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Abstract: The Robbins-Monro procedure (1951) for stochastic root-finding is a

nonparametric approach. Wu (1985, 1986) has shown that the convergence of the

sequential procedure can be greatly improved if we know the distribution of the re-

sponse. Wu’s approach assumes a parametric model and therefore its convergence

rate slows down when the assumed model is different from the true model. This

article proposes a new approach that is robust to the model assumptions. The

approach gives more importance to observations closer to the root, which improves

the fit to the true model around the root and makes the convergence faster. Sim-

ulation study shows that the new approach gives a superior performance over the

existing methods.
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1. Introduction

Finding the root of a function is arguably the oldest and the most impor-

tant problem in numerical mathematics. An interesting situation occurs when

we do not know this function and can only observe the values of it with some

error. This problem has numerous applications in science and engineering. For

example, a control engineer will be interested to find the value of a control vari-

able for maintaining some system response at a target value. The exact rela-

tionship between the control variable and the response may be unknown, but

the response can be observed with some measurement noise. The problem be-

comes very complicated when the true relationship is highly nonlinear and the

measurements are extremely noisy. Some other applications of stochastic root-

finding include the quantile estimation problem in bio-assay experiments (Finney

(1978)), quality and reliability improvement (Joseph and Wu (2002)), sensitivity

experiments (Neyer (1994)) and adaptive control and signal processing (Chen

(2002), Kushner and Yin (1997), Benvensite, Métivier and Priouret (1990)). A

recent account of this subject is given by Spall (2003).

The problem can be formally stated as follows. Suppose we want to find the

root (θ) of an unknown function M(x). The experimenter can observe a random
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variable (Y ) whose mean is M(x). Thus, one can try to find the root numeri-

cally by observing Y ’s at some values of x. There are two ways to conduct the

experiment, a sequential design (adaptive design) or a fixed design (non-adaptive

design). In a fixed design the design points are chosen prior to the experiment,

whereas in a sequential design the (n + 1)st design point xn+1 is chosen based

on x1, . . . , xn and Y1, . . . , Yn. Most often (particularly in nonlinear systems) the

“optimal” x values depend on the distribution of Y , but very little is known

about it before the experiment. Therefore a nonadaptive design can exhibit poor

optimality properties in comparison with a sequential design approach.

One sequential design strategy, known as stochastic approximation, is to

choose x1, x2, . . . such that xn → θ in probability. In a seminal paper, Rob-

bins and Monro (1951) proposed the following method, which closely resembles

the Newton-Raphson method for nonlinear root-finding. Start at some x1 that

is believed to be close to the root θ. Then generate the other design points

sequentially using the following scheme:

xn+1 = xn − anyn, (1.1)

where {an} is a sequence of pre-specified constants. Assume that M(x) is non-

decreasing and the slope Ṁ(θ) > 0. Robbins and Monro proved that if the

{an} satisfies the conditions an > 0,
∑∞

n=1 an = ∞, and
∑∞

n=1 a2
n < ∞, then

xn → θ, in probability, as n → ∞. For example an = c/n, where c is a positive

constant, satisfies the above conditions. Based on the results of Chung (1954),

Hodges and Lehmann (1956) and Sacks (1958), the procedure is fully asymptot-

ically efficient with an = 1/{nṀ (θ)}. This clearly shows the difference between

deterministic root-finding and stochastic root-finding problems. In the former,

a constant sequence an = 1/Ṁ (θ) would work, but in the latter, a decreasing

sequence of constants at some particular rate is necessary to ensure the desired

convergence. For practical implementation of the Robbins-Monro procedure some

prior value of the slope is required. If a good prior value is not available, then the

slope is estimated by using the least squares estimate
∑

(xi− x̄n)yi/
∑

(xi− x̄n)2.

This is known as adaptive Robbins-Monro procedure, which under some trunca-

tion rule has the same asymptotic optimality properties as that of the Robbins-

Monro procedure (see Anbar (1978), Lai and Robbins (1979) for details). Lai

(2003) gives a recent review of this subject.

The Robbins-Monro procedure is a nonparametric procedure in the sense

that the xn converge to θ irrespective of the distribution of Y . Wu (1985, 1986)

observed that the experimenters often know the distribution (such as normal or

binomial) and therefore more efficient sequential procedures can be developed.

The basic idea in Wu’s approach is to approximate M(x) by a parametric func-

tion F (x|γ). Then, after observing the data (x1, y1), . . . , (xn, yn), the sequential
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procedure is to select xn+1 such that F (xn+1|γ̂n) = 0, where γ̂n is the maximum

likelihood estimate (MLE) of γ. Ying and Wu (1997) showed that xn → θ almost

surely irrespective of the functional form of M(x). Wu (1985) has demonstrated

in the case of binary data that the MLE-based sequential procedure performs

much better than the Robbins-Monro procedure because of its efficient use of

the complete set of data. This was also confirmed by Young and Easterling

(1994) through extensive simulations. However, the MLE-based approach may

loose its efficiency if F is not a good approximation to M . In this work we pro-

pose an adaptive design procedure based on a flexible Bayesian modeling, whose

performance is more robust to the deviations of F from M .

