically and

analytically without any permutation. Detailed derivations and experimental re-

sults using two different test statistics are demonstrated using simulated data and

brain data for shape morphometry analysis. Furthermore, an adaptive procedure

is utilized to control the False Discovery Rate (FDR) for increased power of finding

significance.
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1. Introduction

Permutation tests are among the most powerful nonparametric tests that
can be applied when parametric tests do not work. For example, when the data
distribution is unknown and sample size is not large enough, permutation tests
can obtain p-values from permutation distributions of a test statistic, rather
than from parametric distributions. In addition, permutation tests require few
assumptions concerning statistical distributions but exchangeability. They be-
long to the nonparametric “distribution-free” category of hypothesis testing and
have been used successfully in both structural MR image analysis by Nichols and
Holmes (2001), and functional MR image analysis by Pantazis, Leahy, Nichols
and Styner (2004). There are three major approaches to constructing the permu-
tation distribution (Hubert (1987), Mielke and Berry (1994), Pesarin (2001) and
Good (2005)). First, exact permutation enumerates all possible arrangements.
The second approach is an approximate permutation distribution based on ran-
dom sampling from all possible permutations. Third, permutation distribution
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approximation uses the analytical moments of the exact permutation distribu-
tion under the null hypothesis. The computational cost is the main disadvantage
of the exact permutation, due to the factorial increase in the number of permu-
tations with the increasing number of subjects. The second technique has the
problem of replication, and causes more type I errors. When a large number of
repeated tests are needed, the random permutation strategy is also computation-
ally expensive to achieve satisfactory p-value accuracy. Finally, the moments of
the exact permutation distribution may not exist. In addition, if they do, it may
be difficult to obtain them.

In this paper, we propose a hybrid strategy to take advantage of nonpara-
metric permutation tests and a parametric Pearson distribution approximation
for both accuracy/flexibility and efficiency. Specifically, we employ a general
theoretical method to derive the moments of the permutation distribution for
any linear test statistic on multivariate data. The key idea is to separate the
moments of the permutation distribution into two parts: a permutation of test
statistic coefficients and functions of the data. We can then obtain the moments
without any permutations since the permutation of test statistic coefficients can
be derived theoretically. Regarding nonlinear test statistics, one strategy is to use
a monotonic linear test statistic to replace the original nonlinear one. Since only
the order of test statistics of all permutations matters for p-values, the mono-
tonic linear test statistic shares the same p-value with the original nonlinear test
statistic. Given the first four moments, the permutation distribution can be well-
fitted by Pearson distribution series. The p-values are then estimated without
any real permutation. For multiple comparison of a two-group differences, given
the sample sizes n1 = 21 and n2 = 21, with the number of tests M = 2, 000,
we need to conduct M × (n1 + n2)!/n1!/n2! ≈ 1.1 × 1015 permutations for the
exact permutation test. Even for 20, 000 random permutations per test, we still
need M ×20, 000 ≈ 4×107 permutations. Alternatively, our hybrid permutation
method using a Pearson distribution approximation only involves the calculation
of analytically derived first four moments of the exact permutation distributions
while achieving good robustness and high accuracy in addition to its efficiency
(see Section 7). Instead of the calculating test statistics in factorial scale with ex-
act permutations, our hybrid method only requires O(n) or O(n2) computational
cost depending on the choices of test statistics, where n = n1 + n2.

Accurate and efficient brain morphometry analysis is of great importance
in detecting morphological changes in structures of interest for neuroscience re-
search, medical diagnosis, and treatment. Different techniques have been studied
in Chung, Worsley, Paus, Cherif, Giedd, Rapoport and Evans (2001) and Shen
and Davatzikos (2003). The aim is to identify and characterize localized struc-
tural differences of the human brain within and across groups of healthy indi-
viduals and/or persons with various diseases (Ashburner and Friston (2004)). In
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neuroimaging research, there is increasing evidence that surface shape analysis
of brain structures provides new information that is not available with conven-
tional analysis Thompson, Hayashi, De, Zubicaray, Janke, Rose, Semple, Hong,
Herman, Gravano, Doddrell and Toga (2004) and Styner, Lieberman, McClure,
Weingberger, Jones and Gerig (2005)). A critical issue in surface morphometry
is the shape description and representation. Various strategies have been inves-
tigated recently in the literature, such as Brechbuhler, Gerig and Kubler (1995),
Dryden and Mardia (1998), Wang and Staib (2000), Thompson, Hayashi, De,
Zubicaray, Janke, Rose, Semple, Hong, Herman, Gravano, Doddrell and Toga
(2004), Yushkevich, Zhang and Gee (2006) and Zhou, Park, Styner and Wang
(2007). The SPHARM approach using spherical harmonics as basis functions
for a parametric surface description was proposed in Brechbuhler, Gerig and
Kubler (1995). The correspondence across different surfaces is established by
aligning the parameterizations via the first order ellipsoid. The present work em-
ploys the SPHARM-PDM shape description (Styner, Oguz, Xu, Brechbuehler,
Pantazis, Levitt, Shenton and Gerig (2006)), which leads to corresponding loca-
tion vectors across all surfaces for our subsequent statistical analysis of surface
shape.

