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Ana Colubi, J. Santos Domı́nguez-Menchero and Gil González-Rodŕıguez
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Abstract: In this paper we present a nonparametric procedure for testing the con-

stancy of an isotonic regression. We introduce a family of statistics based on the

L2-norm of the difference of an isotonic estimate of the regression and the estimate

under the (null) hypothesis that it is a constant. We propose to choose as isotonic

estimate a tail-smoothed version of the usual least squares isotonic regression es-

timate. We write the selected statistic in terms of a certain functional in order

to analyze its asymptotic distribution from the continuity properties of the func-

tional. Finally, we show some simulations to compare the stated procedure with

the well-known parametric χ2
01.
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1. Introduction

Consider the regression model

Y (xi,n) = m(xi,n) + ε(xi,n) 1 ≤ i ≤ n,

where the design {x1,n, . . . , xn,n} ⊂ A is assumed to be fixed, xi,n < xj,n (1 ≤ i <

j ≤ n) and A ⊆ R is an interval. For x ∈ A, the random variable Y (x) has finite

expectation m(x) and finite variance σ2(x). The errors ε(xi,n) form a triangular

array of row-wise independent random variables. The regression function m is

assumed to be isotonic and we are interested in testing

H0 : m is constant versus H1 : m is isotonic and not constant.

The likelihood ratio tests χ2
01 and E

2
01 can be applied to solve the related

problem for finitely many populations if the conditional distributions are normal;

the first one requires known conditional variances, and the second one a par-

tial knowledge of the variance function (see, for instance, Barlow, Bartholomew,

Bremmer and Brunk (1972) and Robertson, Wright and Dykstra (1988)). In this

paper we present an asymptotic test for isotonic regression functions defined on

a continuum.
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For each x ∈ A, D(x) denotes the distribution of Y (x). We consider r

independent observation Y 1(xi,n), . . . , Y r(xi,n) on each design point xi,n (1 ≤
i ≤ n). If Tn is any estimate of m under the isotonicity assumption, we define

DIP Tn = min
a∈R

n∑

i=1

1

n
(Tn(xi,n) − a)2 .

The statistic DIP Tn is connected to DIPm̂ (see Cuesta, Domı́nguez-Menchero

and Matrán (1995)), defined as the minumum of
∑n

i=1 (h(xi,n) − m̂(xi,n))2 /n on

the set of the isotonic functions h, where m̂(xi,n) =
∑r

j=1 Y j
i,n/r. The DIPm̂

statistic is used in Domı́nguez-Menchero, González-Rodŕıguez and López-Palomo

(2005) to test whether a general regression function is isotonic (null hypothesis)

or not.

If f is a real function, the argmin of
∑n

i=1 (h(xi,n) − f(xi,n))2 /n on the

set of the isotonic functions is the well-known isotonic regression fI , which can

be computed by means of PAVA (see Ayer, Brunk, Ewing, Reid and Silverman

(1955). The usual isotonic regression estimate is precisely m̂I and it can be

expressed in terms of the Greater Convex Minorant, Gcm, of the Cumulative

Cum Diagram, Csd, as follows.

Let B[0, 1] (resp. F [0, 1]) be the set of bounded (resp. convex) functions on

[0, 1]. We define Gcm : B[0, 1] → F [0, 1] so that Gcm(x) is the greatest convex

minorant of x. If x ∈ F [0, 1], we denote by S(x) the function which associates

each t ∈ [0, 1] with the left-hand slope of x at the point t (defined by continuity

at the point t = 0). The Csd of a real function f is denoted by Csdf , and it

is defined at each t ∈ [0, 1] by linear interpolation from the values Csdf (0) = 0

and Csdf (i/n) =
∑i

k=1 f(xk,n)/n with 1 ≤ i ≤ n. Thus, we see that m̂I(xi,n)

coincides with S(Gcm(Csdm̂)) computed at the point i/n (see, for instance,

Robertson, Wright and Dykstra (1988)).