The article is organized as follows. In Section 2, assuming normal distribu-

tion for Y , we propose a modeling approach that takes into account the uncer-

tainties in the parametric part of the model. In Section 3 the issues related to

estimation are considered. Due to some estimation problems, a fully Bayesian

approach is proposed in Section 4. Extensions of the proposed approach to

nonnormal distributions are considered in Section 5. The performance of the

proposed approach is compared with the existing methods through simulations

in Section 6, and convergence is studied in Section 7. Some concluding remarks

and future research directions are given in Section 8.

2. Modeling

Assume that Y follows a normal distribution. Extensions to other distribu-

tions will be considered in a later section. Let Y = M(x)+e, where e ∼ N(0, σ2)

and the function M(x) is unknown but is assumed to be increasing in x. In Wu’s

MLE-based approach M(x) is approximated by β(x− θ). With the above choice

for the mean, Wu’s approach reduces to the well-known iterated least squares

procedure (Lai and Robbins (1982)). The true M(x) can be nonlinear, in which

case, the MLE-based approach may loose its efficiency. This is because the MLE

approach assumes all the observations to be from the model Y = β(x − θ) + e

and therefore gives equal weights to all observations. This can slow down the

convergence of the MLE based approach. We propose a more flexible modeling

that takes this uncertainty into account.

We assume M(x) to be a random function with mean β(x− θ). This can be

formulated using a Bayesian approach by putting a prior on M(x). One approach

to introduce randomness in the function is to let M(x) = (β+ǫ(x))(x−θ), where

ǫ(x) is a realization from a Gaussian process (GP). Such stochastic processes

are widely used for modeling deterministic functions in computer experiments

(Santner, Williams and Notz (2003)). Thus we have the model,

Y = (β + ǫ(x))(x − θ) + e, e ∼ N(0, σ2), ǫ(x) ∼ GP (0, τ2R), (2.1)
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where the covariance function is defined as cov(ǫ(xi), ǫ(xj)) = τ2R(xi, xj). There

are several choices for the correlation function R. The most popular one in

computer experiments is the exponential correlation function given by Rij =

R(xi, xj) = exp(−λ|xi − xj|p), where λ > 0 and 0 < p ≤ 2.

Note that var{M(x)} = τ2(x − θ)2. Hence as x → θ, var{M(x)} → 0.

This is an important feature in our modeling. As the points get closer to θ,

the variance approaches 0, and therefore in the estimation more importance is

given to the recent observations. We also consider a special case of the Gaussian

process, where the correlation between any two points is equal to 0. This leads

to an independent process, which is easier to handle than a dependent process.

Thus the model is given by

Y = (β + ǫ(x))(x − θ) + e, e ∼ N(0, σ2), ǫ(x) ∼ N(0, τ2), (2.2)

and cov(ǫ(xi), ǫ(xj)) = 0 for xi 6= xj . To distinguish from (2.1), we call (2.2) the

independent error model and (2.1) the dependent error model.

3. Estimation

Suppose we have observed the data (x1, y1), . . . , (xn, yn). Let

y = (y1, . . . , yn)′, ǫ = (ǫ(x1), . . . , ǫ(xn))′, X =

[

1 · · · 1

x1 · · · xn

]′

,

η = β
(

−θ
1

)

, T (θ) = diag{x1 − θ, . . . , xn − θ}, and R = (Rij)n×n.

The x’s are generated sequentially, but fortunately the likelihood is not affected

by the sequential design. Therefore we can obtain the likelihood as though the

data are generated from a fixed design. Thus, the joint (or hierarchical) likelihood

is given by

Ljoint =
1

(2πσ2)
n
2

exp{ −1

2σ2
(y − Xη − T (θ)ǫ)′(y − Xη − T (θ)ǫ)}

×
exp{ −1

2τ2 ǫ′R−1ǫ}
(2πτ2)

n
2 |R| 12

. (3.1)

For the moment assume that β, τ2 and the parameters in the correlation func-

tion (λ and p) are known. Then, we can estimate θ, and ǫ = (ǫ1, . . . , ǫn)′ by

maximizing (3.1) and our sequential procedure will be to set xn+1 at the current

estimate of θ.

Note that we do not require the values of ǫ1, . . . , ǫn for the sequential pro-

cedure. Their presence makes the inference difficult and therefore we can treat

them as nuisance parameters. It is well known that when the dimension of the



ADAPTIVE DESIGNS FOR STOCHASTIC ROOT-FINDING 1553

nuisance parameters increases with n, MLE’s can become inconsistent. Hence

it is desirable to eliminate the nuisance parameters in our problem. There are

several approaches to take (Severini (2000)), of which the integrated likelihood

seems to be the most suitable for the present problem.