In this paper, we focus on the surface shape analysis for two groups, though
our method can be extended to the multi-group case. As shown in Figure 1, at
each corresponding position on the surfaces, we test whether there is significant
mean vector difference between location vectors of two groups. If a hypothesis
test leads to a p-value lower than the pre-chosen α-level, we reject the null hy-
pothesis and conclude that a significant shape difference exists at this surface
location.

Figure 1. Top: two groups of hippocampus surfaces with corresponding
location vectors; Bottom: statistical analysis of surface shape (hot color
coded: red denotes significantly different; blue denotes no difference).

The distribution of the location vectors is unknown, there is a limited number
of subject samples, and the same tests are repeated on thousands of locations.
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Yet without any permutation, we can accurately estimate the p-value of the
permutation distribution of the test statistic at each surface locations using our
hybrid approach to surface shape analysis.

The analysis of the location vectors involves testing thousands of hypotheses.
False positives must be controlled over all tests. Common techniques to handle
multiple testing problems in imaging include cluster-size thresholding, Random
Field Theory (Taylor and Worsley (2007)), controlling the Family-Wise Error
Rate (FWER), and the False Discovery Rate (FDR) (Benjamini and Hochberg
(1995)). Compared with the FDR, FWER control is too conservative for many
applications. FDR control is becoming more popular due to its power of find-
ing real discoveries through the control of the fraction of false discoveries over
total discoveries (Benjamini and Hochberg (1995), Storey (2002) and Benjamini,
Krieger and Yekutieli (2006)). The FDR method was initially proposed by Ben-
jamini and Hochberg (1995), so called BH’s FDR. In this work, we develop a
Region of Interest (ROI) constrained adaptive FDR to enhance the power of
finding true discoveries.

2. Shape Descriptor and Surface Alignment

We use the SPHARM-PDM software developed by Styner, Oguz, Xu, Brech-
buehler, Pantazis, Levitt, Shenton, and Gerig (2006) to establish surface corre-
spondence and align the surface location vectors across all subjects. The sam-
pled SPHARM-PDM is a smooth, accurate, fine-scale shape representation. The
spherical parameterization is computed via optimizing an equal area mapping of
the 3D voxel mesh onto the sphere and minimizing angular distortions. The basis
functions of the parameterized surface are spherical harmonics. Each individual
SPHARM description is composed of a set of coefficients, weighting the basis
functions. Truncating the spherical harmonic series at different degrees would re-
sult in object representations at different levels of detail. The surfaces of different
subjects also get aligned via the first order ellipsoid from the spherical harmonic
coefficients. The surface shapes of different objects are thus represented by the
same number of location vectors (with each location vector consisting of the spa-
tial x, y, and z coordinates of the corresponding vertex on the SPHARM-PDM
surface) for our subsequent statistical analysis of surface shape.

3. Hypothesis and Test Statistics

Given registered location vectors across all subjects, surface shape morphom-
etry analysis becomes a two-sample test for equality of means at each surface
location. The hypothesis is typically constructed as:

H0 : µ
˜A

= µ
˜B

vs. Ha : µ
˜A

6= µ
˜B

, (3.1)
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where µ
˜A

= [µ(x)
A µ

(y)
A µ

(z)
A ]T and µ

˜B
= [µ(x)

B µ
(y)
B µ

(z)
B ]T are the three dimensional

mean vectors of group A and group B.

3.1. Univariate mean difference test statistics

To test the equality of two sample mean vectors, we can choose univariate
group mean differences x̄A−x̄B, ȳA−ȳB, z̄A−z̄B as test statistics for three partial
tests, where x̄A, x̄B, ȳA, ȳB, z̄A, z̄B are the univariate sample means of group
A and group B in x, y and z components, respectively. Then we determine the
existence of shape difference at a location if any of the three partial tests gives a
p-value less than the pre-chosen significance level.