In this paper we choose as an estimate of m under isotonicity a tail-smoothed

modification of m̂I . Concretely, given [a, b] ⊆ [0, 1], we define

m̂a,b(xi,n) =





P⌈na⌉
k=1

m̂(xk,n)

⌈na⌉ if i ∈ {1, . . . ⌈na⌉}
m̂(xi,n) if i ∈ {⌈na⌉ + 1, . . . , ⌈nb⌉}
Pn

k=⌈nb⌉+1
m̂(xk,n)

n−⌈nb⌉ if i ∈ {⌈nb⌉ + 1, . . . , n}
,

(where ⌈x⌉ is the least integer greater than or equal to x) and we consider its

isotonization Tn = m̂a,b
I . Thus, the statistic that we propose is DIP

m̂a,b
I

=

∑n
i=1

(
m̂a,b

I − Y n

)2
/n, where Y n =

∑n
i=1 m̂(xi,n)/n. This statistic will be called

the smoothed DIP and it depends on the parameters a, b ∈ [0, 1] that determine
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the smoothing tail points. It should be recalled that, although m̂I is a consistent

estimate of the isotonic regression m, its behaviour is not generally good at the

tails (see, for instance, Brunk (1970), or Cuesta, Domı́nguez and Matrán (1995)).

Therefore, a reasonable selection for a, b ⊂ [0, 1] can provide robustness to the

procedure. On the other hand, some simulation studies (see Section 5) have

shown us that different reasonable values for a, b lead to similar conclusions and,

consequently, it seems that the determination of such parameters is usually easy

in practice.

In Section 3 we express the smoothed Dip as a composition of a functional

H with a certain process in order to find its asymptotic distribution by means

of the Continuous Mapping Theorem. This functional H has been analyzed

by Groeneboom and Pyke (1983) in another context. We prove that it is not

continuous with respect to the supremum metric when it is defined on the spaces

considered in the mentioned paper, and we find a useful subspace on which

continuity is attained.

The paper is organized as follows. Section 2 is devoted to the study of

the functional H. In Section 3 we establish the relationship between the tail-

smoothed statistic and H, and we obtain the asymptotic results that we need

to state the testing procedure. Finally, in Section 4 we show some simulation

studies concerning the power of the tests. To be precise, we compare the prac-

tical behaviour of the parametric χ2
01 test with the one stated in this paper by

considering different smoothing degrees. The Appendix provides the proofs.

2. The functional H.

In order to define the functional H on a space useful in our framework, we

consider a subset of the space of bounded functions B[0, 1] delimited by some

functions that control the evolution of the slopes of the elements x ∈ B[0, 1] close

to 0 and 1. Define

fδ(t) =

{
t

1

2
+δ if t ∈ [0, 1

2 ]

(1 − t)
1

2
+δ if t ∈ (1

2 , 1]
for all δ ∈ [0,

1

2
],

B∗[0, 1] = {x : [0, 1] → R | there exists δ ∈ (0,
1

2
] so that |x| ≤ fδ/δ},

and H(x) as the L2-norm of the left-hand slope of the greatest convex minorant

of x, that is,

H(x) =
(∫

[0,1]
[S(Gcm(x))]2(t)dt

) 1

2

for all x ∈ B∗[0, 1].

The space B∗[0, 1] is a subset of the one considered in Groeneboom and Pyke

(1983) to work with H. The condition defining B∗[0, 1] could be weakened,
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although it contains enough functions for our purposes. We endow B∗[0, 1] with
the supremum norm ‖ · ‖∞. We show that H is not continuous on B∗[0, 1],
although we find a useful subspace on which continuity holds. We base the study
of H on some properties of S and Gcm.

The function Gcm is uniformly continuous. On the other hand, if the re-

striction of Gcm to B∗[0, 1] is denoted by Gcm
∗, it is easy to check that the

range of Gcm
∗ is the next subspace of the convex functions F [0, 1]:

F ∗[0, 1] = {x ∈ F [0, 1]| there exists δ ∈ (0, 1/2] so that |x| ≤ fδ/δ}.

It should be noted that F ∗[0, 1] is a subset of C[0, 1], the set of continuous
functions on [0, 1].

The restriction of S to F ∗[0, 1] is represented by S∗. Basic properties in
convex analysis assure that for all x ∈ F ∗[0, 1], S∗(x) is an isotonic function
from [0, 1] to R, left-hand continuous on (0, 1], and right-hand continuous at 0.
Moreover, we have the following.

Proposition 1. Let x ∈ F ∗[0, 1], then
∫
[0,1][S

∗(x)]2(t)dt < ∞.

Thus, if we denote Lebesgue measure on [0, 1] by λ, we have that the range
of S∗ is contained in

L↑
2[0, 1] = {z : [0, 1] → R | z isotonic, left-hand continuous on (0,1],

right-hand continuous at 0 and λ-square integrable}.