Integrating out ǫ from (3.1) we get (the proportionality constant is omitted)

L =
1

|σ2I+τ2R(θ)| 12
exp[−1

2
(y−Xη)′{σ2I+τ2R(θ)}−1(y−Xη)],

where R(θ) = T (θ)RT (θ). Thus the MLE of θ can be obtained by minimizing

−2 log L = log |σ2I+τ2R(θ)|+(y−Xη)′{σ2I+τ2R(θ)}−1(y−Xη), (3.2)

and our sequential procedure becomes

xn+1 = θ̂n = arg min
θ

−2 log L. (3.3)

For the independent error model in (2.2), the objective function in the above

minimization simplifies to

n
∑

i=1

log{σ2 + τ2(xi − θ)2} +

n
∑

i=1

{yi − β(xi − θ)}2

σ2 + τ2(xi − θ)2
.

This can be compared with Wu’s MLE-based approach. In his approach the

MLE is obtained by minimizing
∑n

i=1{yi − β(xi − θ)}2. Different from this, our

approach uses weights equal to {σ2 + τ2(xi − θ)2}−1 in the objective function.

The weights increase as xi gets closer to θ giving more importance to observations

closer to θ. This property makes the estimation in our approach more robust to

model misspecifications.

The minimization of (3.2) is complicated because of multiple local minima.

This can be seen in the following extreme case. All the proofs are given in the

Appendix.

Proposition 1. When σ2 = 0, the function in (3.2) has at least n + 1 local

minima with respect to θ.

For example, when n = 100 we are faced with the minimization of a function

with at least 101 local minima. Thus we have converted the simple problem of

finding the root of a function to a very complex optimization problem! This

method is therefore useful only when the cost of actually obtaining a new y is

much higher than the computational cost, which is the case in most practical

situations involving physical experiments. The optimization can be simplified as

follows. Order the x’s as x(1) < · · · < x(n). As shown in the proof of Proposition
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1 that for the case of σ2 = 0, L = 0 at all the design points and it has at least
one local maximum in each of the intervals (−∞, x(1)), (x(1), x(2)), . . . , (x(n),∞).
Finding the maximum in each of these intervals is easier and then one could get
the global maximum. Because −2 log L is continuous in σ2 a similar algorithm
will work well even for the case of σ2 > 0. The optimization can be further
simplified by searching for the global minimum of −2 log L only in the intervals
around xn.

4. A Fully Bayesian Approach

So far we have assumed that β, τ2, and the parameters in the correlation
function are known, but in practice they are not. We may try to estimate these
parameters also from the data. Suppose we use the Gaussian correlation func-
tion R(xi, xj) = exp(−λ|xi − xj|2), which gives sample paths that are infinitely
differentiable. This is a good choice when M(x) is very smooth. Thus we can
minimize (3.2) with respect to the parameters θ, β, τ , and λ. It is reasonable to
assume that σ is known. If unknown, it can be easily estimated by collecting
a sample of observations at any fixed x. The sequential procedure remains the
same as xn+1 = θ̂n.

It is well known that the data generated by stochastic approximation meth-
ods do not give much information about the slope parameter β. See, for example,
Lai and Robbins (1979). Estimation of the correlation parameters is even more
difficult. When the data do not give much information about the parameters it is
important to use the prior information that we have about the parameters. Thus,
using a fully Bayesian approach, many of the finite sample estimation problems
can be mitigated.

Assume θ ∼ N(x1, σ
2
θ), β ∼ N(β0, σ

2
β), τ ∼ Unif(τl, τu) and λ ∼ Unif(λl, λu).

Other prior distributions may also be used. The posterior distribution (after in-
tegrating out ǫ’s) is

f(θ, β, τ, λ|y) ∝ e−
1
2
(y−Xη)′{σ2I+τ2R(θ)}−1(y−Xη)

|σ2I + τ2R(θ)| 12
e

−(θ−x1)2

2σ2
θ e

−(β−β0)2

2σ2
β 1[τl,τu](τ)

×1[λl,λu](λ).

Finding the posterior mean of the parameters is difficult, whereas the maximum-
a-posteriori (MAP) estimators can be easily computed. We can obtain the MAP
estimators by minimizing

log |σ2I+τ2R(θ)|+(y−Xη)′{σ2I+τ2R(θ)}−1(y−Xη)+
(θ−x1)

2

σ2
θ

+
(β−β0)

2

σ2
β

(4.1)

with respect to θ, β, τ and λ, subject to the conditions τl ≤ τ ≤ τu and λl ≤ λ ≤
λu. Note that in the case of an independent error model, there is no λ in the
objective function.
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Consider the following special cases:

1. τ = 0, σβ = 0: The sequential procedure based on (4.1) becomes

xn+1 = xn − 1

(n + σ2

β2
0σ2

θ

)β0

yn, (4.2)

which is the same as the Robbins-Monro procedure in (1.1).