3.2. Modified Hotelling’s T 2 test statistics

Hotelling’s T 2 is an optimal multivariate test statistic for mean vector dif-
ference testing under multivariate normality (Johnson and Wichern (2002) and
Liao (2002)). It is defined as

T =
n1n2

n1 + n2
(X̄A − X̄B)T S−1

pooled(X̄A − X̄B),

where the pooled variance-covariance matrix Spooled = [(n1)SA+(n2−1)SB]/(n1+
n2−2) is a combination of sample variance-covariance matrices of group A and of
group B, and X̄A and X̄B are mean vectors of group A and group B. However, it
is impossible to compute the pooled covariance matrix without real permutations.
We resolve this by replacing the pooled covariance matrix Spooled in Hotelling’s
T 2 with the sample variance-covariance matrix S over all the subjects of the two
groups. This leads to a modified T 2 as

T ∗ = (X̄A − X̄B)T S−1(X̄A − X̄B).

Since it has been proved in Wald and Wolfowitz (1944) that the modified T 2 is
a monotonic function of Hotelling’s T 2, the two statistics share the same p-value
in permutation tests.

4. Hybrid Permutation

4.1 Pearson distribution series

The Pearson distribution series (Pearson I ∼ VII) is a family of probability
distributions that are more general than the normal distribution (Hubert (1987)).
As indicated in Figure 2 (Hahn and Shapiro (1967)), it covers all distributions
in the (β1, β2) plane and includes the normal, beta, gamma, log-normal, etc.,
where distribution shape parameters β1, β2 are, respectively, the square of the
standardized measure of skewness and of peakness. Given the first four moments,
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Figure 2. Left: Regions in (β1, β2) plane for various types of Pearson
distribution series; Right: Regions in (β1, β2) plane for various types of
parametric distributions (Hahn and Shapiro (1967)).

the Pearson distribution series can be utilized to approximate the permutation
distribution of the test statistic.

4.2. Theoretical general derivation of moments

In order to approximate the permutation distribution with a Pearson distri-
bution, the moments of the exact permutation distribution need to be computed.
In this section, we first describe our general method regarding this derivation for
linear test statistics on one-dimensional and on multivariate data. Then we show
our specific mathematical formulations for mean difference and Hotelling’s T 2

test statistics used in the surface morphometry analysis.
Let X = [x1 · · ·xn]T be the one-dimensional data, and T = CT PX denote

the linear test statistic for the permutation test with C = [c1 · · · cn]T the linear
test statistic vector. The permutation matrix P is a matrix that has one entry
of 1 in each row and each column, and 0’s elsewhere; it permutes the rows
of an identity matrix according to some permutation of the numbers 1 to n.

For example, if P =

0 0 1
1 0 0
0 1 0

, X = [x1 x2 x3]T and C = [c1 c2 c3]T , then

PX = [x3 x1 x2]T and T = CT PX = c2x1 + c3x2 + c1x3 =
∑

i cπ(i)xi, where
(π(1), π(2), π(3)) = (2, 3, 1) denotes a permutation of vector data by row. Then
the linear test statistic can be denoted as T = CT PX =

∑
i cπ(i)xi. The rth
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moment of T is

E(T r(X,π)|X)

= E
(
(CT PX)r

)
=

1
n!

∑
π

( ∑
i

cπ(i)xi

)r
=

1
n!

∑
π

∑
i1,...,ir

( r∏
k=1

cπ(ik)xik

)
=

1
n!

∑
π

∑
i1,...,ir

( r∏
k=1

xik

r∏
k=1

cπ(ik)

)
=

∑
i1,...,ir

( r∏
k=1

xik

1
n!

∑
π

r∏
k=1

cπ(ik)

)
. (4.1)

To compute (1/n!)
∑

π

∏r
k=1 cπ(ik), partition the index space U = {1 · · ·n}r into∪

(λ1,...,λq)∈L U (λ1,...,λq), where L = {(λ1, . . . , λq) : λ1, . . . , λq ∈ Z+; λ1 ≤ · · · ≤
λq; λ1 + · · · + λq = r}. U (λ1,...,λq) means that all r indices are permuted into
q different numbers, and each number corresponds to λi indices. When r = 3,
U = U (1,1,1)

∪
U (1,2)

∪
U (3), where U (1,1,1) is the set of {i1 6= i2 and i1 6= i3 and

i2 6= i3} with q = 3 and λ1 = λ2 = λ3 = 1, U (1,2) is the set of {i1 = i2 6= i3
or i1 = i3 6= i2 or i2 = i3 6= i1} with q = 2 and λ1 = 1, λ2 = 2, and U (3) is
the set of {i1 = i2 = i3} with q = 1 and λ1 = 3. Since permutation is equally
related to all r indices, (1/n!)