Given the relation between S∗ and H, we consider the L2-norm on the range

of S∗ in order to analyze its continuity. Thus, S∗ is defined from (F ∗[0, 1], ‖ · ‖∞)
to (L↑

2[0, 1], ‖ · ‖2). In Example 1 we show that S∗ is not continuous, and we
illustrate the cause of this lack of continuity.

Example 1. Let x ∈ F ∗[0, 1] be such that x(t) = 0 for all t ∈ [0, 1], then
S∗(x)(t) = 0 for all t ∈ [0, 1]. On the other hand, consider

xα
n(t) =





−nαt if t ∈ [0, 1
n ],

nα−1 if t ∈ ( 1
n , 1 − 1

n),

nα(t − 1) if t ∈ [1 − 1
n , 1].

We can easily verify that xα
n

n→∞−→ x uniformly for all α ∈ [0, 1). Nevertheless,

(∫

[0,1]
[S∗(xα

n)(t) − S∗(x)(t)]2 dt

) 1

2

= 2
1

2 nα− 1

2

for all α ∈ [0, 1), and hence S∗(xα
n)

n→∞−→ S∗(x) in L2-norm if, and only if,

α ∈ [0, 1/2). Thereby S∗ is not continuous. In this example we note that the
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slope of the functions xα
n close to the extremes of the interval [0, 1] goes to infinity

too fast, which makes convergence fail.

In Proposition 2 we provide conditions that guarantee the “sequential con-
tinuity” of S∗.

Proposition 2. Let x, {xn}n∈N ⊂ F ∗[0, 1] so that xn
n→∞−→ x uniformly. If there

exists δ̃ ∈ (0, 1/2] with |x| ≤ fδ̃/δ̃ and |xn| ≤ fδ̃/δ̃ for all n ∈ N, then S∗(xn)
converges to S∗(x) in L2-norm.

In the next example we prove that the restriction of H to the space B∗[0, 1]
is not continuous (and, hence, is not continuous on the space considered in
Groeneboom and Pyke (1983)).

Example 2. Let x, {xα
n}n∈N ⊂ B∗[0, 1], the functions defined in the Example

1. Then xα
n

n→∞−→ x uniformly for all α ∈ [0, 1), but H(xα
n) = 21/2nα−1/2 and

H(x) = 0. Hence H(xα
n) converges to H(x) if, and only if, α ∈ [0, 1/2).

On this basis, we suggest restricting H in order to get a continuous function.
Let α ∈ (0, 1/2], k ∈ (0, 1/2] and take

B∗[0, 1]α,k =
{
x ∈ B[0, 1] so that |xϕ[0,α)∪(1−α,1]| ≤ fk/k

}
,

where ϕB denotes the characteristic function of a set B ⊂ R. Let H∗ be the
restriction of H from the space (B∗[0, 1]α,k , ‖ · ‖∞) to (R, | · |).
Theorem 1. Let α ∈ (0, 1/2] and k ∈ (0, 1/2], then we have B∗[0, 1]α,k ⊂ B∗[0, 1]
and the mapping H∗ is continuous.

3. Asymptotic Results

In order to express the smoothed Dip as a function of H, we define Π[a,b] :
C[0, 1] → C[0, 1] as the trimming mapping that associates each x ∈ C[0, 1] with
the function equal to x on [a, b], taking on the value 0 at 0 and 1, and defined
by linear interpolation at the remaining points. The trimming mapping takes
functions in B∗[0, 1] to B∗[0, 1]α,k for fixed α ∈ (0, 1/2] and k ∈ (0, 1/2]. Define
Zn(t) = Csdm̂(t) − tCsdm̂(1) for all t ∈ [0, 1].

Proposition 3. If [a, b] ⊆ [0, 1], then we have DIP
a,b
n =H∗(Π[⌈na⌉/n),⌈nb⌉/n](Zn)).

We assume that the empirical distribution function of the design points con-
verges to some continuous distribution function F uniformly on A in order to
find the asymptotic distribution of Zn. Additionally, to make the test operative
under H1, we assume F has a bounded positive density, bounded away from 0.

