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Abstract: The Buckley-James estimator (BJE) is the most appropriate extension of

the least squares estimator (LSE) to the right-censored linear regression model. Lai

and Ying (1991) established asymptotic normality of the BJE under a set of regu-

larity conditions. The BJE makes use of the product-limit estimator (PLE). Both

the LSE and the PLE are asymptotically normally distributed when underlying

distributions are either continuous or discontinuous. It is an interesting question

whether the BJE is still asymptotic normal when the underlying distributions are

discontinuous. In this paper, we show that the BJE has at least four types of

asymptotic distributions under various discontinuity assumptions. In particular,

we establish certain conditions under which the BJE does (or does not) have an

asymptotic normal distribution.
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1. Introduction

We investigate the asymptotic distributions of the Buckley and James (1979)

estimator (BJE) under the linear regression problem with right-censored data,

when underlying distributions are discontinuous.

Regression analysis is one of the most widely used statistical techniques. Its

applications occur in almost every field, including engineering, economics, physi-

cal sciences, management, life and biological sciences, and the social sciences. In

particular, one desires to estimate the relationship between a variable Y and one

or more independent variables, say a vector X. One relationship is Y = β ′X+ ε,

where β′ is the transpose of a regression coefficient vector β and ε is a random

variable with an unknown cdf Fo. E(ε) may or may not be zero, which is not

important, as in general E(ε) is not identifiable under right censoring.

This is a semi-parametric set up, as β is a parameter with finite dimension

and Fo is arbitrary (continuous or discontinuous). The BJE is an estimator of

β under this set-up. The counterpart of the BJE in the uncensored case is the

least squares estimator (LSE).
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With complete data, the LSE is the common approach. Under right cen-
soring, there are several extensions of the LSE, including the BJE. Miller and
Halpern (1982) compared the performance of the BJE with extensions of the least
squares method to censored data by Miller (1976) and by Koul, Susarla and Van
Ryzin (1981), and with the Cox (1972) regression analysis that assumes a pro-
portional hazards model instead of the linear regression model. From the results
of these different methods applied to the Standford heart transplant data, Miller
and Halpern concluded that the Cox and the Buckley-James estimators are the
“two most reliable regression estimates to use with censored data” and that “the
choice between them should depend on the appropriateness of the proportional
hazards model or the linear model for the data.”

Buckley and James proposed an algorithm to find a solution by an iterative
algorithm. The algorithm may not converge to a BJE even when the BJE exists
(see Yu and Wong (2002)). When the BJE based on the original definition of
Buckley and James does not exist, James and Smith (1984) proposed a modifi-
cation of the BJE. Yu and Wong (2002) provided the explicit expression for this
BJE by proposing a non-iterative algorithm for finding all possible solutions to
the BJE.

Under certain smooth assumptions on the underlying distributions, James
and Smith (1984) presented a consistency result on the BJE, and Lai and Ying
(1991) showed that a modified BJE is asymptotically efficient if Fo is a normal
distribution and is asymptotically normally distributed.

It is possible that Fo is not normal and is not even continuous. Since there are
studies on the asymptotic properties of the BJE under the assumption that Fo is
normal or is continuous, it is of interest to investigate the asymptotic properties
of the BJE when Fo is discontinuous. This problem has not been addressed in
the literature.

Under certain regularity conditions, it is well known that the LSE without
censoring is asymptotically normally distributed when Fo is either continuous
or discontinuous, and the product-limit-estimator (PLE) with right censoring is
also asymptotically normally distributed when the underlying distributions are
either continuous or discontinuous. Since the BJE is an extension of the LSE and
the BJE makes use of the PLE, one would think that when Fo is discontinuous
or, in particular, when Fo takes on finitely many values, the BJE would also be
asymptotically normally distributed. However, this is not true.

Our results show that the BJE β̂n has the following asymptotic properties.

1. Under certain assumptions, with probability 0.5, the BJE does not exist. If
it exists, it does not converge to β (see Examples 1 and 2).

2. Under certain assumptions, β̂n → β a.s. and
√

n(β̂n−β) converges in distribu-
tion to Z, where Z has a normal distribution with mean zero (Z ∼ N(0, σ2))
(see Theorem 2).
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3. Under certain assumptions, β̂n → β a.s. and
√

n(β̂n − β) converges in distri-

bution to min{Z, 0} or max{Z, 0} (see Theorem 3).

4. Under certain assumptions, P{β̂n = β for all large enough n} = 1 (see Theo-

rem 4).

It is worth mentioning that in the last two cases, the BJE does not have an asymp-

totic normal distribution and, unlike the modified PLE proposed by Lai and Ying

(1991), we do not make any modification to the BJE.

We first study the asymptotic properties of the BJE assumed discreteness.

Discrete assumptions are common in the literature (see, for example, the classical

textbooks on survival analysis by Cox and Oakes (1984, p.101) and by Miller

(1981, p.61)). Nelson (1973) provided a discrete data set that fits the linear

regression model quite well.

Here, for simplicity, most of our proofs are for the discrete case. It is possible

that the asymptotic properties of the BJE under discreteness remain if Fo is

discontinuous, given certain regularity conditions.

Since the main purpose of the paper is to find possible asymptotic distribu-

tions of the BJE, we take b to be a scalar, for simplicity. It is possible that similar

results as 1−4 hold in the multiple linear regression setting under discontinuous

assumptions.

The BJE is a special case of an M-estimator. Our results suggest that the

other M-estimators may have the similar properties under discontinuity assump-

tions, so our findings contribute to the understanding of asymptotic properties of

M-estimators. Even more, note that the BJE under right censoring has been ex-

tended to the case of interval censoring. Rabinowitz, Tsiatis and Aragon (1995)

proposed a class of score statistics to estimate β. Their approach parallels the

construction of the BJE for right-censored data. Li and Pu (1999) considered a

generalization of the BJE for interval-censored data that contains exact obser-

vations. Zhang and Li (1996) and Li and Zhang (1998), among others, studied

M-estimators with doubly-censored data and Case 1 interval-censored data. Our

findings should also provide hints to properties of these M-estimators and exten-

sions of the BJE under interval censoring.