∑
π

∏r
k=1 cπ(ik) is invariant in each category, i.e.,

(1/n!)
∑

π

∏r
k=1 cπ(ik) = a(λ1,...,λq) if (i1 · · · ir) ∈ U (λ1,...,λq). Eventually, the rth

moment is:

E(T r(X,π)|X) =
∑

λ1,...,λq

a(λ1,...,λq)

∑
(i1,...,ir)∈U(λ1,...,λq)

( r∏
k=1

xik

)
. (4.2)

Note that (4.2) separates the permutation from the data. To get the mo-
ments, we only need to derive the permutation of the coefficients of pre-chosen
test statistics and calculate the summation terms of data. Due to the simple
pattern of the coefficients of test statistics, which is the same for repeated tests,
we can derive the moments of the permutation distribution without permuting
the data. Note that the computational cost of data summation terms for the rth
moment in each index subspace can be reduced to O(n) , not O(nr).

The discussed approach can be easily extended to the multivariate case.
Consider the linear test statistic T =

∑
i,j eπ(i),jxi,j , where X is a n × m matrix

with n observations on m variables, E is a n × m linear test statistic matrix,
and π(i) is a row permutation that permutes the row index i from 1 to n. The
moments for multivariate data are then derived similarly as in Eq. (4.1).

E(T r(X,π)|X) =
1
n!

∑
π

( ∑
i,j

eπ(i),jxi,j

)r
=

1
n!

∑
π

∑
i1,...,ir
j1,...,jr

( r∏
k=1

eπ(ik),jk
xik,jk

)
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=
1
n!

∑
π

∑
i1,...,ir
j1,...,jr

( r∏
k=1

xik,jk

r∏
k=1

eπ(ik),jk

)

=
∑

i1,...,ir
j1,...,jr

( r∏
k=1

xik,jk

1
n!

∑
π

r∏
k=1

eπ(ik),jk

)
. (4.3)

Similarly, we can partition the row index space U = {1, . . . , n}r into
∪

(λ1,...,λq)∈L

U (λ1,...,λq). Thus the rth moment for multivariate case is:

E
(
T r(X,π)|X

)
=

∑
j1,...,jr

∑
λ1,...,λq

a(λ1,...,λq),j1,...,jr

∑
(i1,...,ir)∈U(λ1,...,λq)

( r∏
k=1

xik,jk

)
.

(4.4)
Alternatively, all a’s can be calculated by computer simulation without analytical
derivation. Note that the computational cost of data summation terms for the
rth moment in each index subspace can be reduced to O(mrn), not O(mrnr).

4.3. Derivation of moments for specific test statistics

In surface morphometry analysis, suppose we have two groups of location
vectors for each corresponding surface position, and that the numbers of sub-
jects in the two groups are n1 and n2. For each location on the surface, let
X = [x1 · · ·xn1 xn1+1 · · ·xn1+n2 ]

T , Y = [y1 · · · yn1 yn1+1 · · · yn1+n2 ]
T and Z =

[z1 · · · zn1 zn1+1 · · · zn1+n2 ]
T denote the x, y, z components of the location vectors

across all subjects. To analyze the surface shape difference between two groups,
we test the null hypothesis (3.1) at each location one by one and independently,
and then detect the locations with significant shape changes. Note that mean
vector difference is used as the test statistic. For the hypothesis (3.1), T =
[TX TY TZ ]T , where TX =

∑n1
i=1 xi/n1 −

∑n1+n2
i=n1+1 xi/n2 = CPX, TY = CPY ,

and TZ = CPZ. The mean difference vector C = [(1/n1)11×n1 , (−1/n2)11×n−2].
Since TX , TY and TZ have the same C, their moments coefficients a’s are the
same. Following the discussed method, we demonstrate below how to derive the
moments coefficients for the first four moments of TX . The derivation of moments
coefficients for TY and TZ can be calculated in the same way.