Proposition 4. If the conditional variance function σ2 is continuous and

bounded, and the family of distribution functions {D(x)}x∈A satisfies

sup
x∈A

∫
(y − m(x))2ϕ[−τ,τ ]c(y − m(x))D(x)(dy)

τ→∞−→ 0,
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then (nr/h(1))1/2 [Zn − E[Zn]]
L−→ B ◦ U − I · B(1), where B is a Brownian

motion on [0, 1] , I denotes the identity function and

h(t) =

∫

[0,t]
σ2(F−1(τ))λ(dτ), U(t) = h(t)/h(1) for all t ∈ [0, 1].

As a result of Propositions 3 and 4 we get the next theorem.

Theorem 2. Let [a, b] ⊂ (0, 1). Under the conditions of Proposition 4, if the

regression function m is constant, (nr/h(1))1/2 DIP
a,b
n

L−→ H[Π[a,b](B ◦ U − I ·
B(1))], where B is a Brownian motion on [0, 1].

The limit process in Theorem 2 is linked to the results in Groeneboom and

Pyke (1983). They showed that the standarized functional H, evaluated on a

sequence of truncated Brownian bridges, converges very slowly to a Gaussian

distribution, though the convergence rate improves substantially when using a

square root transformation. Although the level of smoothed/truncation is fixed

here, the convergence rate is similar to the one in Groeneboom and Pyke (1983)

if the smoothed level is low, and it is similar to that of the Central Limit Theorem

if the smoothed level is high.

Theorem 2 provides the basis for the testing procedure.

Theorem 3. Under the conditions in Theorem 2, for testing H0, m is constant,

at asymptotic level α ∈ [0, 1] against the alternative H1, m is isotonic and not

constant, reject H0 if (nr/h(1))1/2 DIP
a,b
n > cα, where cα is the 100(1−α)-fractile

of the distribution of H[Π[a,b](B ◦ U − I · B(1))].

Remark 1. The preceding results require complete knowledge of the variance

function. In practice, this function is unknown, although it is usually assumed

to be a constant θ2. In this case, in Proposition 4 we have that h(t) = θ2t and

U(t) = t. Consequently, if S2
n is a consistent estimate of θ2 (see, for instance,

Gasser, Sroka and Jennen-Steinmetz (1986), Hall, Kay and Titterington (1990),

or the simple variance estimate, that is consistent under H0), we can substitute

h(1) by S2
n in Theorem 3 to get the testing procedure in this set-up on the basis

of Slutsky’s Theorem.

Remark 2. If there are different number of observations ri,n on the design

points xi,n, we can substitute the empirical weights 1/n by the usual normalized

weights ri,n(
∑n

j=1 rj,n)−1 whenever they appear. Let rmax(n) (resp. rmin(n)) be

the maximum (resp. minimum) of the number of observation at each design

point. If rmax(n)/rmin(n) converges to 1 then, under the conditions in Theorem

2, we can assure that the asymptotic distribution of (nrmax(n)/h(1))1/2 DIP
a,b
n

is H[Π[a,b](B ◦ U − I · B(1))].
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Remark 3. The testing procedure can be easily extended to random design

models if the independent variable X is continuous. In a random design, F is

the distribution function of X and r = 1 a.s. for all n ∈ N. To get the asymp-

totic results we just need to apply those for the fixed design on the conditioned

sample by the ordered statistic of X and the Dominated Convergence Theo-

rem (see, for instance, Stute (1993)). The function F is unknown, although Fn

converges uniformly to F a.s., and from Proposition 4 we have that hn(t) =∫
[0,t] σ(F−1

n (τ))λ(dτ) converges uniformly a.s. to h(t) and Un(t) = hn(t)/hn(1)

converges uniformly a.s. to U(t). Thus, arguments in the proof of the Propo-

sition 4 allow us to conclude that in practice H0 should be rejected whenever

(nr/hn(1))1/2 DIP
a,b
n > cn,α, where cn,α is the 100(1 − α)-fractile of the distri-

bution of H[Π[a,b](B ◦ Un − I · B(1))].

4. Simulation Studies

In this section we compare the χ2
01 test and the one introduced here by

simulating several models. We fixed A = [0, 1], xi,n = i/(n + 1), the sample size

at n = 500, and the number of observation per design point at r = 5.

We considered two regression models m1 (non-continuous) and m2 (continu-

ous), both depending on a parameter δ which indicates the “deviation” from the

null hypothesis. As well, we considered two distributions for the random errors

ξ, namely a standard normal and an uniform distribution on [−
√

3,
√

3]. Thus,

the conditional distribution D1(x) was the distribution function of δs1(x) + ξ,

where

s1(x) =

{
−1 if x ≤ 1

2 ,

1 if x > 1
2 .

