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Abstract: In this paper we present exponential regression models for spacings, or

ordered excesses over a given threshold, and for log-ratios of such spacings under
maximum domain of attraction conditions. From these we derive estimators for

the extreme value index (EVI) and for high quantiles, which share many attractive

properties of the maximum likelihood estimators from the peaks-over-thresholds

method, but offer the extra advantage of being generally applicable without re-

striction on the value of the EVI. Further, the exponential regression models can
be refined with parameters of second order regular variation, which reduces the

bias of the resulting estimators. The refined models also give rise to insightful and

practical techniques to select the threshold in the estimation of the EVI and of

high quantiles. We demonstrate asymptotic normality of the newly proposed esti-

mators and compare their small sample behaviour to some classical methods in a
simulation study.
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1. Introduction

The second half of the 20th century was characterised by a boom in economic
activity, which led to an unprecedented increase in the total wealth of the world
population and, consequently, the risks it is exposed to. Many of these hazards
stem from political, economic, natural or accidental events, the precise occurrence
of which is hard to predict. In order to prevent or prepare for their potential
adverse effects a very diverse and evergrowing range of insurance instruments is
being developed and, especially in recent years, risk management has entered all
aspects of economic processes.

An important topic in managing risk is the analysis, modelling and prediction
of rare but dangerous extreme events, so-called ‘worst-case events’. Indeed, the
most dramatic impacts on a system are typically inflicted under extraordinary
circumstances, when common experience and safety measures break down and
the logic of avalanching causes and devastating effects take over. This may lead to
the total failure of the system, as with some stock market crashes and spectacular
bankruptcies in the recent past.
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Clearly, such unfavourable scenarios need analysis, preferably before they
actually become reality, but by their very nature historical data on extreme
events tend to be scarce. Since the mid-seventies, however, some innovative
techniques based on stochastic extreme value theory (EVT) have been devised
to describe and predict extreme events more or less accurately while using only
a limited amount of data.

Put in statistical terms, the core problem in risk management is how to model
the tails and estimate extreme quantiles of the distribution of the process at risk.
Let us denote with X1, . . . ,Xn, . . . data on such a process (e.g., daily loss returns
on a particular stock, or measurements of the wind speed at a particular spot) and
suppose that these data are independent and identically distributed (i.i.d., quite a
crude simplification for stock returns) according to some probability distribution
F . For the worst-case scenario analysis we are then interested in levels xp that
will only be exceeded with a probability p ∈ (0, 1) close to 0, i.e., F (xp) = 1− p,
close to 1. Defining the quantile function Q as the generalised inverse of F ,
Q(r) := inf{x : F (x) ≥ r}, one sees that the required levels xp correspond to the
quantiles Q(1 − p) with small exceedance probability p. Estimating such high
quantiles is directly linked to the accurate modelling of the tail of the distribution
F̄ (x) := 1 − F (x) = P (Xi > x) for large thresholds x.

It is well-known from EVT that one specific parameter, namely the extreme
value index (EVI), dominates the tail behaviour of a distribution. This real-
valued parameter indicates the heaviness of the tail, i.e., how extreme and fre-
quent extreme events can be under the given probability distribution. There is
a substantial number of publications on estimators for this EVI and we are still
learning and understanding more about it. The different estimators are all in-
spired by various (equivalent) conditions that assure convergence of the distribu-
tion of the sample maximum Xn,n = max{X1, . . . ,Xn} to a limiting distribution
of the extreme value type. It makes sense to require this convergence, otherwise
no hope exists that there is something meaningful to say about extreme quantiles
at the border of, or even beyond, the sample range.

However a good quantile estimator calls for a more than good EVI estimator
since some renowned EVI estimators produce poor quantile estimators. Though
it is true that the EVI determines the asymptotic behaviour of the quantiles and
tails of a distribution, it should be stressed that additional parameters (e.g., of
scale and location) are no less important for accurate quantile estimation. The
quality of the latter depend to a large extent on the model the EVI estimator is
derived from, and on the corresponding estimators for the other parameters in
this model.

For the heavy-tailed case, i.e., for distributions with EVI greater than 0,
Feuerverger and Hall (1999) and Beirlant, Dierckx, Goegebeur and Matthys



ESTIMATING THE EXTREME VALUE INDEX AND HIGH QUANTILES 855

(1999) proposed an exponential regression model for log-spacings of order statis-
tics based on the theory of slow variation with remainder. This model proved
succesful in EVI estimation and optimal sample fraction selection (see Matthys
and Beirlant (2000a)) as well as in extreme quantile estimation (see Matthys and
Beirlant (2000b)).

The present paper extends the slow variation with remainder approach to
the general case of a real-valued EVI. Section 2 gives a brief overview of the
classical estimation methods for extreme quantiles. In Section 3 we present two
non-linear exponential regression models for spacings and log-ratios of spacings
of order statistics, respectively. These allow us to construct maximum likelihood
estimators for the real-valued EVI and for extreme quantiles. Technical details
and asymptotic properties are deferred to the Appendix. Section 4 then refines
the regression models by including parameters of slow variation with remain-
der. This leads to bias-corrected estimators and techniques for optimal threshold
selection.

2. Extreme Value Methods for High Quantile Estimation

In this section we review some classical methods to construct estimators for
the tail F̄ (x) of a continuous distribution F , and for high quantiles Q(1−p) with
p ∈ (0, 1) close to 0.

We suppose that a sequence X1, . . . ,Xn, . . . of i.i.d. observations from F
is given and we require that the properly centred and normed sample maxima
Xn,n = max{X1, . . . ,Xn} converge in distribution to a non-degenerate limit.
Gnedenko (1943) showed that this limit distribution is necessarily of extreme
value type, i.e., for some γ ∈ IR there exist sequences of constants an > 0,
bn ∈ IR such that

lim
n→∞P

(
Xn,n − bn

an
≤ x

)
→ Hγ(x) (1)

for all continuity points of the extreme value distribution Hγ(x), defined as

Hγ(x) =

exp(−(1 + γx)−1/γ), for γ �= 0, 1 + γx > 0,

exp(−e−x), for γ = 0.

The distribution function F is then said to belong to the maximum domain
of attraction of Hγ , denoted as F ∈ MDA(Hγ). Most common continuous
distribution functions satisfy this weak condition, which arises quite naturally
when studying the behaviour of extreme quantiles.

The real-valued parameter γ is referred to as the extreme value index (EVI)
of F . Distributions with γ > 0 are called heavy-tailed, as their tail F̄ typi-
cally decays slowly as a power function. Examples in this Fréchet class are the
Pareto, Burr, Student’s t, α-stable (α < 2) and loggamma distributions. The
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Gumbel class of distributions with γ = 0 encompasses the exponential, normal,
lognormal, gamma and classical Weibull distributions, the tail of which dimin-
ishes exponentially fast. Finally, the Weibull class consists of distributions with
γ < 0, which all have a finite right endpoint x+ := Q(1). Examples in this class
are the uniform, beta, reversed Pareto and reversed Burr distributions.

Writing

P

(
Xn,n − bn

an
≤ x

)
= (1 − F̄ (anx + bn))n

one sees that (1) is equivalent to

lim
n→∞nF̄ (anx + bn) → − log Hγ(x) = (1 + γx)−1/γ

(to be read as e−x for γ = 0) for all continuity points of Hγ . This suggests to
approximate the tail F̄ for large thresholds y (= anx + bn) by

F̄ (y) ≈ 1
n

(
1 + γ

y − bn

an

)−1/γ

, (2)

which, after inversion, yields the following approximation for high quantiles with
exceedance probability p close to 0:

xp = Q(1 − p) ≈ an
(pn)−γ − 1

γ
+ bn.

Estimators for xp will typically be of this form, with appropriate estimators for
the EVI γ and the normalising constants an and bn.