The paper is organized as follows. In Section 2, we set the notation and

introduce the algorithm for obtaining the BJE. In Section 3 we present the main

results. Some detailed proofs are relegated to Section 4.

2. Notations

Consider the model Y = βX + ε, where β is a scalar and ε and X are

random variables. Let C be a censoring variable, M = min{Y,C}, δ = 1(Y ≤C)

(the indicator function of the event {Y ≤ C}), W = C−βX, U = min{W, ε}, T =
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T (b) = M−bX, µx = E(X) and let I be the observable random interval, i.e., I =

[Y, Y ] if δ = 1, and I = (C,∞) otherwise. Let (Mi, δi, Xi, Ci, εi,Wi, Ui, Ti, Ii),

i = 1, . . . , n, be i.i.d. copies of (M, δ,X,C, ε,W,U, T, I). Given a random variable

or random vector, say U , let FU (SU ) be its distribution (survival) function, fU

its density function, and let Ū =
∑n

i=1 Ui/n. In a similar manner, let Ū2 and
¯UX, etc. The BJE is a zero crossing of H(·), where

H(b) =

n
∑

i=1

T ∗
i (b)(Xi − X̄), (2.1)

(T ∗
i (b), δ∗i ) =







(Ti(b), 1) if Ti(b) = maxj Tj(b) or δi = 1,
(

∑

t>Ti(b)
tf̂b(t)

Ŝb(Ti(b))
, δi

)

otherwise.
(2.2)

Here Ŝb is the PLE of the survival function So (= 1 − Fo) based on (Ti(b)
∗, δ∗i )s,

and f̂b is defined by f̂b(t) = Ŝb(t−) − Ŝb(t), which is the PLE of fo, the den-

sity of Fo. Thus T ∗
i (b) can be viewed as an estimate of E(εi|Yi ∈ Ii)). The

motivation for using T ∗
i is as follows. If the largest Ti(b) is right censored,

(
∑

t>Ti(b)
tf̂b(t))/Ŝb(Ti(b)) in (2.2) is not defined and is treated as an exact ob-

servation in H(b). Hence Ŝb is modified so that it moves the tail probability to

the largest observation among the Ti(b)’s.

Throughout the paper, we make use of the following assumptions.

A1. ε and (X,C) are independent.

A2. (ε, C, X) takes on finitely many values.

Under A2, by the Strong Law of Large Numbers (SLLN), we have

H(β)

n
→ E(E((X − E(X))ε∗|I)) a.s., where ε∗ =

{

ε if ε < τ ,

τ if ε ≥ τ ,
(2.3)

and τ = sup{t : P{U > t} > 0}. The foregoing discussion establishes the

following lemma.

Lemma 1. Under A1 and A2, H(β)/n → 0 a.s., as n → ∞.

Details of the proof of the lemma are given in Kong (2005).

Remark 2.1. Note that if Fε∗ = Fo, then

inf{t : FW (t) = 1} ≥ inf{s : Fo(s) = 1}, (2.4)

and T ∗
i (β) = Ti(β) for all i, at least when n is large enough. Thus, (2.4) is the

justification for the modification at (2.2). Without loss of generality (WLOG),

we can assume that (2.4) holds. Otherwise, hereafter replace ε by ε∗ (see (2.3)).
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Let e1 < · · · < emo be the possible values of ε such that emo ≤ τ (see

(2.3)), x1 < · · · < xmx be the possible values of X , c1 < · · · < cmc be the

possible values of C, and u1 < · · · < umu be the possible values of U . For

all possible j and k, let t1jk(b) = ej + (β − b)xk, t2jk(b) = cj − bxk, dj =
∑n

h=1 1(εh=ej ,δh=1), rj =
∑n

h=1 1(Th(β)≥ej), d1jk(b) =
∑n

i=1 1(Ti(b)=t1jk(b),δi=1),

r1jk(b) =
∑n

i=1 1(Ti(b)≥t1jk(b)), n1jk(b) =
∑n

i=1 1(Ti(b)=t1jk(b),Xi=xk,δi=1), n2jk(b) =
∑n

i=1 1(Ti(b)=t2jk(b),Xi=xk,δi=0), p1jk = limn→∞ n1jk/n a.s. and p2jk = limn→∞

n2jk/n a.s.. Abusing notation, we write d1jk = d1jk(b) and r1jk = r1jk(b), etc.

In order to derive all solutions to the BJE, Yu and Wong (2002) made use

of the following notation. Let bij be the solution to an equation Ti(b) = Tj(b),

where Xi 6= Xj . Let b1 < · · · < bmβ
be all the distinct values of the bij’s. Let

Bo = {b1, . . . , bmβ
}. Let b0 = −∞ and bmβ+1 = ∞. Let B be the subset of Bo

such that each element of B is the solution to an equation Ti(b) = Tj(b), where

Xi 6= Xj and δi · δj = 0. Let B = {q1, . . . , qmb
}. Let q0 = −∞ and qmb+1 = ∞.

Lemma 2.(Yu and Wong (2002, Remark 3.1)) If β is a scalar then, given j,

1. for each i, the rank (or order) of Ti(b) remains the same if b ∈ (bj , bj+1);

2. for each i, Ŝb(Ti(b)) is constant in b on (bj , bj+1);

3. H(·) is linear (in b) on (bj , bj+1).

Remark 2.2. Statement (3) in Lemma 2 can be modified as follows: H(·) is

linear in b on the interval (qi, qi+1) for each i (see Kong (2005)).

Based on Remark 2.2, the original algorithm proposed by Yu and Wong

(2002) for finding all BJEs can be improved as follows.

The algorithm for the BJE.

1. For each qh ∈ B, compute the PLE Ŝb for a b ∈ (qh, qh+1). For example, let b

be the midpoint of the interval (qh, qh+1) if 0 < h < mb, b = q1 − 1 if h = 0,

and let b = qmb
+ 1 if h = mb. Denote such b by ah and compute

b̂h =

∑n
j=1(Xj − X̄)M∗

j (ah)
∑n

k=1(Xk − X̄)X∗
k(ah)

, (2.5)

where (M ∗
i (·), X∗

i (·)) is an estimate of E((Mi, Xi)|Yi ∈ Ii), or

M∗
i (b) = Miδi + (1 − δi)

∑

t>Ti(b)

f̂b(t)

Ŝb(Ti(b))

∑n
j=1 Mj1(Tj(b)=t,δj=1)

∑n
k=1 1(Tk(b)=t,δk=1)

,

(2.6)

X∗
i (b) = Xiδi + (1 − δi)

∑

t>Ti(b)

f̂b(t)

Ŝb(Ti(b))

∑n
j=1 Xj1(Tj(b)=t,δj=1)

∑n
k=1 1(Tk(b)=t,δk=1)

, i = 1, . . . , n.