On the other hand, D2(x) was the distribution function of δs2(x) + ξ, where

s2(x) =





(x − 5
8)
/√

37
192 if x ≤ 1

2 ,

(2x − 9
8)
/√

37
192 if x > 1

2 .

We have that σ2
i (x) = 1 and mi(x) = δsi(x) for all x ∈ [0, 1] i = 1, 2.

Obviously if δ = 0 the regression function is constant, and if δ > 0, then H0 is

not true and inft∈A

∫
[0,1](mi(x) − t)2 = δ.

The tests were done at a nominal significance level α = 0.05. By following

the approximate procedure based on two cumulants in Robertson, Wright and

Dykstra (1988) related to the χ2
01 test under the described conditions, we checked

that the null hypothesis was to be rejected whenever the value of the statistic

was greater than 13.7304.
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In connection with the smoothed Dip, we chose two natural smoothing de-

grees over the two tails in order to look at practical behaviour. Concretely,

we smoothed at 5% (a = 0.05, b = 0.95), and at 10% (a = 0.10, b = 0.90). In

both cases we have U = I, consequently h = I and the asymptotic distribution of

(nr/h(1))1/2 DIP
a,b
n under the null hypothesis is H[Π[a,b](B

0)], where B0 denotes

a Brownian bridge on [0, 1]. We approximated the asymptotic distributions with

n = 100, 000, and we found that the null hypothesis was to be asymptotically

rejected whenever the value of the statistic was greater than 3.252 (resp. 3.034)

for a = 1 − b = 0.05 (resp. a = 1 − b = 0.10).

Table 4.1. Model 1. Empirical power functions (×100) for Normal (a) and

Uniform (b) cases.

(a)

δ χ2

01 DIP
0.05,0.95

n
DIP

0.10,0.90

n

0.00 4.95 4.03 4.33

0.02 14.47 15.02 17.03
0.04 36.44 40.63 44.93

0.06 67.23 73.21 77.28

0.08 90.28 93.51 95.11

0.10 98.64 99.26 99.51

0.12 99.90 99.97 99.98
0.14 100.00 100.00 100.00

(b)

δ χ2

01 DIP
0.05,0.95

n
DIP

0.10,0.90

n

0.00 4.65 4.01 4.32

0.02 14.19 14.99 16.90
0.04 36.34 40.60 44.96

0.06 67.52 73.45 77.55

0.08 90.49 93.57 95.12

0.10 98.64 99.29 99.52

0.12 99.91 99.97 99.99
0.14 100.00 100.00 100.00

Table 4.2. Model 2. Empirical power functions (×100) for Normal (a) and

Uniform (b) cases.

(a)

δ χ2

01
DIP

0.05,0.95

n
DIP

0.10,0.90

n

0.00 4.99 4.15 4.38

0.02 18.57 19.39 20.96

0.04 47.54 52.08 55.27

0.06 79.40 83.68 85.82
0.08 95.91 97.38 97.94

0.10 99.63 99.82 99.89

0.12 99.98 99.99 100.00

0.14 100.00 100.00 100.00

(b)

δ χ2

01
DIP

0.05,0.95

n
DIP

0.10,0.90

n

0.00 4.67 4.02 4.31

0.02 18.18 19.45 31.03

0.04 47.36 51.93 54.99

0.06 79.58 83.79 85.95
0.08 95.95 97.42 97.96

0.10 99.63 99.82 99.87

0.12 99.99 99.99 99.99

0.14 100.00 100.00 100.00

In Tables 4.1 and 4.2 we show the percentages of rejections of 100,000 repli-

cations of the test for different values of δ for Models 1 and 2, respectively. The

empirical significance levels of the χ2
01 show that it is a conservative test. This
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conservative behaviour is also observed for the smoothed Dip, although it could
be probably improved by considering bootstrap techniques. In connection with
the power of the tests, we can see that the power of our test improves on that
of the χ2

01 test (up to 25% in some cases) irrespective of the smoothing degree
chosen, and even though our procedures are slightly more conservative than χ2

01.