Weissman (1978) discussed the estimation of extreme quantiles for the three
extreme value classes separately, assuming prior knowledge on the EVI γ. In
practice, however, this knowledge is often not available as it is mostly not im-
mediately obvious to which class the underlying distribution of a random phe-
nomenon belongs. Therefore, extreme value methods that treat all EVI classes at
once and on equal basis are particularly useful. Although the number of publica-
tions on EVI estimation is growing rapidly, the literature on fully elaborate tail
and high quantile modelling is still rather restricted. In this section we outline
some classical methods, starting with the generalised Pareto model for excesses
over a high threshold.

2.1. The POT method

The peaks-over-thresholds (POT) method embeds approximation (2) in a
more precise theoretical foundation. Denote with Fu(x) := P (X −u ≤ x|X > u)
the distribution of the excess of X over u, given that u is exceeded, and with
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Gγ,µ,σ the generalised Pareto distribution (GPD) defined by

Ḡγ,µ,σ(x) =


(
1 + γ x−µ

σ

)−1/γ
, for γ �= 0,

exp
(
−x−µ

σ

)
, for γ = 0.

(3)

Pickands’ (1975) result on the limiting distribution of excesses over a high thresh-
old then states that (1) holds if and only if

lim
u→x+

sup
0<x<x+−u

|Fu(x) − Gγ,0,σ(u)(x)| = 0 (4)

for some positive scaling function σ(u) depending on u.
Thus, if one fixes a high threshold u and selects from a sample X1, . . . ,Xn

only those observations Xi1 , . . . ,XiNu
that exceed u, a GPD with parameters γ,

µ = 0 and σ = σ(u) is likely to be a good approximation for the distribution Fu

of the Nu excesses Yj := Xij − u.
Smith (1987) describes how a GPD can be fitted to the excesses Y1, . . . , YNu

with maximum likelihood (ML) techniques and shows that the resulting esti-
mators for γ and σ are asymptotically normal if γ > −1/2. The asymptotic
variance of the POT ML estimator γ̂MLP

u for the EVI is then (1 + γ)2/Nu. For
γ ∈ (−1,−1/2) the ML estimator converges with rate of consistency n−γ to a
non-normal limit distribution.

Hosking and Wallis (1987) derive a simple method of moments to estimate γ
and σ, but this only works if γ < 1/2. They also apply a variant with probability
weighted moments (PWM) and find that the corresponding EVI estimator is a
good alternative to the ML estimator for γ < 1. Castillo and Hadi (1997) propose
an elemental percentile method (EPM) that does not impose any restrictions on
the EVI γ, whereas Coles and Powell (1996) use Bayesian methods.

After obtaining estimates γ̂u and σ̂u for γ and σ by one of the above methods
the conditional tail F̄u of F can be estimated by

̂̄Fu(x) =
(

1 + γ̂u
x

σ̂u

)−1/γ̂u

, 0 < x < x+ − u,

and the (unconditional) tail F̄ (x) = F̄ (u) · F̄u(x − u) by

̂̄F (x) =
Nu

n

(
1 + γ̂u

x − u

σ̂u

)−1/γ̂u

, u < x < x+, (5)

where F̄ (u) is estimated with the empirical exceedance probability Nu/n.
Inverting (5) then yields the following POT estimator for high quantiles

above the threshold u:

Q̂u(1 − p) = u + σ̂u

(
Nu

np

)γ̂u

− 1

γ̂u
for p <

Nu

n
.
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Often u is chosen equal to one of the order statistics X1,n ≤ . . . ≤ Xn,n, which are
the data points X1, . . . ,Xn rearranged in ascending order. Taking u = Xn−k,n,
the (k+1)th largest observation, gives Nu = k and defines the quantile estimator

x̂POT
p,k+1 := Xn−k,n + σ̂k+1

(
k
np

)γ̂k+1 − 1

γ̂k+1
for p <

k

n
,

with self-evident indexing by k + 1 instead of u.
Concerning the three POT estimation methods (EPM, ML and PWM), it is

our personal experience from extensive simulations that the ML method mostly
provides the best estimators if γ is estimated to be positive, whereas the EPM
is to be preferred if γ is estimated to be less than 0.

Up to now no adaptive procedure to select the optimal threshold u = Xn−k,n

for any of the POT EVI and high quantile estimators has been described.

2.2. The Pickands estimator

Pickands (1975) defined the following well-known estimator for a general EVI
γ ∈ IR:

γ̂Pi
4k :=

1
log 2

· log Xn−k+1,n − Xn−2k+1,n

Xn−2k+1,n − Xn−4k+1,n
for k ≤ n/4.

The associated quantile estimator for Q(1 − p) is

x̂Pi
p,4k := Xn−k+1,n +

(
k

(n+1)p

)γ̂Pi
4k − 1

1 − 2−γ̂Pi
4k

· (Xn−k+1,n − Xn−2k+1,n).

The asymptotic properties of γ̂Pi
k and x̂Pi

p,k are discussed by Dekkers and de Haan
(1989).

Usually, the Pickands estimators γ̂Pi
k and x̂Pi

p,k depend heavily on the number
k of order statistics used, and their path as a function of k is quite jagged.
Therefore the estimators are rather unworkable in practice for small and moderate
sample sizes. Drees (1996) introduces refined Pickands estimators that suffer less
from instability. He also derives the sample fractions k that are theoretically
optimal for this refined estimation of the EVI and of high quantiles. On refined
Pickands estimators see also Segers (2001).

2.3. The moment estimator

Another celebrated estimator for the EVI of a distribution was introduced
by Dekkers, Einmahl and de Haan (1989). It is defined for k ∈ {2, . . . , n− 1} by

γ̂M
k+1 := M

(1)
k+1 + 1 − 1

2

(
1 − (M (1)

k+1)
2

M
(2)
k+1

)−1

,
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where M
(l)
k+1 = (1/k)

∑k
i=1(log Xn−i+1,n − log Xn−k,n)l, l = 1, 2. The moment

estimator generalises the estimator M
(1)
k+1, proposed by Hill (1975) for the case

γ > 0, to all EVI classes.
An estimator for high quantiles on the basis of the moment estimator is

x̂M
p,k+1 := Xn−k,n + âM

n,k+1

(
k
np

)γ̂M
k+1 − 1

γ̂M
k+1

for k < n,

with the choices

âM
n,k+1 =

Xn−k,nM
(1)
k+1

ρ1(γ̂M
k+1)

,

ρ1(γ) =

1 for γ ≥ 0,
1

1−γ for γ < 0.

The asymptotic normality of this quantile estimator under various conditions on
the tail of the distribution and on the limiting order of p = pn for n → ∞ is
proved by Dekkers, Einmahl and de Haan (1989), and by de Haan and Rootzén
(1993). Indeed, for high quantiles one is typically interested in the case n →
∞ and p = pn → 0, but the asymptotic properties may differ as npn → ∞,
npn → c ∈ (0,∞), or npn → 0. In practice, when dealing with finite samples,
the distinction between these three cases is less clear-cut, of course. Ferreira,
de Haan and Peng (2003) propose an adaptive bootstrap procedure to estimate
the number of order statistics k that is asymptotically optimal for the quantile
estimator x̂M

p,k.

3. Exponential Regression Models

In this section two non-linear exponential regression methods are presented
that yield simple ML estimators for the EVI and for high quantiles. We make
frequent use of the following equalities (in distribution, denoted by d=), where
Uj,n (1 ≤ j ≤ n) and Vj,k (1 ≤ j ≤ k) are order statistics from i.i.d. uniform(0,1)
samples of size n, respectively size k, and Ej,k (1 ≤ j ≤ k) are order statistics
from an i.i.d. standard exponential sample of size k:
with U(r) := Q(1 − 1/r) = x1/r,

Xn−j+1,n
d= U

(
U−1

j,n

)
for j ≤ n,

Uj,n

Uk+1,n

d= Vj,k for j ≤ k < n, and

− log(Vj,k)
d= Ek−j+1,k for j ≤ k.
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The Vj,k in the second equality are independent of Uk+1,n. A key result in the ar-
gumentation is the Rényi representation of standard exponential order statistics,
which states that

Ek−j+1,k
d=

k∑
i=j

fk−i+1

i
for j ≤ k, (6)

where the fi are i.i.d. standard exponential random variables.