2. If b̂h ∈ (qh, qh+1) then b̂h is a solution to equation H(b) = 0 and is a BJE of

β.
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3. Compute H(qi−), H(qi) and H(qi+), i = 1, ..., mb, where H(qi+) and H(qi−)

are the right- and left-hand limits of H, respectively. By (2.1), (2.2) and (2.6)

we have

H(b) =















n
∑

j=1
(Xj − X̄)(M∗

j (qi) − bX∗
j (qi)) if b = qi, 1 ≤ i ≤ mb,

n
∑

j=1
(Xj − X̄)(M∗

j (ai) − bX∗
j (ai)) if b ∈ (qi, qi+1), 0 ≤ i ≤ mb.

(2.7)

If H(qi−)H(qi+) ≤ 0, or H(qi−)H(qi) ≤ 0, or H(qi)H(qi+) ≤ 0, then qi is a

BJE.

3. Main Results

We investigate the asymptotic properties of the BJE in this section. The

proofs of the lemmas are given in Section 4. Some detailed and tedious proofs of

the statements in examples, and certain statements in the proofs of lemmas and

theorems, are given in more detail in Kong (2005).

The identifiability assumption made under the uncensored case is P{X1 6=
X2} > 0. In order to understand a modification of the identifiability condition

to right censoring, we first look at the following example.

Example 1. Let β = 1. Suppose that ε and X ∼ bin(1, 1/2) and C ≡ 0.5. Then

it can be shown (see Kong (2005)) that

with probability (w.p.) approximately 1/2 there is no BJE

and w.p. approximately 1/2 β̂n = 0.5 is a BJE. (3.1)

Thus, the BJE, if it exists, is not consistent and is not normally distributed.

In Example 1, we have the naive extension of assumption P{X1 6= X2} >

0 to the censoring case. Example 1 indicates that it is not the identifiability

condition in the censored regression. The main feature in this example is that

P{δ1 = δ2 = 1 and X1 6= X2} = 0. This justifies the following identifiability

condition for the simple linear regression model.

A3. P{δ1 = δ2 = 1 and X1 6= X2} > 0.

Note that in Example 1, the random variables are all discrete. The same

phenomenon will occur under continuous cases. The following is such an example.

Example 2. Suppose that β = 1, C ∼ U(0, 0.5), ε ∼ U((−0.1, 0) ∪ (1, 1.1)),

X ∼ bin(1, 1/2), and C and X are independent. Then (3.1) still holds. Thus

there is no consistent BJE. The proof is similar to that for (3.1) in Example
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1. Here A3 does not hold, and therefore has nothing to do with the continuity

assumption on ε.

If one assumes that ε and (C,X) are continuous and independent, and as-

sumes that P{δ = 1} > 0, then P{X1 6= X2} > 0 implies A3. Thus A3 is not

even mentioned in Lai and Ying (1991) or in James and Smith (1984).

Under A1 and A2, the LSE in the case of complete data and the PLE are both

asymptotically normally distributed. Consequently, one would expect that the

BJE would also be asymptotically normally distributed. However the following

is a counterexample.

Example 3. Let β = 1. Suppose that ε and X ∼ bin(1, 1/2) and C ≡ 1. It can

be shown (see Kong (2005)) that the BJE β̂n is consistent and

√
n(β̂n − β) converges in distribution to min{Z, 0},

where Z ∼ N(0, σ2) and σ > 0. (3.2)

The main feature in Example 3 is that C − βX = ε if (C,X, ε) = (1, 1, 0).

That is,

A4. P{C − βX = ε < τ} > 0, where τ is given in (2.3).

A4 says that the cdfs of C−βX and Fo share a common discontinuity point. We

establish a theorem that if A4 does not hold then the BJE may still be asymptotic

normal if Fo is not continuous.

Before we present the theorem, we need to establish some preliminary results.

Remark 3.1. Since we consider the regression model, WLOG, we can assume

that β 6= 0. Furthermore, we can assume β = 1. Otherwise, replace X by X/β.

Moreover, we can assume that X > 0. The reason is as follows. A2 implies that X

is bounded. By subtracting a lower bound d of X from X, Y and C, respectively,

resulting in X (n), Y (n) and C(n), the model becomes (Y − d) = β(X − d) + ε

(Y (n) = βX(n) + ε), where β = 1 and the observable random vector becomes

(M−d, δ) (= (M (n), δ)) with M−d = min{Y −d,C−d} (M (n) = min{Y (n), C(n)})
and δ = 1((Y −d)≤(C−d)) (= 1(Y (n)≤C(n))). Now X(n) = X − d > 0.

Under A1 and A3, we can assume that β ∈ Bo. Denote bio = β. Under A2,

by letting n be large enough, we can further assume that both B and Bo do not

depend on n. Notice that the PLE is

Ŝb(t) =
∏

(j,k):t1jk(b)≤t

over all distinct t1jk(b)s

(

1 − d1jk(b)

r1jk(b)

)

and Ŝβ(t) =
∏

i: ei≤t

(1 − di

ri

). (3.3)



348 FANHUI KONG AND QIQING YU

Take

f−
hm = lim

n→∞
f̂−

hm, where f̂−
hm = f̂b(t1hm(b)), if b ∈ (bio−1, β);

fhm = lim
n→∞

f̂hm, where f̂hm = f̂β(eh)

∑n
j=1 1(Tj(β)=eh,δj=1,Xj=xm)
∑n

k=1 1(Tk(β)=eh,δk=1)
; (3.4)

f+
hm = lim

n→∞
f̂+

hm, where f̂+
hm = f̂b(t1hm(b)), if b ∈ (β, bio+1).