2. τ = 0: The MAP estimates of θ and β can be obtained by minimizing

1

σ2

n
∑

i=1

{yi − β(xi − θ)}2 +
(θ − x1)

2

σ2
θ

+
(β − β0)

2

σ2
β

. (4.3)

We call the resulting sequential procedure Wu’s MAP procedure because it

reduces to Wu’s (1986) MLE approach when σθ = ∞ and σβ = ∞.

Thus the Robbins-Monro procedure and Wu’s procedure are special cases of the

proposed sequential procedure. Moreover, these special cases are obtained by

choosing some extreme values for the parameters, such as τ = 0 and/or σβ = 0,

which may not be realistic. By selecting more realistic values for these parameters

in the proposed procedure, we can expect to see some improvement over these

two existing procedures.

5. Non-Normal Distributions

The underlying distribution of the observations can be different from normal.

For example, an explosive designer may be interested in finding the level of shock

necessary to make 99.99% of the explosives fire (Neyer (1994)), in which case

the data are binary and a Bernoulli distribution should be used. The Robbins-

Monro procedure does not assume any distributions for Y and therefore it can

be applied irrespective of the underlying distributions. Although the Robbins-

Monro procedure, in this sense, is a nonparametric method, its efficiency can

be greatly improved if we know the true distribution (see Joseph (2004) for

the case of binary data). Wu (1985, 1986) has extended the MLE approach to

generalized linear models, which is a very general and versatile approach. As

described in Section 1, Wu assumes a parametric model for M(x), say F (x|γ),

and uses F (x|γ̂n) in place of M(x) to determine the root. Ying and Wu (1997)

showed that Wu’s MLE-based sequential design generates points that converge

to θ irrespective of the parametric function F . Although this is asymptotically

valid, in finite samples the results can be seriously affected by an improper choice

of F . We can extend the approach in Section 2 to model the uncertainties in F

and thereby develop a sequential design that is more robust.

Suppose Y has some distribution with mean M(x). We want to find θ such

that M(θ) = α. Choose a monotonic function g such that the range of g{M(x)}
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is in (−∞,∞). Let g{M(x)} = g(α)+(β+ǫ(x))(x−θ), where ǫ(x) ∼ GP (0, τ2R).

Now we can write down the posterior distribution, obtain the MAP estimate of

θ, and get the sequential design. For example, consider binary data. Here g

could be the logit or the probit. Make the assumptions as in Section 4 to find

the posterior distribution

n
∏

i=1

{M(xi)}yi{1−M(xi)}1−yi
exp{ −1

2τ2 ǫ′R−1ǫ}
τn|R| 12

e
−(θ−x1)2

2σ2
θ e

−(β−β0)2

2σ2
β 1[τl,τu](τ)1[λl,λu](λ),

where M(xi) = g−1{g(α) + (β + ǫ(xi))(xi − θ)}. If θ̂n is the MAP estimate of

θ, then the sequential design is xn+1 = θ̂n. In general it is difficult to eliminate

the nuisance parameters ǫ’s as done in the case of normal distributions. Overall,

the estimation problem in non-normal distributions is much more complex and

we leave the details as a topic for future research.

6. Simulations

In this section we investigate the performance of the proposed procedure in

(4.1), using simulations. It is compared with existing procedures such as the

Robbins-Monro (RM) procedure in (4.2), and Wu’s MAP procedure in (4.3).

Consider a nonlinear function M(x) = ex + 2x − 5, whose root is 1.0587.

Suppose σ = 0.5 and we start at x1 = 3. To use the procedures in (4.1), (4.2)

and (4.3), we need to select the necessary prior parameters. Let σθ = 1, β0 =

6, σβ = 0.25β0, τl = 0, τu = 10σ, λl = 0, and λu = 100. Let n = 10, which means

the best estimate of the root is x11. Then 100 simulations were performed on the

four procedures: the proposed procedure based on (2.1), the proposed procedure

based on (2.2), Wu’s MAP and the RM procedure. The recursions for a few of the

simulations are shown in Figure 6.1. We see that both the proposed procedures

outperform Wu’s MAP procedure and the RM procedure. Note that the starting

point x1 = 3 is far away from the root θ = 1.0587. Because Wu’s MAP procedure

gives equal weights to all observations, the convergence is very slow. The x2 and

x3 of the dependent and independent error models are very similar to those of

Wu’s MAP. But because smaller weights are given to observations far from θ,

the new procedures quickly “forget” about the starting point and converge to θ

at a much faster rate. Three more functions were selected for simulations. The

functions and the prior parameter values x1 and β0 are shown in Table 6.1. The

other prior parameters are kept the same as before. The mean squared error

(MSE) of x11 with respect to θ is computed from the simulations and is given

in Table 6.1. We see that the two proposed procedures have smaller MSE values

and thus perform better than the existing methods.
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Figure 6.1. Simulation study. Recursions from x2 to x11 for M(x) = ex +

2x − 5.