5. Concluding Remarks

In this paper we developed a new asymptotic procedure to test constancy
for isotonic regressions based on a nonparametric tail-smoothed measure of the
degree of increase of the isotonic regressions. This study offers a complementary
view to the classical one in the sense it requires neither further assumptions on
the conditional distributions nor any parametric model for the regression. In
addition, simulation studies showed good power versus that of the classical tests
in this context.
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Appendix

Proof of Proposition 1. To prove the square integrability of S∗(x) we locate
a sequence of uniformly square integrable functions on L↑

2[0, 1] converging λ −
a.s. to S∗(x), so that the mean convergence criterion would lead to the result.
For all n ∈ N, consider the piece-wise linear function xn : [0, 1] → R defined
by xn (i/2n) = x (i/2n) for all i ∈ {0, . . . , 2n}, and by linear interpolation on
[(i − 1)/2n, i/2n] for all i ∈ {1, . . . , 2n}.

Note that xn → x as n → ∞, and given that x ∈ F ∗[0, 1] ⊂ C[0, 1], the
convergence is uniform. Taking into account the convexity of the functions con-
sidered, it is easy to check that if x is differentiable at t0, then {S(xn)(t0)}n∈N

converges to S(x)(t0). Since the functions in F [0, 1] are differentiable in [0, 1],
except at most at a denumerable set, we get that S∗(xn)

n→∞−→ S∗(x) λ − a.s..
Regarding the uniform integrability of the sequence {[S∗(xn)]2}n∈N, we check

that lima→∞ supn∈N

∫
{[S∗(xn)]2>a}[S

∗(xn)]2(t)dt = 0. Equivalently, if x ∈ F ∗[0, 1],

there exists δ ∈ (0, 1/2] so that |x| ≤ fδ/δ and

lim sup
k→∞

sup
n∈N

∫
n

|S∗(xn)|>δ−1(2k)
1/2−δ

o

[S∗(xn)]2(t)dt = 0.

Obviously, we can assume that δ ∈ (0, 1/2). It is easy to check that {|S∗(xn)| >

δ−1
(
2k
)1/2−δ} ⊂ [0, 1/2k ] ∪ [1 − 1/2k, 1].
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The integrals involved are monotone for piece-wise linear functions and, by

symmetral reasoning, it is possible to verify that
∫

h

0, 1

2k

i

[S∗((xn))]2(t)dt ≤
∫

h

0, 1

2k

i

[S∗(−fn
δ

δ
)]2(t)dt +

∫
h

1− 1

2k ,1
i

[S∗(−fn
δ

δ
)]2(t)dt.

The last expression can be bounded by 2δ−2
[
2−2kδ + 2−2kδ(1/2 + δ)2(2δ)−1

]

and this converges to 0 as k → ∞.

The same reasoning can be applied in connection with the integral over

[1 − 1/2k, 1], and this completes the proof.

Proof of Proposition 2. It is enough to verify that {[S∗(xn)]2}n is uniformly

integrable. This can be proven by following similar steps to those in Proposition

1, taking into account that the monotonicity result can be extended to general

functions in F ∗[0, 1].

Proof of Theorem 1. The first assertion is obvious. Regarding the continuity

of H∗, consider x, {xn}n∈N ⊂ B∗[0, 1]α,k such that xn → x uniformly as n → ∞.

The boundedness of x and the uniform convergence of the sequence {xn}n∈N to

x allow us to find a common δ̃ ∈ (0, 1/2] in such a way that |x| ≤ fδ̃/δ̃ and

|xn| ≤ fδ̃/δ̃ for all n ∈ N. Furthermore, the convexity of fδ̃/δ̃ guarantees that

|Gcm(x)| ≤ fδ̃/δ̃ and |Gcm(xn)| ≤ fδ̃/δ̃ for all n ∈ N. Hence, the result can be

deduced from the uniform continuity of Gcm and the sequential continuity of S∗

established in Proposition 2.

Proof of Proposition 3. First of all, note that since Y n = Csdm̂a,b(1), then

DIP
a,b
n = H∗(Csdm̂a,b − I · Csdm̂a,b(1)). On the other hand, it is easy to check

that Csdm̂a,b − I · Csdm̂a,b(1) = Π[⌈na⌉/n,⌈nb⌉/n)(Zn) and this suffices.

Proof of Proposition 4. First it should be note that (nr/h(1))1/2[Zn−E[Zn]]=

(nr/h(1))1/2
Csdm̂−m − I · (nr/h(1))1/2

Csdm̂−m(1). Since

z : (C[0, 1], ‖ · ‖∞) → (C[0, 1], ‖ · ‖∞)

x  z(x) = x − I · x(1)

is continuous and U(1) = h(1)/h(1) = 1, if we prove that (nr/h(1))1/2
Csdm̂−m

converges in law to B◦U, the Continuous Mapping Theorem completes the proof.