Remark 3.2. By 2 of Lemma 2, for b ∈ (bi, bi+1), f̂b(t1hm(b)) is constant in

b, so f̂−
hm, f̂+

hm and f̂hm do not depend on b and neither do f−
hm, fhm and f+

hm.

Moreover, verify that for b ≈ β and b 6= β, d1jk(b) is constant in b.

Lemma 3. Suppose that A2 holds.

1. If for each triple (i, j, k), ci − βxk 6= ej, except perhaps for one triple (i, j, k)

with k = mx, then f̂−
hm = f̂β(eh)d1hm/dh and f−

hm = P{X = xm|eh ≤
W}fo(eh).

2. If for each triple (i, j, k), ci − βxk 6= ej, except perhaps for one triple (i, j, k)

with k = 1, then f̂+
hm = f̂β(eh)d1hm/dh and f+

hm = P{X = xm|eh ≤ W}fo(eh).

3. If β /∈ B, then f̂+
hm = f̂−

hm = f̂hm = f̂β(eh)d1hm/dh and f−
hm = fhm = f+

hm =

P{X = xm|eh ≤ W}fo(eh).

Mimicking the expression of H(b) in (2.7), define

H(b) =

n
∑

j=1

(Xj − X̄)(M∗
j − bX∗

j ), where M ∗
j = M∗

j (β) and X∗
j = X∗

j (β) (3.5)

(see (2.6)). In general, H(b) = H(b) may not be true.

Let b̂ be the solution to H(b) = 0, that is, b̂ =

∑n
j=1(Xj − X̄)M∗

j
∑n

k=1(Xk − X̄)X∗
k

. (3.6)

Theorem 1. If A1, A2 and A3 hold, then

1. H(β)/
√

n
D−→ N(0, σ2

H), where σ2
H = Var (T ), T = g1(ε,X)δ + g2(C,X)(1 −

δ),

g1(es, xt)=(xt−µx)es+
∑

(j,k):t2jk<es

p2jk(xk−µx)σsjk−(xt−xmx)E(ε∗) (see (2.3))

g2(cs, xt)=−(xt − xmx)E(ε∗) + (xt − xmx)νst,

νjk =
∑

h:eh>t2jk

eh

∑

k′ p1hk′

∏

m:t2jk<em<eh
(1−

∑

k′ p1mk′
∑

(i,k′):i≥m p1ik′+
∑

(j′,k′):t
2j′k′

≥em
p2j′k′

)

∑

(i,k′):i≥h p1ik′ +
∑

(j′,k′):t2j′k′≥eh
p2j′k′

,
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σjks =
∑

h:t2jk<eh≤es

ehfo(eh)

SU (eh−)So(t2jk)

[

SU (eh−)
∑

m:t2jk<em<eh

fo(em)

So(em)SU (em−)
− 1

]

+
es

SW (es−)So(t2jk)
+

∑

h:h>s

ehfo(eh)

So(t2jk)

∑

m:t2jk<em≤es

fo(em)

So(em)SU (em−)
;

2.
√

n(b̂ − β)
D−→ N(0, σ2

β), where σ2
β = σ2

H/σ2
2 and σ2 = limn→∞( ¯XX∗ − X̄ ·

X̄∗) > 0 a.s..

Let µε∗ = E(ε∗). Since ε = M −βX if δ = 1 and W = M −βX if δ = 0, T is
a function of (M, δ,X, µx, µε∗ , β), say T = T (M, δ,X, µx, µε∗ , β). Consequently,

an estimate of σ2
H is σ̃2

H = T̂ 2 − (T̂ )2, where T̂i = T (Mi, δi, Xi, µ̂x, µ̂ε∗ , β̂n), µ̂x

and µ̂ε∗ are empirical estimates of µx and µε∗ , respectively, and β̂n is the BJE.

Proof of Theorem 1. The main idea of the proof is under A2, both H and
b̂ are algebraic functions of the sample mean of a random vector with finite
dimension. Thus by the Central Limit Theorem (CLT) and the delta method,
we can establish the asymptotic normality of H(β)/n and b̂.

We first prove Statement 1. For simplicity, write t2jk = t2jk(β), etc. By
(2.6), (2.7) and (3.3),

H(β)

n
=

1

n

n
∑

i=1

(Xi − X̄)
(

δiεi + (1 − δi)

∑

(h,m): eh>Wi
ehf̂β(eh)n1hm

rh

Ŝβ(Wi)

)

=
∑

i,k

n1ik

n
(xk − X̄)ei

+
∑

j,k

n2jk

n
(xk − X̄)

∑

h: eh>t2jk

eh

dh

rh

∏

m: t2jk<em<eh

(1 − dm

rm
) (3.7)

(as f̂β(eh) = Ŝβ(eh−)dh/rh). Details of the proof of (3.7) are given in Kong
(2005). By the SLLN, p1jk = P{ε = ej ≤ W,X = xk} and p2jk = P{ε > W,C =
cj, X = xk}. Let ph = limn→∞ dh/n a.s.. The existence of these (almost sure)
limits is guaranteed by the SLLN. Verify that limn→∞ rh/n = SU (eh−) a.s.. The
(almost sure) limit of H(β)/n is

Ho =
∑

i,k

p1ik(xk − µx)ei

+
∑

j,k

p2jk(xk − µx)
∑

h:eh>t2jk

ehph

SU (eh−)

∏

m:t2jk<em<eh

(1 − pm

SU (em−)
)

(by (3.7)). Verify that for each t, SU (t) is a function of pijk and

ph =
∑

k

p1hk, µx =
∑

i,k

p1ikxk +
∑

j,k

p2jkxk and
∑

i,j,k

pijk = 1. (3.8)
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Hence, we can write Ho = Ho(v), where v is a finite-dimensional (say mv × 1

dimensional) vector whose components are pijk, for all possible (i, j, k), except

for one p2jk, say p2mcmx , provided that for this particular (j, k), we have

P{1(ε>W,C=cj ,X=xk) = 1} ∈ (0, 1). (3.9)