First moment, U = U (1):

a(1) =
1

(n1 + n2)!

∑
π

cπ(i1) =

(
n1

1

)
1
n1

−
(

n2

1

)
1
n2(

n1 + n2

1

) = 0, E(TX(X,π)|X) = 0.
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Second moment, U = U (1,1)
∪

U (2):

a(1,1) =
1

(n1 + n2)!

∑
π

i1 6=i2

cπ(i1)cπ(i2) =

(
n1

2

)
1
n2

1

+
(

n2

2

)
1
n2

2

−
(

n1

1

)(
n2

1

)
1

n1n2(
n1 + n2

2

)
= − 1

n1n2(n1 + n2 − 1)
,

a(2) =
1

(n1 + n2)!

∑
π

i1 6=i2

cπ(i1)cπ(i2) =
1

(n1 + n2)!

∑
π

c2
π(i)

=

(
n1

1

)
1
n2

1

+
(

n2

1

)
1
n2

2(
n1 + n2

2

) =
2

n1n2(n1 + n2 − 1)
,

E(T 2
X(X,π)|X) = a(1,1)

∑
(i1,i2)∈U(1,1)

xi1xi2 + a(2)

∑
(i1,i2)∈U(2)

xi1xi2

= a(1,1)

∑
i1 6=i2

xi1xi2 + a(2)

∑
i1

xi1
2.

The third and fourth moments are given in the online supplement (http://www3.
stat.sinica.edu.tw/statistica). Note that the third moment is zero in the balanced
design (n1 = n2).

For the modified Hotelling’s T 2 test statistic, let

D =

x1 · · ·xn1 xn1+1 · · ·xn1+n2

y1 · · · yn1 yn1+1 · · · yn1+n2

z1 · · · zn1 zn1+1 · · · zn1+n2

T

denote the location vector matrix over all subjects in both groups, then T ∗ =
E((CT PV )S−1(CT PV )T ) = E((CT PX)(CT PX)T ), where V = DS−1/2 is used
for simplicity. For the rth moment,

E(T ∗r)=E(((CT PX)(CT PX)T )r)=E((CT PV V T P T C)r)=E((CT PWP T C)r).

Since W = V V T is a square matrix, there is no difference between the permuta-
tion of row and column indices, and

E(T ∗r(W,π)|W ) =
∑

λ1,...,λq

a(λ1,...,λq)

∑
(i1,...,ir;ir+1,...,i2r)∈U(λ1,...,λq)

( r∏
k=1

wik,ir+k

)
.

The equation above also shows that the derivation of moments for the modified
Hotelling’s T 2 is separable since here π(i, j) = (π(i), π(j)).
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First moment, U = U (1,1)
∪

U (2):

a(1,1) = − 1
n1n2(n1 + n2 − 1)

, a(2) =
1

n1n2
,

E(T ∗(W,π)|W ) = a(1,1)

∑
(i1,i2)∈U(1,1)

wi1,i2 + a(2)

∑
(i1,i2)∈U(2)

wi1,i2

= a(1,1)

∑
i1 6=i2

wi1,i2 + a(2)

∑
i1

wi1,i1 .

Second moment, U = U (1,1,1,1)
∪

U (1,1,2)
∪

U (1,3)
∪

U (2,2)
∪

U (4):

a(1,1,1,1) =
[(

n1

4

)
1
n4

1

−
(

n1

3

)(
n2

1

)
1

n3
1n

1
2

+
(

n1

2

)(
n2

2

)
1

n2
1n

2
2

−
(

n1

1

)(
n2

3

)
1

n1
1n

3
2

+
(

n2

4

)
1
n4

2

]/(
n1 + n2

4

)
,

a(1,1,2) =
[(

n1

3

)
1
n4

1

− 2
3

(
n1

2

)(
n2

1

)
1

n3
1n

1
2

+
1
3

(
n1

2

)(
n2

1

)
1

n2
1n2

2

+
1
3

(
n1

1

)(
n2

2

)
1

n2
1n

2
2

− 2
3

(
n2

1

)(
n2

2

)
1

n1
1n

3
2

+
(

n2

3

)
1
n4

2

]/(
n1 + n2

3

)
,

a(1,3) =
[(

n1

2

)
1
n4

1

− 1
2

(
n1

1

)(
n2

1

)
1

n3
1n

1
2

− 1
2

(
n1

1

)(
n2

1

)
1

n1
1n

3
2

+
(

n2

2

)
1
n4

2

]/(
n1 + n2

2

)
,

a(2,2) =
[(

n1

2

)
1
n4

1

+
(

n1

1

)(
n2

1

)
1

n2
1n

2
2

+
(

n2

2

)
1
n4

2

]/(
n1 + n2

2

)
,

a(4) =
[(

n1

1

)
1
n4

1

+
(

n2

1

)
1
n4

2

]/(
n1 + n2

1

)
.