Table 6.1. Test functions, Prior specifications, and MSE of x11.

Prior MSE

M(x) σ x1 β0 Dep. Indep. Wu RM

ex + 2x − 5 0.5 3 6 0.0026 0.0029 0.0271 0.1527

x2 − 2 0.05 2 2 0.00004 0.00004 0.00031 0.00030

−0.4 + x + 0.2 sin(5x) 0.05 −1 0.5 0.0002 0.0002 0.0012 0.0002

e2x/(1 + e2x) − 0.9 0.04 0 0.2 0.0008 0.0011 0.0258 0.0756

It is surprising that the performance of the independent error model is com-

parable to the more complicated dependent error model. Naturally one would

expect the dependent error model to perform better, but that is not evident.

Thus we conclude that using a dependent process for the error does not sig-

nificantly improve the performance of the procedure. This phenomenon can be

explained as follows. First, the most important property underlying the perfor-

mance of the new procedure is that the variance decrease as x converges to θ, and

this is shared by both procedures. Second, stochastic approximation procedures

produce very little information for estimating slope and correlation parameters,

and therefore little is gained by using a dependent process. Thus, based on the
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simulation study, we recommend using the independent error model because of
its simplicity.

We also need to check the sensitivity of the proposed procedure with respect
to the prior specification. Each of the prior parameters is varied one at a time and
the simulations are repeated. The MSE values for the function M(x) = ex+2x−5
are plotted in Figure 6.2. We can see that the two proposed procedures are robust
to the prior specification. One of the critical parameters is the starting point,
and the proposed procedures perform very well when x1 is far away from the root
(θ = 1.0587). When x1 is close to θ, the MSE values are very small, and then
these procedures do not differ much. They become significantly different when x1

is far from θ, and in those cases the proposed procedures clearly produce superior
performance. The slope parameter β0 has a significant effect on both Wu’s MAP
and the RM procedures, whereas it does not affect the proposed procedures. The
same conclusion can be drawn with respect to σθ and σβ/β0.
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The prior specification is always the most difficult issue in any Bayesian
procedure. We provide the following guidelines based on our experience. The
starting point and the slope parameter β0 should be chosen based on the prior
knowledge. The specification of the other parameters seems to be less critical.
The choice σβ = 0.25β0 seems to be reasonable. The parameter τu should be
selected based on the knowledge of the function. If the function is expected to
be highly nonlinear, then a large value should be chosen. Because the weights
used in the procedure are inversely proportional to σ2/τ2 + (xi − θ)2, it is the
ratio τ/σ that matters. The choice τu = 10σ worked well in the simulation study.
One nice feature of the proposed procedures is that the performance is not very
sensitive to the prior specification. A reasonable prior should result in a good
performance.

7. Convergence

In this section we study the convergence of the proposed sequential proce-
dure. To make the mathematics tractable, we only study the independent error
model. Since the simulations in the previous section have indicated that the
performance of the proposed procedures are about the same. Therefore, consider
the independent error model (2.2) with Rij = 0 for i 6= j and Rii = R(xi, θ, λ)
(here we consider a more general form for the correlation function by allowing
Rii to depend on θ and λ).

The conditional density of Yn given y1, . . . , yn−1 is

fYn(yn|y1 . . . , yn−1) =
1√
2π

|σ2 + τ2Rnn(xn − θ)2|− 1
2

exp

{

− [yn − β(xn − θ)]2

2[σ2 + τ2Rnn(xn − θ)2]

}

. (7.1)

Let the parameter be θ = (θ1, θ2, θ3, θ4) = (β, γ, τ, λ), where γ = βθ. Let the
MLE based on y1, . . . , yn be θ̂ = (θ̂n,1, θ̂n,2, θ̂n,3, θ̂n,4) = (β̂n, γ̂n, τ̂n, λ̂n). To prove
the consistency of (β̂n, γ̂n), we extend the result of Datta (1997) in the following
lemma. For this, let Θ ⊂ R

m be a bounded parameter space, assume that the
ith experiment Ei is determined by the former i − 1 observations Y1, . . . , Yi−1

and that for θ ∈ Θ, the ith observation Yi, given Y1, . . . , Yi−1, has a density
f(y, ei,θ) with respect to some σ finite measure µ. Further, let the true value of
the parameter be θ0, and let Pθ0

denote the probability distribution governing
Y1, Y2, . . . when θ = θ0.