WLOG, we can assume that (3.9) holds for (j, k) = (mc,mx). Let v̂ be the

estimator of v that estimates the components of v by p̂ijk = nijk/n. Since

p̂1jk = (1/n)
∑n

i=1 1(εi=ej≤Wi,Xi=xk), p̂2jk = (1/n)
∑n

i=1 1(Ci=cj ,Wi<εi,Xi=xk), one

can write v̂ = V̄ , where V is a random vector of finite dimension with com-

ponents 1(ε=ej≤W,X=xk), 1(ε>W,C=ci,X=xk), j = 1, . . . ,mo, i = 1, . . . ,mc, k =

1, . . . ,mx, except for the term 1(ε>W,C=cmc ,X=xmx). By Lemma 1, Ho(v) =

limn→∞ H(β)/n = 0 a.s., thus, H(β)/n = Ho(v̂) = Ho(v̂) − Ho(v). Since v̂

is a sample mean of mv × 1 dimensional random vector, mv is a finite integer

independent of n, and Ho has continuous partial derivatives, the CLT yields the

asymptotic normality of H(β)/n. The derivation of σ2
H is based on the delta

method, thus it is a trivial but tedious calculation. Its proof can be found in

Kong (2005). It completes the proof of Statement 1.

We now prove Statement 2. Recall that H(b̂) = 0 and H(β) = H(β). It

follows that

√
n

H(β)

n
=

√
n
H(β) −H(b̂)

n
=

√
n(b̂ − β)( ¯XX∗ − X̄ · X̄∗) (by (3.5)). (3.10)

It can be shown (see Kong (2005)) that σ2 = limn→∞( ¯XX∗−X̄ ·X̄∗) > 0 a.s.. As

a consequence of (3.10),
√

n(b̂− β) = H(β)/(( ¯XX∗ − X̄ · X̄)
√

n). By Statement

1 and Slutsky’s Theorem,
√

n(b̂ − β)
D−→ N(0, σ2

β), where σ2
β = σ2

H/σ2
2 .

Theorem 2. If A1, A2 and A3 hold and P{C − βX = ε} = 0, then β̂n = b̂

given by (3.6) is a BJE if n is large enough, β̂n is consistent and
√

n(β̂n−β)
D−→

N(0, σ2
β).

It is worth mentioning that σ2
β (see Theorem 1) derived under the discontin-

uous assumptions is not the same as the expression for the variance of the BJE

under the smoothness assumptions given in Lai and Ying (1991, (4.4)). Notice

that both the limiting variance in Lai and Ying and that in Theorems 1 and

2 involve the error density fo. Lai and Ying made strong assumptions on fo,

while under A2 in our set-up, fo is essentially a finite-dimensional parameter. Of

course, it is also a very strong assumption on fo.

Proof of Theorem 2. Our notation has bio = β. It is known (see Kong (2005))

that

if P{C − βX = ε} = 0 then H(b) = H(b) for each b ∈ (bio−1, bio+1). (3.11)
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Let b̂ be a root of H(b) given by (3.6). By (3.11) and the definition of the BJE,

b̂ is a BJE if b̂ ∈ (bio−1, bio+1). Under the assumptions of Theorem 2, by taking

a large sample size and by (3.11), we can assume that b̂ ∈ (bio−1, bio+1) and

thus β̂n = b̂ is a BJE. The asymptotic normality follows from Theorem 1. The

consistency follows from the equation β̂n − β = ( ¯XX∗ − X̄ · X̄∗)−1H(β)/n → 0

a.s. (see (3.10)) and from Theorem 1 and Lemma 1. This completes the proof of

Theorem 2.

In the proof of (3.2) (see Kong (2005)), it is proved that, w.p.1, H(β−) =

H(β) but limn→∞ H(β+)/n < 0. In fact, we can establish the following lemma.

Lemma 4. Assume that A1, A2, A3 and A4 hold.

1. If for each (i, j, k), ci − βxk 6= ej , except for only one triple (i, j, k) with

k = mx, then w.p.1, limn→∞ H(β+)/n < 0 but H(β−) = H(β).

2. If for each (i, j, k), ci−βxk 6= ej , except for only one triple (i, j, k) with k = 1,

then w.p.1, limn→∞ H(β−)/n > 0 but H(β+) = H(β).

Theorem 3. Suppose that A1, A2, A3 and A4 hold.

1. If the condition in Statement 1 of Lemma 4 holds, then there is a BJE β̂n

which is consistent and
√

n(β̂n − β) converges in distribution to min{0, Z},
where Z ∼ N(0, σ2

β).

2. If the condition in Statement 2 of Lemma 4 holds, then there is a BJE β̂n that

is consistent and
√

n(β̂n − β) converges in distribution to max{0, Z}.
Proof of Theorem 3. The two statements in the theorem are symmetric.

Since Example 3 is a special case of Statement 1, we only prove the second

statement. Now assume that the assumption in Statement 2 holds. By Lemma

4, H(β+) = H(β). Hereafter, unless we mention, otherwise, we assume b ∈
(β, bio+1) (bio = β). By (2.7),

H(b) =
n

∑

i=1

(Xi − X̄)(M∗
i (a1) − bX∗

i (a1)), (3.12)

where a1 = (β + bio+1)/2. It can be shown (see Kong (2005)) that

M∗
i (a1) = M∗

i (β) (= M ∗
i ) and X∗

i (a1) = X∗
i (β) (= X∗

i ). (3.13)

By (3.5), (3.12) and (3.13),

H(b) = H(b) for each b ∈ [β, bio+1), (3.14)

where H is given in (3.5). By (3.5) and (3.14), with probability 1,

lim
n→∞

H(b)−H(β)

(β − b)n
= lim

n→∞

H(b)−H(β)

(β − b)n
= lim

n→∞
{ ¯XX∗−X̄ · X̄∗}>0, b∈(β, bio+1).
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The last inequality follows from Statement 2 of Theorem 1. It implies that

limn→∞ H(bio+1−)/n < limn→∞ H(β)/n = 0 a.s. (by Lemma 1). Let b̂ be given

by (3.6). Then by (3.10), (3.12) - (3.14), (b̂ − β)( ¯XX∗ − X̄ · X̄∗) = H(β)/n.