3.1. A maximum likelihood estimator for the EVI

Next to (1) and (4) an equivalent condition can be formulated in terms of
the tail quantile function U . de Haan (1970) states that F ∈ MDA(Hγ) if and
only if there exists a positive measurable function aU such that ∀t > 0

lim
r→∞

U(tr) − U(r)
aU (r)

=

{
tγ−1

γ , for γ �= 0,

log t, for γ = 0.
(7)

The norming function aU (r) is then equivalent to σ(U(r)) for r → ∞, with σ(.)
as in (4). Note that for a GPD (3) we have σ(u) = σ + γ(u − µ), U(r) =
µ + σ(rγ − 1)/γ, and the equality in (7) holds for all t > 0 and for all r > 0 (i.e.,
not only in the limit for r → ∞) with aU (r) = σrγ = σ(U(r)).

For a fixed k < n and for 1 ≤ j ≤ k, condition (7) on the tail quantile
function inspires the following approximation :

Xn−j+1,n − Xn−k,n
d= U(U−1

j,n ) − U(U−1
k+1,n)

d= U(V −1
j,k U−1

k+1,n) − U(U−1
k+1,n)

d≈ an,k+1

V −γ
j,k − 1

γ
, (A0)

where an,k+1 stands for aU (U−1
k+1,n).

As an,k+1 = aU (U−1
k+1,n) ∼ σ(Xn−k,n), (A0) is in fact the counterpart, ex-

pressed in terms of the order statistics, for the GPD tail approximation (4) with
u = Xn−k,n.

For the log-ratio of spacings of order statistics we then obtain

log
Xn−j+1,n − Xn−k,n

Xn−j,n − Xn−k,n

d≈ log
V −γ

j,k − 1

V −γ
j+1,k − 1

for 1 ≤ j < k.

The Mean Value Theorem applied to the right-hand side gives, with E∗
j,k ∈

(Ek−j,k, Ek−j+1,k) and V ∗
j,k = exp(−E∗

j,k),

log
V −γ

j,k − 1

V −γ
j+1,k − 1

d= log(eγEk−j+1,k − 1) − log(eγEk−j,k − 1)
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d= (Ek−j+1,k − Ek−j,k) · γeγE∗
j,k

eγE∗
j,k − 1

d=
fk−j+1

j
· γ

1 − (V ∗
j,k)γ

.

The last equality follows from (6). Estimating V ∗
j,k by j/(k + 1) we find the

following non-linear exponential regression model for log-ratios of spacings:

j log
Xn−j+1,n − Xn−k,n

Xn−j,n − Xn−k,n

d≈ γ

1 − ( j
k+1)γ

fk−j+1 for 1 ≤ j < k, (A1)

with fj (1 ≤ j ≤ k) i.i.d. standard exponential random variables.
For a fixed value k < n, a ML estimator γ̂A

k+1 for the EVI can easily be
implemented on the basis of (A1) by calculating the scaled log-ratios of spacings
Yj := j log[(Xn−j+1,n − Xn−k,n)/(Xn−j,n − Xn−k,n)] for 1 ≤ j < k and maximis-
ing numerically the loglikelihood

LA1
(γ)(Y) :=

k−1∑
j=1

{
log

(1 − ( j
k+1)γ

γ

)
−1 − ( j

k+1)γ

γ
Yj

}
.

The resulting EVI estimator γ̂A is, by construction, invariant under shifts and
rescaling of the data. Also, under a few technical conditions on the tail of the dis-
tribution, γ̂A

k+1 is consistent and asymptotically normally distributed. A precise
statement and proof of this property are given in Appendix A.1.

As for the POT ML estimator and the moment estimator, the asymptotic
variance of

√
k(γ̂A

k − γ) is 1 for γ = 0. For other γ-values it can be calculated
numerically. In Figure 1 we compare the asymptotic variance of γ̂A with the one
of the moment estimator γ̂M and the POT ML estimator γ̂MLP for the range
−3 ≤ γ ≤ 3 (−1/2 < γ ≤ 3 for the POT ML estimator). Note that for γ > 0
the asymptotic variance of γ̂A almost equals the one of the POT ML estimator.
For negative γ-values the asymptotic variance of γ̂A is substantially lower than
for the moment estimator.

Figure 1. Asymptotic variances of
√

k(γ̂k−γ) for γ̂A (solid line), the moment
estimator γ̂M (dots) and the POT ML estimator γ̂MLP (dots-dashes).
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In Appendix A.1 we give an integral expression for the asymptotic bias of
γ̂A

k which can be calculated numerically and which is again strikingly similar to
the asymptotic bias of the POT ML estimator for γ > 0. This bias is caused
by deviations of the spacings from model (A0) when the threshold Xn−k,n is not
far enough in the tail for the asymptotic limit in (7) to hold approximately. For
examples such as the loggamma and the lognormal distribution the convergence
rate to the limit is rather slow, which results in an important bias even at the
lower k-values.

As a rule, it is always necessary for any EVI estimator to make a trade-
off between variance, which diminishes when more order statistics are used in
the estimation, and bias, which increases when the threshold is put at a lower
value. The point where the mean squared error (MSE, equal to bias squared plus
variance) of the estimator is minimal can therefore be considered as an optimal
choice for the threshold.

As an illustration Figure 2 shows the medians and empirical MSE’s of the
estimator γ̂A, together with the POT ML estimator γ̂MLP and the moment
estimator γ̂M , applied to simulated data from a Burr(1,0.5,2) and a reversed
Burr(1,0.5,3) distribution.

Figure 2. (a) Medians and (b) empirical MSE’s of γ̂A
k (solid line), γ̂MLP

k

(dots-dashes) and γ̂M
k (dots), k = 3, . . . , 340, for 100 simulated samples of

size n = 500 with (1) a Burr(1,0.5,2) distribution (γ = 1), and (2) a reversed
Burr(1,0.5,3) distribution (γ = −2/3). Horizontal lines indicate the true
value of γ.
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In Section 4.1 we discuss the origin of the bias problem in more detail and
try to remedy it by introducing the concept of slow variation with remainder
in the exponential regression model. Alternatively, this approach also provides
an adaptive estimation procedure to select the optimal threshold for γ̂A

k in cases
where its bias is not excessive (Section 4.2).

3.2. Estimating high quantiles

In this section we present a second exponential regression model, which al-
lows a simple estimator for the scaling factor an,k+1 = aU (U−1

k+1,n) that is needed
in the subsequent construction of an estimator for high quantiles. The deriva-
tion is similar to the one for model (A1), but instead of considering log-ratios
of spacings we now employ (A0) to approximate the spacings of order statistics
themselves :

Xn−j+1,n − Xn−j,n
d≈ an,k+1

V −γ
j,k − V −γ

j+1,k

γ
for 1 ≤ j < k.

With the same notation for E∗
j,k and V ∗

j,k as above, an application of the Mean
Value Theorem to the second factor on the right gives

V −γ
j,k − V −γ

j+1,k

γ
d=

eγEk−j+1,k − eγEk−j,k

γ

d= (Ek−j+1,k − Ek−j,k)e
γE∗

j,k
d=

fk−j+1

j
· (V ∗

j,k)
−γ .