Lemma 1. Suppose the following three conditions hold.

(i) Given ε > 0, there exist η(ε) > 0 such that

Pθ0
{ inf
θ∈Nc

l,ε

n−1
n

∑

i=1

(k(Ei,θ0) − k(Ei,θ)) > η(ε)} → 1, as n → ∞, (7.2)
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where k(Ei,θ) =
∫

(log f(y,Ei,θ))f(y,Ei,θ0)dµ and N c
l,ε(θ0) = {θ = (θ1,

. . . , θm) : (θ1 − θ0,1)
2 + · · · + (θl − θ0,l)

2 > ε}.

(ii) lim sup
n→∞

sup
e1,...,en

n−1
n

∑

i=1

∫

(‖f(y, ei, ·)‖−M)+f(y, ei,θ0)dµ → 0, as M → ∞,

(7.3)

where ‖f(y, ei, ·)‖ is the sup norm about θ for given y and ei, and x+ =

max(x, 0) for x ∈ R.

(iii) lim sup
n→∞

sup
e1,...,en,θ∈Θ

n−1
n

∑

i=1

∫

sup
˜
θ∈Nρ(θ)

(| log f(y, ei, θ̃) − log f(y, ei,θ) |)

f(y, ei,θ0)dµ → 0, as ρ → 0, (7.4)

where Nρ(θ) = {θ̃ = (θ̃1, . . . , θ̃m) : (θ̃1 − θ1)
2 + · · · + (θ̃m − θm)2 ≤ ρ}.

Then the component (θ̂n,1, . . . , θ̂n,l) of (θ̂n,1, . . . , θ̂n,m) which maximizes
∑n

i=1

log f(yi, ei, θ), the MLE (θ̂n,1, . . . , θ̂n,l), is consistent for (θ0,1, . . . , θ0,l) under Pθ0
,

as n → ∞.

In our problem, Ei = xi, i ≥ 1. Let B1 = {(u, v) : u = 1, |v| < δ1 < 1},
B2 = {(u, v) : u 6= 1, u > δ2 > 0, v = 0}, and B3 = {(u, v) : u 6= 1, v 6= 0, u >

δ31 > 0, h(u, v) > δ32 > 0}, where

h(u, v) =
4v2

4v2 + (|1 − u| ±
√

(1 − u)2 + 4v2)2

×{u − 2v2

1 − u
+

2v2 + 1 − u

1 − u
· (|1 − u| ±

√

(1 − u)2 + 4v2)2

4v2
} (7.5)

We now show that under some conditions the MLE (β̂n, γ̂n) is consistent.

Theorem 1. Assume that x take values in a bounded subset E of R
1 and the

parameter space Θ is a bounded subset of R
4, for which 0 < d < β. Assume

also that for all x ∈ E and θ ∈ Θ, R(x, θ, λ)(x − θ)2, d
dθ

[R(x, θ, λ)(x − θ)2] and
d
dλ

[R(x, θ, λ)(x − θ)2] have upper bounds.

(1) If the experiments x1, . . . , xi, . . . satisfy

Pθ0
{(n−1

n
∑

i=1

x2
i , n

−1
n

∑

i=1

xi) ∈ B1 ∪ B2 ∪ B3} → 1 as n → ∞,

condition (i) of Lemma 1 holds with l = 2 and m = 4.

(2) Conditions (ii) and (iii) of Lemma 1 hold.
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By applying Lemma 1, we prove the consistency of the MLE (β̂n, γ̂n) under
the assumptions of Theorem 1. Therefore, θ̂n = γ̂n/β̂n is also consistent. For the
MAP estimator of (β, γ), we add a term f0(y, θ) = π(θ)g(y) for i = 0 in Lemma
1 and Theorem 1, where π(θ) is the prior density for θ and g(y) is a positive and
integral function about the σ finite measure µ. Since π(θ) in Section 4 is bounded
for θ ∈ Θ, conditions (i)∼ (iii) of Lemma 1 are all valid under the assumptions of
Theorem 1. Then the MAP estimator for (β, γ), i.e., the component (θ̂n,1, θ̂n,2)
of (θ̂n,1, . . . , θ̂n,4) which maximizes

∑n
i=0 log f(yi, ei, θ), is consistent.

The assumptions of the theorem are mild. We can make some truncation on
xj, j ≥ 1, so that (n−1

∑n
i=1 x2

i , n
−1

∑n
i=1 xi) ∈ B1 ∪B2 ∪B3 always holds. Then

for a suitable function R(x, θ, λ), the assumptions of Theorem 1 are satisfied.

8. Conclusions

Wu’s MLE approach to stochastic root-finding has the drawback that if the
assumed parametric model is different from the true model, then the convergence
of the procedure is slow. In this article we propose a new adaptive design to
overcome this problem. Two versions of the proposed approach, dependent and
independent error models, are discussed. Their superior performance over the
Robbins-Monro procedure and Wu’s MAP procedure is demonstrated through
simulations.