To verify this convergence we apply a Prohorov generalization of the Donsker

Theorem (see, for instance, Billingsley (1968)) on the centered variables ξi,n =

r1/2(m̂(xi,n) − m(xi,n)). We need to introduce the following notation: s̃2
i,n =

Var [ξ1,n] + . . . + Var [ξi,n], S̃i,n = ξ1,n + . . . ξi,n and ũi,n = s̃2
i,n/s̃2

n,n for all i =

1, . . . , n and n ∈ N. Let Xn be the random function that is linear on each interval

[ũn,i−1, ũi,n] and taking the values Xn(ũi,n) = S̃i,n/s̃n,n at the division points.
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If the family of random variables {ξi,n}i=1,...,n, n ∈ N, satisfies the Lindeberg

condition, then Xn
L−→ B.

On the other hand, let Ũn : [0, 1] → [0, 1] be linear on each interval [(i −
1)/n, i/n] and take on the values Ũn(i/n) = ũi,n at the division points. Since
Var [ξi,n] = σ2(xi,n), it is easy to check that

(
nr

h(1)

) 1

2

Csdm̂−m =

(
s2
n,n/n

h(1)

) 1

2

Xn ◦ Ũn.

The condition imposed on the design points guarantees the uniform conver-
gence of Ũn to U . In addition, since Ũn is continuous and strictly increasing

for all n ∈ N, then Xn ◦ Ũn
L−→ B ◦ U (see, Brunk (1970)). Slutzky’s Lemma

concludes the proof.
Next we are going to verify that the family of random variables {ξi,n}i=1,...,n,

n ∈ N, satisfies the Lindeberg condition. First, we prove that the family of
supporting random variables Qnij = r−1/2

(
Y j(xi,n) − m(xi,n)

)
with n ∈ N, i ∈

1, . . . , n and j ∈ {1, . . . , r} satisfies the Lindeberg condition, and later we connect
the conditions related to both families (the original and the supporting one).

Let ǫ > 0. For each i ∈ {1, . . . , n}, define s2
n =

∑n
i=1

∑r
j=1 Var [Qnij ], and

denote by Dǫ,n(xi,n) the integration support for the Lindeberg condition for the

family Qnij, that is,
{

y ∈ R

∣∣∣ r−1 (y − m(xi,n))2 > ǫ2s2
n

}
. It is easy to verify

that given φ ∈ R
+, there exists n0 ∈ N so that, for all n ≥ n0, Dǫ,n(xi,n) ⊆

{y ∈ R | |y − m(xi,n)| > φ} for all i ∈ {1, . . . , n}. Consequently,

1

s2
n

n∑

i=1

r∑

j=1

∫

Dǫ,n(xi,n)
r−1D(xi,n)(dy)

≤ n

s2
n

sup
x∈A

∫

{y∈R | |y−m(x)|>φ}
(y − m(x))2D(x)(dy).

Thus, for all φ ∈ R
+ it is verified that

lim sup
n→∞

1

s2
n

n∑

i=1

r∑

j=1

∫

Dǫ,n(xi,n)
r−1 (y − m(xi,n))2 D(xi,n)(dy)

≤ h(1)−1 sup
x∈A

∫

{y∈R | |y−m(x)|>φ}
(y − m(x))2D(x)(dy).

The conditions imposed on the family of distributions D guarantee that this
last expression converges to 0 as φ tends to infinity. Consequently the sequence
of random variables Qnij verifies the Lindeberg condition and

n∑

i=1

ξi,n

( n∑

i=1

Var [ξi,n]
)− 1

2

=

n∑

i=1

r∑

j=1

Qnij

( n∑

i=1

r∑

j=1

Var [Qnij ]
)− 1

2 L−→ N (0, 1).
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On the other hand, by taking into account Tchebychev’s inequality it is easy

to verify that for all ǫ > 0,

max
i∈{1,...,n}

P
[∣∣∣ξi,n

( n∑

j=1

Var [ξj,n]
)−1/2∣∣∣ > ǫ

]
n→∞−→ 0.

The last two convergences are equivalent to the Lindeberg condition for the

ξi,n, and this finishes the proof.
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