Estimating V ∗
j,k by j/(k + 1) we arrive at the non-linear regression model with

exponential responses

j(Xn−j+1,n − Xn−j,n)
d≈ an,k+1

(
j

k + 1

)−γ

fk−j+1 for 1 ≤ j ≤ k, (A2)

with fj (1 ≤ j ≤ k) i.i.d. standard exponential random variables, as before.
Model (A2) makes it possible to calculate an estimator for an,k+1 by max-

imising the corresponding loglikelihood LA2
(an,k+1,γ) of the scaled spacings Zj :=

j (Xn−j+1,n − Xn−j,n) for 1 ≤ j ≤ k:

ân,k+1 =
1
k

k∑
j=1

Zj

(
j

k + 1

)γ

. (8)

Condition (7) now leads to the following approximation for high quantiles:

xp − Xn−k,n
d= U(p−1) − U(U−1

k+1,n)
d= U((Uk+1,n/p)U−1

k+1,n) − U(U−1
k+1,n)

d≈ ân,k+1
(Uk+1,n/p)γ − 1

γ
.
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We estimate Uk+1,n by its expected value (k + 1)/(n + 1), γ by γ̂A
k+1, and an,k+1

by replacing γ̂A
k+1 for γ in formula (8):

âA
n,k+1 :=

1
k

k∑
j=1

j(Xn−j+1,n − Xn−j,n)
(

j

k + 1

)γ̂A
k+1

.

Doing so, we arrive at the quantile estimator

x̂A
p,k+1 := Xn−k,n + âA

n,k+1

(
k+1

p(n+1)

)γ̂A
k+1 − 1

γ̂A
k+1

for k < n.

Figure 3. (a) Medians and (b) empirical MSE’s of x̂A
p,k (solid line), x̂MLP

p,k

(dots-dashes) and x̂M
p,k (dots), with p = 1/5000, k = 3, . . . , 340, for 100

simulated samples of size n = 500 with (1) a Burr(1,0.5,2) distribution (γ =
1), and (2) a reversed Burr(1,0.5,3) distribution (γ = −2/3). Horizontal
lines indicate the true value of xp.

In Figure 3 the estimator x̂A
p is compared to the POT ML estimator x̂MLP

p

and the moment estimator x̂M
p for the simulated data from Figure 2, with

p = (1/10)(1/n) = 1/5000. As the distributions of these estimators are heavily
skewed to the right, we use a slightly adapted version of the normed MSE, with
squared log-ratios instead of squared differences. If N is the number of simulation
runs (N = 100 for this example) and x̂

(i)
p,k is the value of the quantile estimator
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x̂p,k in the i-th simulation, then the empirical MSE of x̂p,k is calculated as

M̂SEk =
1
N

N∑
i=1

(
log

x̂
(i)
p,k

xp

)2

(9)

instead of the usual average (1/N )
∑N

i=1(x̂
(i)
p,k/xp − 1)2. This definition is used in

all further MSE-plots for the quantile estimators.
From a systematic simulation study we may conclude the following concern-

ing the finite sample behaviour of the new estimators γ̂A and x̂A
p . First, as in

Figures 2(1) and 3(1), the POT ML estimators and the new γ̂A and x̂A
p usually

show a particularly similar behaviour if γ is estimated to be positive. This re-
sults from the fact that the exponential regression models (A1) and (A2) from
which γ̂A and x̂A

p are derived are close approximations to the POT GPD model.
However, by using log-ratios of spacings for the EVI estimator γ̂A, its regularity
is now extended to the whole real line IR.

Further one observes that the biases of γ̂A
k+1 and x̂A

p,k+1 typically grow at a
slower rate (with k) than these of the moment estimators, especially for distri-
butions in the class γ < 0. Therefore, γ̂A

k+1 and x̂A
p,k+1 reach their optimal points

of minimal MSE deeper in the sample, i.e., at lower threshold values Xn−k,n.
Mostly, these minimal empirical MSE’s of γ̂A

k+1 and x̂A
p,k+1 are comparable to, or

even lower than, the minimal MSE’s of the moment estimators.

4. Bias Correction and Threshold Selection

In this section we refine the exponential regression models (A1) and (A2)
with concepts from EVT on slow variation with remainder. A positive function
� is slowly varying at infinity if

lim
r→∞

�(tr)
�(r)

= 1 for all t > 0. (10)

A function f is called regularly varying with index γ, denoted by f ∈ Rγ , if
f(x) = xγ�(x) with � slowly varying. R0 thus symbolizes the class of slowly
varying functions.

From EVT it is well-known that, if the tail quantile function U satisfies (7)
with EVI γ, then the norming function aU varies regularly at infinity with the
same index γ. Moreover,

• if γ > 0: U ∈ Rγ , i.e., U(r) = rγ�(r) with � ∈ R0, and aU (r)/U(r) → γ for
r → ∞, such that aU/U ∈ R0. Thus for all t, r > 0,

U(tr) − U(r)
aU (r)

=
U(r)
aU (r)

(
U(tr)
U(r)

− 1
)

=
1

d(r)

(
tγ

�(tr)
�(r)

− 1
)

,

with d(r) := aU (r)/U(r) → γ for r → ∞, d ∈ R0;
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• if γ < 0: x+ < ∞, x+ − U ∈ Rγ , i.e., x+ − U(r) = rγ�(r) with � ∈ R0, and
aU (r)/(x+ − U(r)) → −γ for r → ∞, such that aU/(x+ − U) ∈ R0. Thus
for all t, r > 0,

U(tr) − U(r)
aU (r)

= −x+ − U(r)
aU (r)

(
x+ − U(tr)
x+ − U(r)

− 1
)

=
1

d(r)

(
tγ

�(tr)
�(r)

− 1
)

,

with d(r) := −aU (r)/(x+ − U(r)) → γ for r → ∞, −d ∈ R0;

• if γ = 0: U ∈ R0, i.e., U(r) = �(r) with � ∈ R0, and aU (r)/U(r) → 0 for
r → ∞, with aU/U ∈ R0. Thus for all t, r > 0,

U(tr) − U(r)
aU (r)

=
U(r)
aU (r)

(
U(tr)
U(r)

− 1
)

=
1

d(r)

(
�(tr)
�(r)

− 1
)

,

with d(r) := aU (r)/U(r) → 0 for r → ∞, d ∈ R0.

Hence we obtain for all γ ∈ IR that, if U satisfies (7), there exist a slowly varying
function � and a function d with ±d ∈ R0 and d(r) → γ for r → ∞, such that
for all t, r > 0,

U(tr) − U(r)
aU (r)

=
1

d(r)

(
tγ

�(tr)
�(r)

− 1
)

. (11)

Conversely, for γ �= 0 the limit result in (7) follows immediately from (11)
by the definition (10) of slow variation. For γ = 0 the tail quantile function
U = � is not only required to belong to R0, but also to the special subclass
of so-called Π-varying functions (see Geluk and de Haan (1987)). These are
characterised by the existence of a measurable function a, such that for all t > 0,
limr→∞(�(tr) − �(r))/a(r) = log t, which is precisely condition (7) for γ = 0.

The bias of classical EVI estimators and of the newly introduced γ̂A arises
from taking the limit results (7) or (4) as equalities, while these actually only hold
when the threshold U(r) grows to x+. When U(r) moves further away from x+,
or when the ratio �(tr)/�(r) in (11) tends to 1 at a slow rate, the approximation
will be poorer, with a more or less biased estimate for the EVI as a consequence.

We will show, however, how the exponential regression models (A1) and
(A2) can be refined on the basis of (11) by parametrising the convergence rate
of �(tr)/�(r) in order to obtain bias-corrected estimates for the EVI and for high
quantiles. To this purpose consider the following condition on �, which describes
slow variation with remainder (see Section 3.12.1 of Bingham, Goldie and Teugels
(1987)).

Assumption (R�). There exists a real constant ρ ≤ 0 and a rate function b

satisfying b(r) → 0 as r → ∞, such that for all t ≥ 1, as r → ∞,

log
�(tr)
�(r)

∼
b(r)

tρ − 1
ρ

, for ρ �= 0,

b(r) log t, for ρ = 0.
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Apart from a possible change of sign the function b is then regularly varying with
index ρ.