The convergence of the sequential procedure is proved under some regularity
conditions. Simulations clearly show that the procedure is promising and can be
considered for adoption in practice. Extensions of the approach to non-normal
distributions are also discussed, although more work is needed for their practical
implementation. This paper deals only with univariate functions. The Gaussian
process modeling is known to perform well in higher dimensions and the extension
of this methodology to the multivariate case is a worthwhile topic for future
research. Applications to stochastic optimization is another interesting topic.
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Appendix

Proof of Proposition 1.

Let

a(t) = (y − Xη)′R−1(t)(y − Xη) =

n
∑

i=1

n
∑

j=1

r̄ij
{yi − β(xi − t)}

(xi − t)

{yj − β(xj − t)}
(xj − t)

,
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where r̄ij = (R−1)ij . We have that

L =
1

τn|R| 12
1

∏n
i=1 |xi − t| exp{−a(t)

2τ2
}.

We take xk 6= θ, otherwise the optimization is not necessary, and hence yk 6= 0
for all k = 1, . . . , n. Also since R is positive definite, a(t) > 0 for all t. Taking
appropriate limits, we obtain L = 0 for t ∈ {x1, . . . , xn,−∞,∞}. Also L > 0
for t /∈ {x1, . . . , xn,−∞,∞} and L is a continuous function in t. Thus the result
follows from Rolle’s theorem.

Proof of Lemma 1.

Let Zi(θ) = log f(Yi, Ei, θ), i ≥ 1,Dn(θ) = n−1
∑n

i=1 Zi(θ), and

D̃n(θ) = n−1
n

∑

i=1

∫

[log f(y,Ei, θ)]f(y,Ei, θ0)dµ = n−1
n

∑

i=1

k(Ei, θ).

It is easy to see that the conditions of the L1 law of large numbers (Datta
(1997, Thm. 2.1)) follow from (2) and (3) of Lemma 1. Therefore, by the same
theorem, supθ |Dn(θ) − D̃n(θ)| → 0 in Pθ0 probability.

For ε > 0, we have

n−1
n

∑

i=1

k(Ei, θ0) − k(Ei, θ̂n)

= D̃n(θ0) − Dn(θ0) + Dn(θ0) − Dn(θ̂n) + Dn(θ̂n) − D̃n(θ̂n)

≤ D̃n(θ0) − Dn(θ0) + Dn(θ̂n) − D̃n(θ̂n) ≤ 2 sup
θ

|Dn(θ) − D̃n(θ)| < η(ε)

with Pθ0 probability tending to one, as n → ∞. Then, by condition (1) of Lemma
1, with probability Pθ0 tending to one, θ̂n is not in N c

l,ε(θ0), i.e., (θ̂n,1 − θ0,1)
2 +

. . . + (θ̂n,l − θ0,l)
2 ≤ ε. Since ε > 0 is arbitrary, we obtain that (θ̂n,1, . . . , θ̂n,l) is

consistent.

Proof of Theorem 1.

Let a be an upper bound for R(x, θ, λ)(x − θ)2. Let xi be the design point
determined by the former i − 1 observations y1, . . . , yi−1. Let µ = βxi − γ and
µ0 = β0xi − γ0. From the conditional density fYi

(yi|y1 . . . , yi−1), we have

k(xi,θ) =

∫

(log f(y, xi,θ))f(y, xi,θ0)dy

= −1

2

[

log(σ2 + τ2Rii(θ, λ)(xi − θ)2
]

− 1

2
log(2π)

−σ2 + τ2
0 Rii(θ0, λ0)(xi − θ0)

2

2[σ2 + τ2Rii(θ, λ)(xi − θ)2]
− (µ0 − µ)2

2[σ2 + τ2Rii(θ, λ)(xi − θ)2]
, (A.1)

k(xi,θ0) = −1

2

[

log(σ2 + τ2
0 Rii(θ0, λ0)(xi − θ0)

2
]

− 1

2
log(2π) − 1

2
. (A.2)



ADAPTIVE DESIGNS FOR STOCHASTIC ROOT-FINDING 1563

Then for l = 2, θ ∈ N c
2,ε(θ0) and, by the fact that log(x) + 1/x has a minimum

at x = 1, we have from (A.1) and (A.2) that

n−1
n

∑

i=1

k(xi,θ0) − k(xi,θ)

= n−1
n

∑

i=1

{

1

2

[

log
σ2 + τ2Rii(θ, λ)(xi − θ)2

σ2 + τ2
0 Rii(θ0, λ0)(xi − θ0)2

+
σ2 + τ2

0 Rii(θ0, λ0)(xi − θ0)
2

σ2 + τ2Rii(θ, λ)(xi − θ)2

]