Hence

H(β) > 0 iff b̂ > β (as b̂ is the root of H(b)). (3.15)

By Theorem 1, H(β)/
√

n → N(0, σ2
H ) in distribution. Thus,

P{H(β) > 0} → 1
2 and P{H(β) < 0} → 1

2 . (3.15)

By Statement 2 of Theorem 1, if n is large enough, we have

b̂ ∈ (bio−1, bio+1) as β ∈ (bio−1, bio+1). (3.16)

It follows that

(a) with approximate probability 1/2, H(β) > 0 (by (3.16)) and there is a root

of H(b) (= H(b)), say b̂ ∈ (β, bio+1) (by (3.17) and (3.15)).

(b) with approximate probability 1/2, H(β) < 0 (by (3.16)) and there is a root

of H(b), say b̂ ∈ (bio−1, β) (by (3.17) and (3.15)).

(c) P (
√

n(b̂ − β) ≤ t) is approximately the same as the cdf of N(0, σ2
β) for each

t by Statement 2 of Theorem 1, where σ2
β is given in Theorem 1.

As a consequence, in (a), b̂ is a BJE by definition, denoted by β̂n. Moreover,

by (c), the BJE β̂n satisfies that P (
√

n(β̂n − β) ≤ t) is approximately the same

as the cdf of N(0, σ2
β) for each t > 0. On the other hand in case (b), H(β) < 0

(when b̂ < β). Since H(β−) > 0 w.p.1 by Statement 2 of Lemma 4, β̂n = β is

the BJE of β approximately w.p.1/2, as it is a zero crossing of H(·). Consistency

is obvious. In summary, Statement 2 of the theorem holds.

Remark 3.3. In order to simplify the proof of the conclusion, in Theorem 3

we make use of the assumption that there is just one value of (C,X, ε) satisfying

C − X = ε. However, this restriction can be relaxed. For example, assume that

β = 1, ε takes three values −1, 0 and 1 with equal probability 1/3, X takes three

values −1, 1 and 2 with equal probability 1/3, and C ≡ 1. Verify that there are

two values of (C,X, ε) satisfying C − βX = ε and statement (3.2) holds. The

proof is given in Kong (2005).

By the definition of zero crossing, a BJE β̂n equals β if n is large enough in

the following case:

A5. limn→∞(H(β−)/n)(H(β+)/n) < 0 w.p.1.

In the following theorem, we provide a situation under which A5 holds.

Theorem 4. Assume A1, A2 and A3 hold. If for each i, j, k, ci − βxk 6= ej,

except for only two triples, say (io, jo, ko) and (i′o, jo, k
′
o) with ko = 1, k′

o = mx
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and cio − βxko
= ci′o

− βxk′
o

= ejo < emo , then A5 holds and P{β̂n = β if n is

large enough} = 1.

The proof of Theorem 4 is pretty long, see Kong (2005). Instead, we prove

the theorem in the special case given in Example 4 below.

Example 4. Let β = 1. Suppose that (1) ε ∼ bin(1, 1/2), (2) X and C

take values −2, 1, with equal probability 1/2, respectively, and (3) ε,X and C

are independent. We show (see Section 4) that (H(β−),H(β),H(β+))/n →
(1/24, 0,−1/8) w.p.1. Thus A5 holds and P{β̂n = β if n is large enough} = 1.

Remark 3.4. The assumption A2 can be relaxed. For example, in Example 3,

we can assume that ε takes on countably many values: 0, ±1, .... Moreover, in

Theorem 2, the assumptions can be reduced to that A1 and A3 hold, and A4

holds.

Remark 3.5. It is possible that under multiple linear regression (p > 1) with

discrete assumptions, one can still establish the four theorems with some mod-

ifications on the assumptions. For instance, Theorem 2 is valid if A3 is replace

by A3∗.

A3∗ P{δ1 = · · · = δp+1 = 1, rank(X1 −Xp+1, . . . ,Xp −Xp+1) = p} > 0.

We skip the details.

Appendix

Proofs of most lemmas and some statements in Section 3 are here.

Proof of Lemma 3. It is obvious that either (1) P{C − βX = ε} = 0, or (2)

P{C − βX = ε} > 0. We give the proof in both cases.

Case (1). We first prove Statement 1. Assume b ∈ (bio−1, β). We can assume

xi > 0 (see Remark 3.1). It is easy to see that for b ∈ (bio−1, β),

mx
∏

k=1

(1 − d1ik(b)

r1ik(b)
) =

r1i2

r1i1

r1i3

r1i2

r1i4

r1i3
· · · ri − di

r1imx

=
ri − di

r1i1
= 1 − di

ri

. (A.1)

Hereafter, abusing notations, we may suppress (b) in dhik(b), etc. Then for b in

(bio−1, β),

f̂b(t1hm(b)) = Ŝb(t1hm(b)−)
d1hm(b)

r1hm(b)
(by (3.3))

=
(

∏

i: ei<eh

mx
∏

k=1

(1 − d1ik

r1ik

)
)

m−1
∏

k=1

(1 − d1hk

r1hk

)
d1hm

r1hm

(by (3.3))
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=
∏

i: ei<eh

(1 − di

ri

)
m−1
∏

k=1

(1 − d1hk

r1hk

)
d1hm

r1hm

(by (A.1))

= Ŝβ(eh−)
d1hm

r1h1
(by (3.3))

= Ŝβ(eh−)
dh

rh

d1hm

dh

= f̂β(eh)
d1hm

dh

(by (3.3)) (A.2)

a.s.→ fo(eh)P{X = xm|eh ≤ W}.

By Remark 3.2 and 3.4, taking the limit as b ↑ β yields

f−
hm = fo(eh)P{X = xm|eh ≤ W}. (A.3)

Thus Statement 1 of Lemma 3 holds in case (1).

Now assume that (1) is true and b ∈ (β, bio+1). Then ej < t1jmx(b) <

· · · t1j1(b) < ej+1 and there is no censoring in (ej , ej+1). Statement 2 can be

proved in a similar manner as Statement 1, with minor modifications due to the

fact that β − b < 0 when b > β. Thus if (1) is true then we have

f+
hm = fo(eh)P{X = xm|eh ≤ W}. (A.4)

By (A.3), (A.4) and the definition of fhm, Statement 3 follows. This com-

pletes the proof of the lemma if (1) is true.