The slowly varying parts � in (11) of most common distributions in statis-
tics satisfy this rather weak assumption. Note that for the Gumbel class of
distributions with γ = 0, U = � is Π-varying so that necessarily ρ = 0 and
b(r) ∼ aU (r)/U(r).

4.1. A bias-corrected estimator for the EVI

For spacings of order statistics with 1 ≤ j ≤ k < n, (11) gives

Xn−j+1,n − Xn−k,n
d= U(V −1

j,k U−1
k+1,n) − U(U−1

k+1,n)

d= cn,k+1

[
V −γ

j,k

�(V −1
j,k U−1

k+1,n)

�(U−1
k+1,n)

− 1

]
,

where cn,k+1 denotes aU (U−1
k+1,n)/d(U−1

k+1,n). With assumption (R�) we then ob-
tain the approximation

Xn−j+1,n − Xn−k,n
d≈ cn,k+1

[
V −γ

j,k exp
(

bn,k+1

V −ρ
j,k − 1

ρ

)
−1

]
, (B0)

where bn,k+1 stands for b(U−1
k+1,n).

We now proceed in a similar way as for model (A1) with the log-ratio of
spacings of order statistics:

log
Xn−j+1,n − Xn−k,n

Xn−j,n − Xn−k,n

d≈ log
V −γ

j,k exp
(
bn,k+1

V −ρ
j,k

−1

ρ

)
−1

V −γ
j+1,k exp

(
bn,k+1

V −ρ
j+1,k

−1

ρ

)
−1

for 1 ≤ j < k.

For the right-hand side, the Mean Value Theorem, with the same notations for
E∗

j,k and V ∗
j,k as in Section 3, and (6) yield

log
V −γ

j,k exp
(
bn,k+1

V −ρ
j,k

−1

ρ

)
−1

V −γ
j+1,k exp

(
bn,k+1

V −ρ
j+1,k

−1

ρ

)
−1

d= log
exp

(
γEk−j+1,k+ bn,k+1

e
ρEk−j+1,k−1

ρ

)
− 1

exp
(
γEk−j,k + bn,k+1

e
ρEk−j,k−1

ρ

)
− 1

d= (Ek−j+1,k − Ek−j,k) · γ + bn,k+1e
ρE∗

j,k

1 − exp
(
−γE∗

j,k + bn,k+1
e
ρE∗

j,k−1
−ρ

)
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d=
fk−j+1

j
· γ + bn,k+1(V ∗

j,k)
−ρ

1 − (V ∗
j,k)γ exp

(
bn,k+1

(V ∗
j,k

)−ρ−1

−ρ

) .

Hence the following non-linear exponential regression model for log-ratios of spac-
ings with 1 ≤ j < k:

j log
Xn−j+1,n − Xn−k,n

Xn−j,n − Xn−k,n

d≈
γ + bn,k+1

(
j

k+1

)−ρ

1 −
(

j
k+1

)γ
exp

(
bn,k+1

(
j

k+1
)−ρ−1

−ρ

)fk−j+1, (B1)

where the fj are i.i.d. standard exponential random variables. Note that (B1)
simplifies to model (A1) if bn,k+1 = 0.

Model (B1) makes it possible to calculate joint estimates for the parameters
γ, bn,k+1 and ρ by maximising numerically the corresponding loglikelihood of the
log-ratios of spacings for 1 ≤ j < k < n. We denote these ML estimators by
γ̂B

k+1, b̂B
n,k+1 and ρ̂B

k+1, respectively. In most cases the new EVI estimator reduces
the bias of γ̂A to a large extent. As an example Figure 4 compares γ̂B with γ̂A,
the POT ML estimator and the moment estimator, for the same simulated data
as in Figures 2 and 3.

Figure 4. (a) Medians and (b) empirical MSE’s of γ̂A
k (solid line), γ̂B

k

(dashes), γ̂MLP
k (dots-dashes) and γ̂M

k (dots), k = 3, . . . , 340, for 100 simu-
lated samples of size n = 500 with (1) a Burr(1,0.5,2) distribution (γ = 1),
and (2) a reversed Burr(1,0.5,3) distribution (γ = −2/3). Horizontal lines
indicate the true value of γ.
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We note that other exponential regression models can be derived, using prop-
erties of generalised second order regular variation as described by de Haan and
Stadtmüller (1996) rather than the condition (R�) on slow variation with remain-
der. However, model (B1) and the alternative models all have equivalent linear
expansions in bn,k+1, and in simulations we found that the functional form of
(B1) gave the best bias-reduced estimator for the EVI.

4.2. Selecting the threshold for γ̂A and x̂A
p

The price to pay for the bias reduction of γ̂B is a substantially higher variance
than for the simple estimator γ̂A. Only in exceptional cases does γ̂B outperform
γ̂A or the moment estimator in a MSE-sense. We therefore consider γ̂B as an
interesting data-analytical tool that can be used to complement γ̂A. When plot-
ting both EVI estimators for a particular data set, γ̂B will inform the analyst of
the quality, and especially of the bias, of γ̂A. If the estimators show a similar
pattern over a sizable range of k-values, then one can rely on γ̂A with a proper
choice for the position of the threshold Xn−k,n, ideally situated in or just beyond
the region of congruence. If the patterns diverge rapidly one should be cautious
concerning the resulting estimates.

Moreover, one can make these practical guidelines more explicit and use
model (B1) to select the threshold Xn−k,n for γ̂A

k+1 in an adaptive way. As in
Beirlant et al. (1999) the estimators γ̂B

k+1, b̂B
n,k+1 and ρ̂B

k+1 are then used to
estimate the asymptotic mean squared error (AMSE) of γ̂A

k+1. This is done by
replacing γ, bn,k+1 and ρ by γ̂B

k+1, b̂B
n,k+1 and ρ̂B

k+1 in the integral expressions
for the asymptotic variance and asymptotic bias of γ̂A (see Appendix A.1). The
index k0 which minimizes the obtained AMSE estimate is then an estimator for
the optimal number of extremes to use with γ̂A. We note that the result of this
procedure is immediately relevant to the POT method, as γ̂A closely resembles
the POT ML estimator for γ ≥ 0.

In extensive simulations we found that this procedure can be simplified by
putting ρ ≡ −1 in model (B1). The AMSE of γ̂A

k+1 is then estimated with the cor-
responding estimators for γ and bn,k+1, and with ρ = −1. This mis-specification
is in agreement with established adaptive threshold selection methods for the
Hill estimator (see e.g., Hall (1990), Drees and Kaufmann (1998), Gomes and
Oliveira (2001) and Matthys and Beirlant (2000a)) and often reduces the vari-
ability of the estimation results. Results of this simplified procedure applied to
100 simulated samples of size n = 500 from some common distributions (see
Appendix A.3 for a precise description) are presented in Table 1 as root mean
squared errors (RMSE) of γ̂A

k0
. In most cases these are of relatively small order,

except for distributions where the bias dominates, e.g., for the Burr(1,0.25,4) and
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the reversed Burr(1,0.25,4). As mentioned above, the bias-corrected estimator
γ̂B is especially useful as a refinement of γ̂A for such ill-behaved cases. To assess
the quality of the adaptive threshold selection method we also report in Table 1
the ratio R of the RMSE of γ̂A

k0
and the minimal empirical RMSE for γ̂A

k found
in the simulations:

R :=
RMSE γ̂A

k0

min
k

(RMSE γ̂A
k )

.

In our simulations with sample size n = 500 we limited the range from which k0

could be selected to {1, . . . , 350}. For the Gamma(2) and Uniform(1) distribu-
tions the ratio R is excessively large although their RMSE for γ̂A

k0
is relatively

small. This indicates that the optimal k0 can even be beyond 350 out of 500 ob-
servations for extremely well-behaved distributions such as the Gamma(2) and
Uniform(1).