−1

2
+

(µ0 − µ)2

2[σ2 + τ2Rii(θ, λ)(xi − θ)2]

}

≥ n−1
n

∑

i=1

[(β − β0)xi − (γ − γ0)]
2

2(σ2 + τ2a)

≥ [2(σ2 + τ2a)]−1ε2n−1
n

∑

i=1

(xi cos α − sin α)2. (A.3)

Now, consider n−1
∑n

i=1(xi cos α−sin α)2. When n−1
∑n

i=1 x2
i = 1, its global

minimum is 1−|n−1
∑n

i=1 xi|; when n−1
∑n

i=1 x2
i 6= 1, n−1

∑n
i=1 xi = 0, the mini-

mum is n−1
∑n

i=1 x2
i or 1; when n−1

∑n
i=1 x2

i 6= 1, n−1
∑n

i=1 xi 6= 0, the minimum
is h(n−1

∑n
i=1 x2

i , n
−1

∑n
i=1 xi) or n−1

∑n
i=1 x2

i , where the function h(u, v) is de-
fined in (7.5). Then, under the conditions of this theorem, we have from (A.3)
that there exist a positive constant δ such that

Pθ0

(

inf
θ∈Nc

2,ε(θ0)
n−1

n
∑

i=1

k(xi,θ0)−k(xi,θ)>δ[2(σ2+τ2a)]−1ε2
)

→1, as n→∞.

From the conditional density we also have
∫

(‖f(y, xi, ·)‖) − M)+f(y, xi,θ0)dy

=
1

2

∫

(‖ log(2π) + log(σ2 + τ2Rii(θ, λ)(xi − θ)2)

+
(u − (β − β0)xi + (γ − γ0))

2

σ2 + τ2Rii(θ, λ)(xi − θ)2
‖ − 2M)+

·exp{−1
2u2 · (σ2 + τ2

0 Rii(θ0, λ0)(xi − θ0)
2)−1

√

2π(σ2 + τ2
0 Rii(θ0, λ0)(xi − θ0)2)

du

≤ 1

2

∫

(‖ log(2π) + log(σ2 + c1a) +
(|u| + c2)

2

σ2
‖) − 2M)+

·exp{−1
2u2 · (σ2 + τ2

0 a)−1

√
2πσ2

du, (A.4)
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where c1 and c2 are positive constants. Then condition (ii) of Lemma holds from

(A.4).

Additionally, for

g(θ) = g(θ1, θ2, θ3, θ4) = g(β, γ, τ, λ)

= log(σ2 + τ2Rii(θ, λ)(xi − θ)2) +
(u − βxi + γ + β0xi − γ0)

2

σ2 + τ2Rii(θ, λ)(xi − θ)2
,

it is easy to see that there exist positive constants aij , i = 1, 2, 3, and j = 1, 2, 3, 4,

such that ∀xi ∈ E and ∀θ ∈ Θ,

∣

∣

∣

∂

∂θi
g(θ)

∣

∣

∣
≤ ai1|u|2 + ai2|u| + ai3, i = 1, . . . , 4. (A.5)

Then we have
∫

sup
˜
θ∈Nρ(θ)

(| log f(y, xi, θ̃) − log f(y, xi,θ) |)f(y, xi,θ0)dy

=

∫

sup
˜
θ∈Nρ(θ)

∣

∣

∣

∣

4
∑

i=1

[
∂

∂θi

g(θ + ξ(θ̃ − θ)](θ̃i − θi)

∣

∣

∣

∣

·exp{−1
2u2 · (σ2 + τ2

0 Rii(θ0, λ0)(xi − θ0)
2)−1}

√

2π(σ2 + τ2
0 Rii(θ0, λ0)(xi − θ0)2

du

≤ ρ
4

∑

i=1

∫

(ai1|u|2 + ai2|u| + ai3) ·
exp{−1

2u2 · (σ2 + τ2
0 a)−1}√

2πσ2
du, (A.6)

where θ̃ = (θ̃1, θ̃2, θ̃3, θ̃4) and |ξ| ≤ 1. From (A.6), we get condition (iii) of

Lemma 1.

References

Anbar, D. (1978). A stochastic Newton-Raphson method. J. Statist. Plann. Inference 2, 153-163.

Benvensite, A., Métivier, M. and Priouret, P. (1990). Adaptive Algorithms and Stochastic Ap-

proximations. Springer-Verlag, Berlin.

Chen, H. F. (2002). Stochastic Approximation and Its Applications. Kluwer Academic Publish-
ers, Dordrecht.

Chung, K. L. (1954). On a stochastic approximation method. Ann. Math. Statist. 25, 463-483.

Datta, S. (1997). A uniform L1 law of large numbers for functions on a totally bounded metric
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