The derivations of the third and fourth moments are described in the online
supplement (http://www3.stat.sinica.edu.tw/statistica).

5. Multiple Comparison via Adaptive ROI Constrained FDR

Determining whether a location on the brain surface has significant group
shape difference or not corresponds to performing a hypothesis test of (3.1) at
that position. Clearly, the location-wise p-values are spatially dependent. The
significance rule, applied in the conventional False Discovery Rate (FDR) ap-
proach is defined as the expected proportion of false positives among the declared
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significant results. It is more powerful and less stringent than the Family-Wise-
Error-Rate (FWER) approach. In this work, we adopt the adaptive concept of
the FDR (Benjamini, Krieger and Yekutieli (2006)) and develop a Region of In-
terest (ROI) constrained adaptive FDR (Zhou, Park, Styner and Wang (2007)),
with detailed procedures as follows.

Step 1: Given an observed statistic T ∗ (i.e., modified T 2), the corresponding
critical value at the pre-chosen significance level αROI is calculated
based on the constructed Pearson distribution. Then, the voxel is in-
cluded in the ROI if its T ∗ value is larger than the critical value.

Step 2: For {pi|location i ∈ ROI}, order the set of observed p-values as p(1) ≤
· · · ≤ p(mr), where mr is the number of locations within ROI.

Step 3: Starting with p(mr) and in decreasing order, find the largest k for which
p(k) ≤ k[q/((1 + q)M)], where q is the preset FDR error rate and m is
the total number of location vectors on the surface.

Step 4: Estimate the number of null locations by using m̂0 = (1 + q)(M − k).

Step 5: Calculate the “BH-FDR-adjusted p-values” for locations within the ROI
through pBH

(i) = min{p(j)m̂0/j|j ≥ i}.

Step 6: Set pBH
i = 1, if location i 6∈ ROI.

Step 7: Compare all pBH
i with desired level of FDR q; all pBH

i ≤ q are declared
significant.

This adaptive FDR control is more powerful than the conventional one. It can
find more significant areas while preserving the same desired FDR rate. The ROI
constrained adaptive scheme in this work is more efficient since only the p-values
within the ROI need to be sorted. We set the p-values outside the ROI to 1;
because it is unlikely to change the ranking of the p-values of true significances,
therefore, this procedure won’t change the significance detection result with the
adaptive FDR strategy.

6. Experiments and Results

6.1. Simulated data for mean difference test statistics

To evaluate the accuracy and efficiency of our hybrid permutation tests,
we consider six simulated cases in the first experiment for testing the difference
between two groups A and B. For group A, n1 observations are generated in-
dependently from Normal(0, 1) in Cases 1−2, from Gamma(3, 3) in Cases 3−4,
and from Beta(0.8, 0.8) in Cases 5−6. For group B, n2 independent observations
are generated from Normal(1, 0.5) in Cases 1−2, from Gamma (3, 2) in Cases
3−4, and from Beta(0.1, 0.1) in Cases 5−6. The design is balanced in Cases 1,
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Table 1. Comparison of computational costs and p-values of three permu-
tation methods: hybrid permutation (HP), random permutation (RP), and
exact permutation (EP). The t HP, t RP, and t HP denote the computation
time (in seconds), and p HP, p RP and p EP are the p-values.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
t HP 0.01130 0.01133 0.0123 0.01378 0.01723 0.00181
t RP 1.15841 1.14383 1.13693 1.12501 1.12620 1.13843
t EP 4.43899 4.27950 4.29839 4.32407 4.13205 4.29486
p HP 0.04991 0.13144 0.00101 0.02497 0.09083 0.08052
p RP 0.04955 0.12695 0.0012 0.0242 0.0889 0.0818
p EP 0.04980 0.13016 0.00101 0.02508 0.09250 0.08033

3 and 5 with n1 = n2 = 10, and unbalanced in Cases 2, 4 and 6 with n1 = 6,
n2 = 18.