Table 1. Simulation results of the adaptive threshold selection procedure for γ̂A.

Distribution γ ρ
RMSE

γ̂A
k0

R Distribution γ ρ
RMSE

γ̂A
k0

R

Burr(1,0.25,4) 1 − 1
4 0.78 1.27 Lognormal 0 0 0.30 1.12

Burr(1,0.5,2) 1 − 1
2 0.34 1.25 Gamma(2) 0 0 0.11 1.94

Burr(1,1,1) 1 -1 0.11 1.03 Weibull(1,2) 0 0 0.23 1.25

Fréchet(1) 1 -1 0.13 1.06 rev. Burr(1,0.5,3) − 2
3 − 1

3 0.47 1.07

Loggamma(1,2) 1 0 0.20 0.91 rev. Burr(1,0.25,4) -1 − 1
4 0.44 1.07

|t2| 1
2 -1 0.14 1.04 rev. Burr(1,0.5,2) -1 − 1

2 0.27 1.11

rev. Burr(1,1,1) -1 -1 0.18 1.23

Uniform(1) -1 -1 0.11 2.07

Table 2. Simulation results of the adaptive threshold selection procedure for x̂A
p .

Distribution γ ρ
RMSE
x̂A

p,k0

R Distribution γ ρ
RMSE
x̂A

p,k0

R

Burr(1,0.25,4) 1 − 1
4 2.34 1.09 Lognormal 0 0 0.37 1.13

Burr(1,0.5,2) 1 − 1
2 1.60 1.18 Gamma(2) 0 0 0.53 1.16

Burr(1,1,1) 1 -1 0.87 1.22 Weibull(1,2) 0 0 0.18 1.86
Fréchet(1) 1 -1 0.96 1.23 rev. Burr(1,2,2) − 1

4 − 1
2 0.10 1.09

Loggamma(1,2) 1 0 0.91 1.14

|t2| 1
2 -1 0.55 1.02
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Analogously one can select the optimal threshold Xn−k,n for the quantile estimator
x̂A

p,k+1. One estimates the AMSE of x̂A
p,k+1 by replacing γ, bn,k+1 and ρ by γ̂B

k+1, b̂B
n,k+1

and ρ ≡ −1 in the integral expression for AMSE(x̂A
p,k+1) that is stated in Appendix

A.2 and looks for the position k0 where the AMSE estimate reaches its minimum value.
Simulation results of this adaptive procedure are listed in Table 2 as the RMSE of x̂A

p,k0

(according to (9)) for similar simulated samples as in Table 1 with p = (1/10)(1/n) =
1/5000, and the ratio R of RMSE(x̂A

p,k0
) and the minimal empirical RMSE of x̂A

p,k in the
simulations.

4.3. Bias-corrected estimation of high quantiles

In order to construct a quantile estimator that reduces the bias of x̂A
p , espe-

cially in ill-behaved cases, we first need an estimator for the scaling factor cn,k+1.
As in Section 3, this can be derived from a refined exponential regression model
for spacings of order statistics. On the basis of (B0) we obtain for 1 ≤ j < k < n
the approximation

Xn−j+1,n − Xn−j,n

d≈ cn,k+1

[
V −γ

j,k exp
(

bn,k+1

V −ρ
j,k − 1

ρ

)
−V −γ

j+1,k exp
(

bn,k+1

V −ρ
j+1,k − 1

ρ

)]
.

With the Mean Value Theorem applied to the left-hand side, we arrive at the
following analogue to model (A2) for spacings of order statistics with 1 ≤ j ≤ k:

j(Xn−j+1,n − Xn−j,n)

d≈ cn,k+1

(
γ+bn,k+1

( j

k+1

)−ρ)( j

k+1

)−γ
exp

(
bn,k+1

1−
(

j
k+1

)−ρ

−ρ

)
fk−j+1, (B2)

where the fj represent i.i.d. standard exponential random variables. If bn,k+1 = 0,
(B2) reduces to (A2) with an,k+1 = γcn,k+1.

Maximising the loglikelihood corresponding to model (B2) and estimating
γ, bn,k+1 and ρ by γ̂B

k+1, b̂B
n,k+1 and ρ̂B

k+1, respectively, we propose for cn,k+1 the
estimator

ĉB
n,k+1 :=

1
k

k∑
j=1

j(Xn−j+1,n − Xn−j,n)
(

j
k+1

)γ̂B
k+1

(
γ̂B

k+1 + b̂B
n,k+1

(
j

k+1

)−ρ̂B
k+1

)
exp

(
b̂B
n,k+1

1−( j

k+1
)−ρ̂B

k+1

−ρ̂B
k+1

) .

Finally for high quantiles, (11) and (R�) lead to the approximation

xp − Xn−k,n
d= U((Uk+1,n/p) U−1

k+1,n) − U(U−1
k+1,n)

d≈ cn,k+1

[
(Uk+1,n/p)γ exp

(
bn,k+1

(Uk+1,n/p)ρ − 1
ρ

)
−1

]
.
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We estimate γ, bn,k+1 and ρ by γ̂B
k+1, b̂B

n,k+1 and ρ̂B
k+1, cn,k+1 by ĉB

n,k+1, and
Uk+1,n by its expected value (k + 1)/(n + 1) to obtain for k < n the estimator

x̂B
p,k+1 := Xn−k,n + ĉB

n,k+1

( k + 1
p(n + 1)

)γ̂B
k+1

exp

(
b̂B
n,k+1

(
k+1

p(n+1)

)ρ̂B
k+1 − 1

ρ̂B
n,k+1

)
−1

 .

In Figure 5 the quantile estimator x̂B
p is compared to the simplified version

x̂A
p , the POT ML estimator x̂MLP

p and the moment estimator x̂M
p , with the

simulated data from Figure 4 and with p = (1/10)(1/n) = 1/5000. As with the
refined EVI estimator γ̂B , x̂B

p usually succeeds well in reducing the bias of x̂A
p .

On the other hand, it has a higher variance and is often less efficient in MSE
sense. Here again, we propose x̂B

p as a data-analytical tool that can be used in
combination with x̂A

p to warn of ill-behaved cases, to assess the bias of x̂A
p , and

to judge the position of a proposed threshold Xn−k,n for x̂A
p .

Figure 5. (a) Medians and (b) empirical MSE’s of x̂A
p,k (solid line), x̂B

p,k

(dashes), x̂MLP
p,k (dots-dashes) and x̂M

p,k (dots), with p = 1/5000, k = 3, . . . ,
340, for 100 simulated samples of size n = 500 with (1) a Burr(1,0.5,2)
distribution (γ = 1), and (2) a reversed Burr(1,0.5,3) distribution (γ =
−2/3). Horizontal lines indicate the true value of xp.

A. Appendix

A.1. Asymptotic properties of γ̂A

Theorem 1. (Asymptotic normality of γ̂A). Suppose that
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• in case γ > 0, U(r) = rγ�(r) with � satisfying (R�) with ρ < 0,
• in case γ = 0, as r → ∞, (U(tr)−U(r)− b0(r) log t)/b̃0(r) → ±(log t)2/2 for

some positive functions b0 and b̃0 (where b̃0 ∼ aU ),
• in case γ < 0, U(r) = x+ − rγ�(r) with � satisfying (R�) with ρ < 0.
Suppose also that k, n → ∞ with k/n → 0, and in case{

γ �= 0,
√

k b(n/k) → 0,

γ = 0,
√

k b̃0(n/k)
b0(n/k) → 0.

(12)

Then
√

k(γ̂A
k+1 − γ) L→ N(0, σ2

γ/a2
γ), where aγ = γ−2

∫ 1
0 (1− uγ + uγ log uγ)2 (1−

uγ)−2du and σ2
γ equals the variance of Kγ(U) with U uniformly (0, 1) distributed

and with Kγ(u) = (log u)/γ+(1+γ) (dilog uγ)/γ2, where dilog u =
∫ u
1 (log t)/(1−

t) dt (u ≥ 0) denotes the dilogarithm function.