Case (2). Suppose that the assumption in Statement 1 holds and ci−βxmx = ej.

Then t1j1(b) < t1j2(b) < · · · < t1jmx(b) = t2imx(b) for each b ∈ (bio−1, bio), as

t2imx(b) = ci − bxmx = ej + (β − b)xmx = t1jmx(b) > · · · > ej + (β − b)x1 =

t1j1(b). By assumption, there is no censoring in (t1j1(b), t1jmx(b)). Thus the

proof parallels the arguments after (A.1). We skip the details.

Statement 2 can be proved in a similar manner. We skip the details. State-

ment 3 is not relevant in case (2). This completes the proof of the lemma.

Proof of Lemma 4. By symmetry, it suffices to establish Statement 2 of

Lemma 4. It follows from Statement 2 of Lemma 3 that H(β+) = H(β) under the

assumption of Statement 2 in Lemma 3. We shall now prove limn→∞ H(β−)/n >

0 a.s.. By the assumption, there is just one value of (C,X, ε) such that C−X = ε

and X = x1. WLOG, assume that ci − x1 = ei, where (C,X, ε) = (ci, x1, ei).

That is, there is censoring at t2i1(b) and P{W = ei, X > x1} = 0. We have

n2i1(b)+d1i1(b)+d1i2(b)+ · · ·+d1imx(b) = ri − r+
i , where r+

i =
∑n

h=1 1(Th(b)>ei).

Assume b ∈ (bio−1, β). Then

r1i1(b) = ri, r1i2(b) = r1i1(b) − d1i1(b) − n2i1(b), (A.5)
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r1i3(b) = r1i2(b) − d1i2(b), r1i4(b) = r1i3(b) − d1i3(b), . . .. Furthermore, it can be

shown (see Kong (2005)) that

∏

k

(1 − d1ik(b)

r1ik(b)
) = (1 − di

ri

)φn, (A.6)

where φn = (ri − di − n2i1(b))/(ri−di)(r1i2(b)+n2i1(b))/r1i2(b) < 1 a.s. by (A.5).

Let A1 = {W = ei < ε and X = x1}, A2 = {W ≥ ei = ε and X ≥ x2} and

A3 = {ε∧W > ei}. Verify that they are mutually exclusive events. Then by the

SLLN we have

φn
a.s.→ φ =

P (A3)P (A3 ∪ A2 ∪ A1)

P (A3 ∪ A1)P (A2 ∪ A3)
=

P (A3)[P (A3) + P (A2) + P (A1)]

[P (A3) + P (A1)][P (A2) + P (A3)]
< 1.

Moreover, we can show, by an argument similsr to (A.1) and (A.6), that

∏

k

(1 − d1jk(b)

r1jk(b)
) = (1 − dj

rj
) for j 6= i, if b ∈ (bio−1, β).

Thus by (3.3)

lim
b↑β

Ŝb(t) =

{

Ŝβ(t) if t < ei,

φnŜβ(t) if t ≥ ei.
(A.7)

Note that t1i1(b) = ci − bx1 < t1ik(b), ∀ k > 1, but t1i1(β) = ci − βx1 = t1ik(β),

∀ k > 1. Furthermore, let Ŝβ,k(ei) = limb↑β Ŝb(t1ik(b)). By (3.3),

Ŝβ,1(ei) = Ŝβ(ei−)(1 − n1i1

ri
) and Ŝβ(ei) = Ŝβ(ei−)(1 − di

ri
).

It follows from the foregoing equations and (A.7) that

Ŝβ,1(ei) − Ŝβ,mx
(ei)

Ŝβ,1(ei)
=

Ŝβ(ei)
ri−n1i1
ri−di

− φnŜβ(ei)

Ŝβ(ei)
ri−n1i1
ri−di

= 1 − φn(ri − di)

ri − n1i1
(
def
= 1 − φ̃n). (A.8)

Recall that t2hm(b) = ch − bxm. Let whm = t2hm(β). Then it can be shown (see
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Kong (2005)) that with probability 1,

lim
b↑β

∑

k 1(t=t1jk(b)>t2hm(b))tf̂b(t)

Ŝb(t2hm(b))

=















































ei(1 − φ̃n) if whm = ei = ej (by A4 and (A.8)),

φ̃nej f̂β(ej)

Ŝβ(ei)
if whm = ei < ej,

ej f̂β(ej)

Ŝβ(whm)
if ei < whm < ej or if whm < ej < ei,

ej(Ŝβ(ej−)−φnŜβ(ej))

Ŝβ(whm)
if whm < ei = ej (by A4),

φnej f̂(ej)

Ŝβ(whm)
if whm < ei < ej,

(A.9)

and with probability 1,

lim
n→∞

[ 1

n
H(β−) − 1

n
H(β)

]

= lim
n→∞

1

n

n
∑

j=1

(1 − δj)
[

lim
b↑β

∑

t>Tj(b)
tf̂b(t)

Ŝb(Tj(b))
−

∑

t>Tj(β) tf̂β(t)

Ŝβ(Tj(β))

]

(Xj − X̄)

(by (2.1) and (2.2))

= lim
n→∞

(

n2i1

n

(1 − φ̃n)
(

eiŜβ(ei) −
∑

j>i ej f̂β(ej)
)

Sβ(ei)
(x1 − X̄)

+
∑

(h,m):whm<ei

n2hm

n

(1−φn)
(

eiŜβ(ei)−
∑

j>i ej f̂β(ej)

Ŝβ(whm)
(xm−X̄)

)

(by (A.9))

= P (W = ei < ε,X = x1)(1 − φ̃)
eiSo(ei) −

∑

j>i ejfo(ej)

So(ei)
(x1 − µx)

+
∑

(h,m):whm<ei

P (W =whm <ε,X =xm)(1−φ)
eiSo(ei) −

∑

j>i ejfo(ej)

So(whm)
(xm−µx)

= fW,X(ei, x1)(1 − φ̃)
(

eiSo(ei) −
∑

j>i

ejfo(ej)
)

(x1 − µx)

+
∑

(h,m):whm<ei

P (W = whm, X = xm)(1 − φ)
(

eiSo(ei) −
∑

j>i

ejfo(ej)
)