Table 1 and Figure 3 illustrate the high accuracy of our hybrid permutation
technique. Furthermore, comparing with exact permutation or a random choice
of 20,000 permutations, the hybrid permutation tests reduce more than 99% of
the computational cost, and this efficiency gain increases with sample size. Ta-
ble 1 shows the computation time and p-values of three permutation methods
from one simulation. In order to demonstrate the robustness of our method, we

Figure 3. The Cumulative distribution functions (CDF) of exact permuta-
tion (in red) and Pearson distribution fitting (in blue) results. Left Column:
for Case 1 (top) and Case 2 (bottom); Middle Column: for Case 3 (top) and
Case 4 (bottom); Right Column: for Case 5 (top) and Case 6 (bottom).
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Table 2. Robustness and accuracy comparison of hybrid permutation and
random permutation across 10 simulations, considering the p-values of ex-
act permutation as gold standard. Mean ABias HP and VAR ABias HP are
the mean and variance of the absolute biases of p-values of hybrid permu-
tation; Mean ABias RP and VAR ABias RP are the mean and variance of
the absolute biases of p-values of random permutation, respectively.

Mean ABias HP 8.79e-5 8.97e-6 9.54e-5 2.16e-4 6.79e-4 4.53e-4
Mean ABias RP 2.82e-4 6.64e-5 2.14e-4 1.30e-3 2.78e-4 5.99e-4
VAR ABias HP 5.99e-8 1.34e-7 2.10e-6 3.66e-7 9.55e-7 9.78e-6
VAR ABias RP 1.98e-6 1.42e-7 1.41e-6 5.34e-6 1.05e-5 1.00e-5

repeated the simulation for 10 times in each case, and calculate the mean and
variance of the absolute biases of p-values of both hybrid permutation and ran-
dom permutation, treating the p-values of exact permutation as gold standard.
In most cases, hybrid permutation is less biased and more stable than random
permutation (Table 2), which demonstrates the robustness and accuracy of our
method.

6.2. Data for modified Hotelling’s T2 test statistics

We applied the method to the MRI hippocampi that were semi-automatically
segmented by human expert raters, and manually grouped into two groups with
21 subjects in group A, and 15 in group B (http://www.ia.unc.edu/dev/download
/shapeAnalysis/). This dataset serves as a testing dataset for the methodology
validation of the SPHARM-PDM software.

Evaluation of the standard hypothesis test using hybrid permutation with
the modified Hotelling’s T 2 test statistics on the hippocampus dataset is shown in
Figures 4 (a) and (b). It can be seen that the Pearson distribution approximation
leads to little discrepancy with the raw p-value map from the permutation distri-
bution. The false positive error control results are shown in Figure 4 (c)−(e). The
raw p-map has the largest significance region, including numerous false positives.
Since FWER control is conservative, it leads to the smallest size of significance
areas. Our ROI constrained adaptive FDR method discovers more significant
locations than the conventional BH’s FDR method under the same FDR level
(0.05).

7. Conclusion

We present and develop a statistical surface morphometry analysis method
by using novel hybrid permutation tests, where the permutation distributions
are accurately approximated through Pearson distributions for considerably re-
duced computational cost. General and analytical formulations for moments
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Figure 4. (a) and (b): Comparison of techniques in raw p-value measurement
at α = 0.05 (without correction), through real permutation ((a); number
of permutations=10,000), and using the present hybrid permutation (b).
(c)−(e): Comparison of multiple testing techniques: FWER corrected p-
map (c); BH’s FDR corrected p-map (d); our ROI constrained adaptive
FDR corrected p-map (e).

of permutation distribution are derived, for both univariate and multivariate
test statistics. The proposed hybrid strategy takes advantage of nonparamet-
ric permutation tests and the parametric Pearson distribution approximation
to achieve both accuracy/flexibility and efficiency. Note that the theoretical
derivations described in this work are general and can be applied to any linear
test statistics on multivariate data, and not limited to the test statistics used
here. In addition, since the permutation of indices in our derivations is separable
from the data, all the coefficients needed for moment calculations can also be
estimated through computer simulations once the test statistic is chosen. Fur-
thermore, a ROI constrained adaptive procedure is developed and employed to
control the FDR for increased power for multiple testing. Experimental results
demonstrate the effectiveness of our statistical analysis approach. The matlab
codes of the simulated data for reproducibility are given in the online supplement
(http://www3.stat.sinica.edu.tw/statistica).
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