Proof. We follow the classical approach using a Taylor expansion of (∂LA1
(γ)(Y))/

∂γ around the correct population value γ computed at γ̂A
k+1:

0 =
1
k

∂LA1
(γ)(Y)

∂γ
+ (γ̂A

k+1 − γ)
1
k

∂2LA1
(γ)(Y)

∂γ2

∣∣∣∣∣
γ=γ̂∗

k+1

,

with γ̂∗
k+1 denoting a value situated between γ̂A

k+1 and γ. The result is then
obtained by proving the consistency of γ̂A

k+1 (see e.g., Lehmann (1983, p.413,
Theorem 2.2)), followed by the asymptotic normality of −k−1/2∂LA1

(γ)(Y)/∂γ,

and the convergence in probability of k−1∂2LA1
(γ)(Y)/∂γ2. We carry out this

program in more detail for the case γ > 0, and end with some details of the proof
for γ = 0 and γ < 0. First, remark that

− 1√
k

∂LA1
(γ)(Y)

∂γ
=

1√
k

k−1∑
j=1

J̃
( j

k + 1

)(
Yj − γ

1 −
(

j
k+1

)γ

)

with J̃(u) = γ−2(uγ − 1 − γuγ log u), 0 < u < 1. Partial summation yields

− 1√
k

∂LA1
(γ)(Y)

∂γ

=
1√
k

k−1∑
j=1

J̃
( j

k + 1

)j log

[
(Xn−j+1,n − Xn−k,n)/Xn−k,n

(Xn−j,n − Xn−k,n)/Xn−k,n

]
− γ

1 −
(

j
k+1

)γ


=

1√
k
J̃

(
1

k + 1

)
log

(
Xn,n − Xn−k,n

Xn−k,n

)

−k − 1√
k

J̃

(
k − 1
k + 1

)
log

(
Xn−k+1,n − Xn−k,n

Xn−k,n

)
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+
1√
k

k−1∑
j=2

[
(k + 1)

∫ j

k+1

j−1

k+1

J(u) du

]
log

(
Xn−j+1,n − Xn−k,n

Xn−k,n

)

− 1√
k

k−1∑
j=1

J̃

(
j

k + 1

)
γ

1 −
(

j
k+1

)γ

=: T1,n − T2,n + T3,n − T4,n,

with J(u) = γ−2(uγ − 1 − γ(1 + γ)uγ log u), 0 < u < 1. Now one shows that
under the given conditions T1,n

P→ 0, T2,n
P→ 0 and T3,n − T4,n

L→ N(0, σ2
γ).

To this end, note that (Xn−j+1,n − Xn−k,n)/Xn−k,n
d= V −γ

j,k ∆j,k,n − 1 with
∆j,k,n = �(U−1

k+1,nV −1
j,k )/�(U−1

k+1,n). Using the Mean Value Theorem, we find that∣∣∣∣∣log(Xn−j+1,n − Xn−k,n

Xn−k,n

)
− log(V −γ

j,k − 1)

∣∣∣∣∣ ≤ |∆j,k,n − 1|
|∆∗

j,k,n − V γ
j,k|

,

where ∆∗
j,k,n is situated between ∆j,k,n and 1. Condition (R�) implies that for

any ε > 0, we have for n, k large enough that

1 − (1 + ε)V |ρ|−ε
j,k

|ρ| ≤ ∆j,k,n − 1
b(U−1

k+1,n)
≤ 1 − (1 − ε)V |ρ|+ε

j,k

|ρ| (13)

with arbitrary large probability (where we assume without loss of generality that
b(r) is ultimately positive for large values of r). Moreover,

1
k

k−1∑
j=2

[
(k + 1)

∫ j

k+1

j−1

k+1

|J(u)|du

]
1 − (1 − ε)V |ρ|+ε

j,k

∆∗
j,k,n − V γ

j,k

P→
∫ 1

0

|J(v)|
1 − vγ

[1 − (1 − ε)v|ρ|+ε]dv < ∞,

and similarly for the lower bound in (13). Since b is regularly varying and
(n/k)Uk+1,n

P→ 1, we have under (12) that
√

k b(U−1
k+1,n) P→ 0, so that under

the given conditions

T3,n − 1√
k

k−1∑
j=2

[
(k + 1)

∫ j

k+1

j−1

k+1

J(u)du

]
log(V −γ

j,k − 1) P→ 0. (14)

The asymptotic normality of

T ∗
3,n :=

1√
k

k−1∑
j=2

[
(k + 1)

∫ j

k+1

j−1

k+1

J(u)du

]
log(V −γ

j,k − 1)
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can be derived from Theorem 4.1 in Shorack (2000) on the asymptotic normality
of L-statistics k−1 ∑k−1

j=2 ck,jH(Vj,k), with, in our case, H(t) = − log(t−γ −1) and

ck,j = −
[
(k + 1)

∫ j

k+1

j−1

k+1

J(u)du

]
= −

[
jJ̃

( j

k + 1

)
− (j − 1)J̃

( j − 1
k + 1

)]
.

In Shorack (2000) it is shown that for smooth weight functions J (at 0 and
1) and increasing H, the asymptotic distribution of T ∗

3,n − √
kµk with µk =∑k−1

j=2 ck,j

∫ j/k
(j−1)/k H(t)dt, is identical to the one of

√
k(1/k

∑k−1
j=1 K

(1)
γ (Uj)−

E [K(1)
γ (U)]), with U , U1, . . . , Uk i.i.d. uniform(0,1) random variables and

K(1)
γ (u) = −

∫ u

(1/2)1/γ
J(t)dH(t)

=
∫ u

(1/2)1/γ

tγ − 1 − γ(1 + γ)tγ log t

γ(tγ − 1)
dt

t

= 1
γ

(
log u +

log 2
γ

)
+

(
1 + γ

γ2

)(
dilog uγ − dilog 1

2

)
,

which converges to a normal distribution with mean 0 and variance σ2
γ . It is easily

verified that T4,n is asymptotically equivalent to the required centring sequence√
k µk. Hence we find that

T ∗
3,n − T4,n

L→ N(0, σ2
γ). (15)

Combining (14) and (15) then yields the same asymptotic limit law for T3,n−T4,n.
Next, concerning T1,n, one shows as above that

1√
k
J̃
( 1
k + 1

){
log

(
Xn,n − Xn−k,n

Xn−k,n

)
− log(V −γ

1,k − 1)

}
P→ 0

and one verifies that k−1/2J̃(1/(k + 1)) log(V −γ
1,k − 1) P→ 0. Similarly one shows

that T2,n
P→ 0.

Concerning the convergence in probability of k−1∂2LA1
(γ)(Y)/∂γ2 note that

1
k

∂2LA1
(γ)(Y)

∂γ2
=

1
k

k∑
j=1

J̃
( j

k + 1

)[1 −
(

j
k+1

)γ
+ γ

(
j

k+1

)γ
log

(
j

k+1

)]
[
1 −

(
j

k+1

)γ]2
−1

k

k∑
j=1

(
Yj − γ

1 −
(

j
k+1

)γ

)
· ∂J̃(u)

∂u

∣∣∣∣∣
u=

j

k+1

.

The second term on the right-hand side tends to 0 in probability, while the first
term tends in probability to −aγ .
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In case γ < 0, the proof follows the same lines. Here the analysis of Tj,n

(j = 1, 2, 3, 4) involves the negligibility of k−1/2J̃(1/(k + 1)) log(1 − V
|γ|
1,k ) and

(k−1)
√

kJ̃((k−1)/(k +1)) log(1−V
|γ|
k,k), together with the asymptotic normality

of
1√
k

k−1∑
j=2

[
(k + 1)

∫ j

k+1

j−1

k+1

J(u)du

]
log

(
1 − V

|γ|
j,k

)
.