(xm − µx)

= [fW,X(ei, x1)(x1−µx)+
1−φ

1−φ̃

∑

(h,m):whm<ei

P (W =whm, X =xm)(xm−µx)] · ν

(ν = (1 − φ̃)
(

eiSo(ei) −
∑

j>i ejfo(ej)
)

)
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=
(

fW,X(ei, x1)(x1 − µx) +
P (A1)

P (A3 ∪ A1)

mx
∑

m=1

P (W < ei, X = xm)(xm − µx)
)

ν

(as
1 − φ

1 − φ̃
=

P (A1)

P (A1) + P (A3)
)

=
(

fW,X(ei, x1)(x1 − µx)

+
P (A1)

P (A3 ∪ A1)

mx
∑

m=1

(fX(xm) − P (W ≥ ei, X = xm))(xm − µx)
)

ν

=
(

fW,X(ei, x1)(x1 − µx) − P (A1)

P (A3 ∪ A1)

mx
∑

m=1

P (W ≥ ei, X = xm))(xm − µx)
)

ν

(as E(X − µx) = 0)

=

(

fW,X(ei, x1)(x1 − µx) − P (A1)

P (A3 ∪ A1)
P (W = ei, X = x1)(x1 − µx)

− P (A1)

P (A3 ∪ A1)

mx
∑

m=1

P (W > ei, X = xm))(xm − µx)

)

ν

(as P (W = ei, X > x1) = 0)

>

(

P (A3)

P (A3 ∪ A1)
fW,X(ei, x1)(x1 − µx)

− P (A1)

P (A3 ∪ A1)

mx
∑

m=1

P (W > ei, X = xm))(x1 − µx)

)

ν

(as ν = (1 − φ̃)
∑

j>i

(ei − ej)fo(ej) < 0)

=

(

P (A3)

P (A3 ∪ A1)
fW,X(ei, x1)(x1 − µx) − P (A1)

P (A3 ∪ A1)
P (W > ei)(x1 − µx)

)

ν

=
(

P (A3)fW,X(ei, x1) − P (A1)P (W > ei)
) x1 − µx

P (A3 ∪ A1)
ν

= 0.

(the last equality holds by the definitions of A1 and A3, and independence of ε

and (W,X)). It follows from the foregoing inequality that limn→∞ H(β−)/n >

limn→∞ H(β)/n = 0 a.s (by Lemma 1). This completes the proof of Statement

2 of the lemma.

By symmetry, Statement 1 of the lemma can be proved in a similar manner.

Proof of the statement in Example 4. By the assumptions in the example,

there are 23 possible values of (ε,X,C). Let ni be the number of observations of

type i, i = 1, . . . , 8. Verify B = {−1/3, 0, 2/3, 1} by the definition of B in Section
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2. In order to show H(β−) 6= H(β+), since β = 1, we only need to consider b in

two intervals : (2/3, 1) and (1,∞).

By Lemma 2 and Remark 2.2, in order to evaluate H(β−)/n, consider b ∈
(2/3, 1) and compute T ∗

i = T ∗
i (1−) by (2.2). The quantities in (2.1) and (2.2)

are computed in the following table, arranged in ascending orders of Ti(1−)s.

This arrangement makes the evaluation of Ŝb, f̂b, and T ∗
i (b) easier (see (3.3) and

(2.2)).

i ε Xi Yi Ci Mi δi Ti(b) Ti(1) Ti(1−) f̂1−(Ti(1−)) ≈ T ∗
i (1−) ≈

1 0 1 1 −2 −2 0 −2 − b −3 −3 0 4/9

2 1 1 2 −2 −2 0 −2 − b −3 −3 0 4/9

3 0 −2 −2 −2 −2 1 −2 + 2b 0 0− 1/3 0

4 0 −2 −2 1 −2 1 −2 + 2b 0 0− 1/3 0

5 1 −2 −1 −2 −2 0 −2 + 2b 0 0− 0 2/3

6 0 1 1 1 1 1 1 − b 0 0+ 2/9 0

7 1 1 2 1 1 0 1 − b 0 0+ 0 1

8 1 −2 −1 1 −1 1 −1 + 2b 1 1 4/9 1

By (2.1), (2.2) and the foregoing table,

H(β−)

n
=

1

n
{(n1T

∗
1 + n2T

∗
2 )(1 − X̄) + n5T

∗
5 (−2 − X̄)

+n7T
∗
7 (1 − X̄) + n8T

∗
8 (−2 − X̄)}

a.s.→ 1.5

8
{4

9
+

4

9
− 2

3
+ 1 − 1} (as X̄

a.s.→ −0.5)

=
1

24
.

In order to evaluate H(β+), consider b ∈ (1,∞) and compute T ∗
i = T ∗

i (1+)

by (2.2). The quantities in (2.1) and (2.2) are computed in the following table.

In the table we rearrange the orders of types of observations in ascending orders

of T ∗
i (1+)s.

i ε Xi Yi Ci Mi δi Ti(b) Ti(1) Ti(1+) f̂1+(Ti(1+)) ≈ T ∗
i (1+) ≈

1 0 1 1 −2 −2 0 −2 − b −3 −3 0 5/12

2 1 1 2 −2 −2 0 −2 − b −3 −3 0 5/12

6 0 1 1 1 1 1 1 − b 0 0− 1/6 0

7 1 1 2 1 1 0 1 − b 0 0− 0 1/2

3 0 −2 −2 −2 −2 1 −2 + 2b 0 0+ 5/12 0

4 0 −2 −2 1 −2 1 −2 + 2b 0 0+ 5/12 0

5 1 −2 −1 −2 −2 0 −2 + 2b 0 0+ 0 1

8 1 −2 −1 1 −1 1 −1 + 2b 1 1 5/12 1
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It follows from (2.1), (2.2) and the foregoing table that

H(β+)

n
=

1

n
{(n1T

∗
1 + n2T

∗
2 + n7T

∗
7 )(1 − X̄) + n5T

∗
5 (2 + X̄) + n8T

∗
8 (2 + X̄)}

a.s.→ −1

8
.

Thus A5 holds and w.p.1, a BJE β̂n = β if n is large enough.
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