Finally, when γ = 0, one shows the asymptotic equivalence of

− 1√
k

∂LA1
(γ)(Y)

∂γ
and

1√
k

k−1∑
j=2

[
(k + 1)

∫ j

k+1

j−1

k+1

J(u)du

]
log log V −1

j,k .

To this end one considers log((Xn−j+1,n − Xn−k,n)/b0(U−1
k+1,n)) = log(log V −1

j,k +

∆(0)
j,k,n) with

|∆(0)
j,k,n| ≤

b̃0(U−1
k+1,n)

b0(U−1
k+1,n)

max

{
(1 + ε)2V −ε

j,k

(log V 2
j,k)

2

2
+ 2ε log V −1

j,k + ε;

−(1 − ε2)
(log V 2

j,k)
2

2
+ 2ε log V −1

j,k + ε

}

(see Dekkers, Einmahl and de Haan (1989, Lemma 3.5)).

Asymptotic bias of γ̂A
k+1. Combining T3,n in the proof of the asymptotic

normality of γ̂A with the asymptotic representation

V −γ
j,k

[
1 + b(n/k)

V −ρ
j,k −1

ρ
+ oP (b(n/k))

]
−1 of

Xn−k+1,n−Xn−k,n

Xn−k,n
(1≤j≤k)

the main term of the asymptotic bias is found to be −Iγ,ρb(n/k)/aγ with Iγ,ρ =
−ρ−1

∫ 1
0 (J(u)/(1 − uγ))(1 − u−ρ)du. Hence, the asymptotic mean squared error

to be minimised with respect to k in order to find the optimal threshold for γ̂A

is proportional to k−1σ2
γ + b2(n/k)I2

γ,ρ.

A.2. Asymptotic properties of âA
n,k and x̂A

p,k

Using similar arguments as for the asymptotic normality of γ̂A one can prove
the following.

Theorem 2. (Asymptotic normality of âA
n,k). Under the same conditions as in

Theorem 1,
√

k((âA
n,k/an,k) − 1) L→ −G + H + N , with

• N ∼ N(0, γ2), independent of (G,H),
• G representing the limit law from Theorem 1,



ESTIMATING THE EXTREME VALUE INDEX AND HIGH QUANTILES 877

• H ∼ N(0, (1 + γ)2), and
• Cov (G,H) = a−1

γ Cov (K(1)
γ (U),K(2)

γ (U)), with K
(1)
γ as in the proof of Theo-

rem 1, K
(2)
γ (u) = (γ + 1) log u, and U uniformly (0, 1) distributed.

Turning to the asymptotics of the quantile estimator x̂A
p,k, one can use the

method of proof of de Haan and Rootzén (1993) to verify the following result. In
fact, x̂A

p,k is of the same form as x̂M
p,k+1 (from Section 2.3 above) the asymptotics

of which were considered in de Haan and Rootzén (1993). The conditions of
the results are identical and it suffices to replace the asymptotic distribution of
(γ̂M

k+1, â
M
k+1) by the joint asymptotic distribution of (γ̂A

k+1, â
A
n,k+1), which follows

from Theorems 1 and 2 above.

Theorem 3. (Asymptotic normality of x̂A
p,k). Under the conditions of The-

orem 1 and for npn → 0, k = kn → ∞, k/n → 0 and log(np)/
√

k → 0
(n → ∞), we have with an = k/(np) and f(x) = exp((1 − γ)x)U ′(exp x) that,
if

√
k(f ′/f)(log(n/k))(

∫ an
1 sγ−1

∫ s
1 uα−1duds)/(

∫ an
1 sγ−1(log s)ds) → 0 for some

α > 0, and (log an) supv≥log n/k |(f ′′(v)/f ′(v)) − α| → 0, then

√
k
(
x̂A

p,k − xp

)
âA

n,k

∫ an
1 sγ̂−1(log s) ds

L→
{

G, if γ ≥ 0,
(1 − |γ|)G + |γ|H, if γ < 0,

with G, H and N as in Theorem 2.

Remark. In case γ = −1 one can show that (k/âA
n,k)(x̂

A
p,k−xp) converges weakly

to a non-degenerate limit.

Asymptotic mean squared error (AMSE) of x̂A
p,k. Following the approach

from the proof of Proposition 4.12 in Ferreira, de Haan and Peng (2003) one
can derive the minimiser for the asymptotic E (x̂A

pn,k − xpn)2 in case b(x) =
Cxρ(1 + o(1))(x → ∞) for some C > 0, npn → c (finite, ≥ 0) and log pn = o(nε)
for ε > 0 (n → ∞). In case γ > 0 this AMSE is proportional to the AMSE of
γ̂A

k , whereas for γ < 0 one finds that

asymptotic E
(
x̂A

pn,k − xpn

)2

a2
n,k

=
1
k

{
σ2

γ

a2
γ

(1+γ)2

γ4
+

(1+γ)2

γ2
+2Cov(G,H)

1+γ

γ3

}
+b2(n/k)

(1+γ)2

γ4

[
Iγ,ρ

aγ
+

1
1−ρ

]2

.

Since an,k ∼ D(n/k)γ for some D > 0, it follows that a minimum can be found
in k when 1 + 2γ > 0.
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The algorithm to adaptively choose the threshold when estimating xp with x̂A
p,k

is then based on finding a minimum w.r.t. k for an estimate of the function

1
k

σ2
γ

a2
γ

+ b2(n/k)
I2
γ,ρ

a2
γ

, γ > 0,

k−(1+2γ)

{
σ2

γ

a2
γ

(1 + γ)2 + γ2(1 + γ)2 + 2 Cov (G,H) (1 + γ)γ

}

+ b2(n/k)(1 + γ)2
[
Iγ,ρ

aγ
+

1
1 − ρ

]2

.

, γ < 0.

A.3. Distributions used in simulation study

We performed a simulation study to compare the finite sample behaviour
of the novel EVI and quantile estimators γ̂A and γ̂B , respectively x̂A

p and x̂B
p ,

with the classical estimators that were described in Section 2. For a number
of distributions from each of the three EVI classes, 100 random samples of size
500 were generated and the estimators for these samples were calculated. The
distributions from which we simulated were as follows for γ > 0:
• Burr(β, τ, λ) distributions given by 1−F (x) = (1+(xτ/β))−λ so that γ = 1/τλ

and ρ = −1/λ. We have chosen (β, τ, λ) = (1, 1, 1), (1, 0.5, 2), and (1, 0.25, 4).
• the Fréchet(γ) distribution given by 1 − F (x) = 1 − exp(−x−1/γ) so that

ρ = −1; we have chosen γ = 1.
• the absolute value of t distributions with ν degrees of freedom (denoted by
|tν |) for which γ = 1/ν and ρ = −2/ν; we have chosen ν = 2.

• the loggamma distribution with density Γ−1(β)x−2(log x)β−1, x > 1, with
γ = 1 and ρ = 0. We have chosen β = 2.

For γ = 0 (and ρ = 0):
• the standard lognormal distribution.
• the gamma(β) distribution with density Γ−1(β)xβ−1e−x, x > 0; we have cho-

sen β = 2.
• the Weibull(λ, τ) distribution given by 1−F (x) = exp(−λxτ ). We have chosen

(λ, τ) = (1, 2).
For γ < 0:
• the uniform (0,1) distribution with x+ = 1, γ = −1 and ρ = −1.
• reversed Burr(β, τ, λ) distributions given by 1 − F (x) = (1 + ((x+ − x)−τ

/β))−λ, so that γ = −1/τλ and ρ = −1/λ. We have chosen x+ = 2 and
(β, τ, λ) = (1, 1, 1), (1, 0.5, 2), (1, 0.5, 3), (1, 0.25, 4) in Table 1 and (1, 2, 2) in
Table 2.
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